Research article Special Issues

Dynamical behavior of tumor-immune system with fractal-fractional operator

  • Received: 17 October 2021 Revised: 10 January 2022 Accepted: 08 February 2022 Published: 03 March 2022
  • MSC : 37C75, 93B05, 65L07

  • In this paper, the dynamical behavior of the fractional-order cancer model has been analyzed with the fractal-fractional operator, which discretized the conformable cancer model. The fractional-order model consists of the system of nonlinear fractional differential equations. Also, we discuss the fractional-order model to check the relationship between the immune system and cancer cells by mixing IL-12 cytokine and anti-PD-L1 inhibitor. The tumor-immune model has been studied qualitatively as well as quantitatively via Atangana-Baleanu fractal-fractional operator. The nonlinear analysis is used to check the Ulam-Hyres stability of the proposed model. Moreover, the dynamical behavior for the fractional-order model has been checked by using a fractal-fractional operator with a generalized Mittag-Leffler Kernel and verifying the effect of fractional parameters. Finally, the obtained solutions are interpreted biologically, and simulations are carried out to illustrate cancer disease and support theoretical results, which will be helpful for further analysis and to control the effect of cancer in the community.

    Citation: Muhammad Farman, Aqeel Ahmad, Ali Akgül, Muhammad Umer Saleem, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar. Dynamical behavior of tumor-immune system with fractal-fractional operator[J]. AIMS Mathematics, 2022, 7(5): 8751-8773. doi: 10.3934/math.2022489

    Related Papers:

  • In this paper, the dynamical behavior of the fractional-order cancer model has been analyzed with the fractal-fractional operator, which discretized the conformable cancer model. The fractional-order model consists of the system of nonlinear fractional differential equations. Also, we discuss the fractional-order model to check the relationship between the immune system and cancer cells by mixing IL-12 cytokine and anti-PD-L1 inhibitor. The tumor-immune model has been studied qualitatively as well as quantitatively via Atangana-Baleanu fractal-fractional operator. The nonlinear analysis is used to check the Ulam-Hyres stability of the proposed model. Moreover, the dynamical behavior for the fractional-order model has been checked by using a fractal-fractional operator with a generalized Mittag-Leffler Kernel and verifying the effect of fractional parameters. Finally, the obtained solutions are interpreted biologically, and simulations are carried out to illustrate cancer disease and support theoretical results, which will be helpful for further analysis and to control the effect of cancer in the community.



    加载中


    [1] C. S. Chou, A. Friedman, Introduction to mathematical biology, Springer undergraduate texts in mathematics and technology, Springer International Publishing, 1 (2016), 1–10.
    [2] E. K. Yeargers, R. W. Shonkwiler, J. V. Herod, An introduction to the mathematics of biology: With computer algebra models-Chapter 1: Biology, mathematics and a mathematical biology laboratory, Springer Science and Business Media, 2013, 1–8.
    [3] M. A. Medina, Mathematical modeling of cancer metabolism, Crit. Rev. Oncol. Hemat., 124 (2018), 37–40. https://doi.org/10.1016/j.critrevonc.2018.02.004 doi: 10.1016/j.critrevonc.2018.02.004
    [4] N. Bellomo, A. Bellouquid, M. Delitala, Mathematical topics on the modeling of multicellular systems in competition between tumor and immune cells, Math. Mod. Meth. Appl. S., 2004, 1683–1733.
    [5] T. Roose, S. J. Chapman, P. K. Maini, Mathematical models of avascular tumor growth, SIAM Rev., 49 (2007), 179–208. https://doi.org/10.1137/S0036144504446291 doi: 10.1137/S0036144504446291
    [6] N. Bellomo, L. Preziosi, Modelling and mathematical problems related to tumor evolution and its interactions with the immune system, Math. Comput. Model., 32 (2000), 413–452. https://doi.org/10.1016/S0895-7177(00)00143-6 doi: 10.1016/S0895-7177(00)00143-6
    [7] H. M. Byrne, T. Alarcon, M. R. Owen, S. D. Webb, P. K. Maini, Modeling aspects of cancer dynamics: A review, Philos. T. R. Soc. A, 364 (2006), 1563–1578.
    [8] F. Castiglione, B. Piccoli, Cancer immunotherapy, mathematical modeling and optimal control, J. Theor. Biol., 247 (2007), 723–732.
    [9] F. A. Rihan, S. Lakshmanan, A. H. Hashish, R. Rakkiyappan, E. Ahmed, Fractional order delayed predator-prey systems with Holling type-Ⅱ functional response, Nonlinear Dynam., 1 (2015). https://doi.org/10.1007/s11071-015-1905-8 doi: 10.1007/s11071-015-1905-8
    [10] G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 91 (2018), 403–420.
    [11] Y. Wang, J. Cao, X. Li, A. Alsaedi, Edge-based epidemic dynamics with multiple routes of transmission on random networks, Nonlinear Dynam., 91 (2018), 1683–1733. https://doi.org/10.1007/s11071-017-3877-3 doi: 10.1007/s11071-017-3877-3
    [12] H. W. Berhe, O. D. Makinde, D. M. Theuri, Modelling the dynamics of direct and pathogens induced dysentery diarrhea epidemic with controls, J. Biol. Dyn., 13 (2019), 192–217.
    [13] A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Soliton. Fract., 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
    [14] Z. Li, Z. Liu, M. A. Khan, Fractional investigation of bank data with fractal-fractional Caputo derivatives, Chaos Soliton. Fract., 131 (2019), 1–12. https://doi.org/10.1016/j.chaos.2019.109528 doi: 10.1016/j.chaos.2019.109528
    [15] S. Qureshi, A. Atangana, Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data, Chaos Soliton. Fract., 136 (2020), 1–14. https://doi.org/10.1016/j.chaos.2020.109812 doi: 10.1016/j.chaos.2020.109812
    [16] M. Farman, M. U. Saleem, A. Ahmad, S. Imtiaz, M. O. Ahmad, A control of glucose level in insulin therapies for the development of artificial pancreas by Atangana Baleanu fractional derivative, Alex. Eng. J., 59 (2020), 2639–2648.
    [17] M. Farman, A. Akgul, A. Ahmad, D. Baleanue, M. U. Saleem, Dynamical transmission of coronavirus model with analysis and simulation, CMES-Comp. Model. Eng., 127 (2021), 753–769. https://doi.org/10.32604/cmes.2021.014882 doi: 10.32604/cmes.2021.014882
    [18] M. U. Saleem, M. Farman, A. Ahmad, H. Ehsan, M. O. Ahmad, A Caputo Fabrizio fractional order model for control of glucose in insulintherapies for diabetes, Ain Shams Eng. J., 11 (2020), 1309–1316.
    [19] M. Farman, A. Ahmad, A. Akgul, M. U. Saleem, M. Naeem, D. Baleanue, Epidemiological analysis of the coronavirus disease outbreak with random effects, CMC-Comput. Mater. Con., 67 (2021), 3215–3227. https://doi.org/10.32604/cmc.2021.014006 doi: 10.32604/cmc.2021.014006
    [20] M. Aslam, M. Farman, A. Akgul, M. Sun, Modeling and simulation of fractional order COVID-19 model with quarantined-isolated people, Math. Meth. Appl. Sci., 2021. https://doi.org/10.1002/mma.7191 doi: 10.1002/mma.7191
    [21] A. Alshabanat, M. Jleli, S. Kumar, B. Samet, Generalization of Caputo-Fabrizio fractional derivative and applications to electrical circuits, Front. Phys., 8 (2020), 1–20. https://doi.org/10.3389/fphy.2020.00064 doi: 10.3389/fphy.2020.00064
    [22] R. Kanno, Representation of random walk-in fractal space-time, Phys. A, 248 (1998), 165–175. https://doi.org/10.1016/S0378-4371(97)00422-6 doi: 10.1016/S0378-4371(97)00422-6
    [23] S. Ahmad, A. Ullah, T. Abdeljawad, A. Akgül, N. Mlaiki, Analysis of fractal-fractional model of tumor-immune interaction, Results Phys., 25 (2021), 104178. https://doi.org/10.1016/j.rinp.2021.104178 doi: 10.1016/j.rinp.2021.104178
    [24] J. F. Gómez, L. Torres, R. F. Escobar, Fractional derivatives with Mittag-Leffler kernel: Trends and applications in science and engineering, Springer Nature Switzerland, 2019.
    [25] T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107. https://doi.org/10.22436/jnsa.010.03.20 doi: 10.22436/jnsa.010.03.20
    [26] A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel, Therm. Sci., 20 (2016), 757–763.
    [27] E. Ucara, N. Ozdemir, A fractional model of cancer-immune system with Caputo and Caputo-Fabrizio derivatives, Eur. Phys. J. Plus., 2021.
    [28] X. Lai, A. Friedman, Combination therapy for melanoma with BRAF/MEK inhibitor and immune checkpoint inhibitor: A mathematical model, BMC Syst. Biol., 11 (2017), 70. https://doi.org/10.1186/s12918-017-0446-9 doi: 10.1186/s12918-017-0446-9
    [29] P. A. Naik, J. Zu, M. Naik, Stability analysis of a fractional-order cancer model with chaotic dynamics, Int. J. Biomath., 14 (2021), 2150046. https://doi.org/10.1142/S1793524521500467 doi: 10.1142/S1793524521500467
    [30] K. Owolabi, A. Shikongo, Fractal fractional operator method on HER2+ breast cancer dynamics, Int. J. Appl. Comput. Math., 7 (2021), 85. https://doi.org/10.1007/s40819-021-01030-5 doi: 10.1007/s40819-021-01030-5
    [31] P. A. Naik, J. Zu, K. M. Owolabi, Modeling the mechanics of viral kinetics under immune control during primary infection of HIV-1 with treatment in fractional order, Physica A, 545 (2020), 123816. https://doi.org/10.1016/j.physa.2019.123816 doi: 10.1016/j.physa.2019.123816
    [32] P. A. Naik, K. M. Owolabi, J. Zu, M. U. Din, NaikModeling the transmission dynamics of COVID-19 pandemic in Caputo type fractional derivative, J. Multiscale Model., 12 (2021), 2150006.
    [33] Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Fractal-fractional order dynamical behavior of an HIV/AIDS epidemic mathematical model, Eur. Phys. J. Plus, 136 (2021), 36. https://doi.org/10.1140/epjp/s13360-020-00994-5 doi: 10.1140/epjp/s13360-020-00994-5
    [34] Z. Ali, F. Rabiei, K. Shah, Z. M. MAJID, Dynamics of SIR mathematical model for COVID-19 outbreak in Pakistan under fractal-fractional derivative, Fractals, 29 (2021), 2150120. https://doi.org/10.1142/S0218348X21501206 doi: 10.1142/S0218348X21501206
    [35] Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Modeling and analysis of novel COVID-19 under fractal-fractional derivative with case study of Malaysia, Fractals, 29 (2021), 2150020. https://doi.org/10.1142/S0218348X21500201 doi: 10.1142/S0218348X21500201
    [36] Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Qualitative analysis of fractal-fractional order COVID-19 mathematical model with case study of Wuhan, Alex. Eng. J., 60 (2021), 477–489. https://doi.org/10.1016/j.aej.2020.09.020 doi: 10.1016/j.aej.2020.09.020
    [37] L. L. Feng, L. B. Xu, Q. Zheng, L. C. Liu, Fawang flow and heat transfer of generalized Maxwell fluid over a moving plate with distributed order time fractional constitutive models, Int. Commun. Heat Mass, 116 (2020), 104679.
    [38] S. Yang, L. Liu, Z. Long, L. Feng, Unsteady natural convection boundary layer flow and heat transfer past a vertical flat plate with novel constitution models, Appl. Math. Lett., 120 (2021), 107335. https://doi.org/10.1016/j.aml.2021.107335 doi: 10.1016/j.aml.2021.107335
    [39] Z. Long, L. Liu, S. Yang, L. Feng, L. Zheng, Analysis of Marangoni boundary layer flow and heat transfer with novel constitution relationships, Int. Commun. Heat Mass, 127 (2021), 105523.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1701) PDF downloads(132) Cited by(16)

Article outline

Figures and Tables

Figures(14)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog