Research article

Bi-univalent functions of complex order defined by Hohlov operator associated with legendrae polynomial

  • Received: 22 December 2021 Revised: 25 January 2022 Accepted: 10 February 2022 Published: 03 March 2022
  • MSC : 30C45, 30C50, 30C55, 30C80

  • In this paper, we introduce and investigate two new subclasses of the function class $ \Sigma $ of bi-univalent functions of complex order defined in the open unit disk, which are associated with the Hohlov operator, satisfying subordinate conditions. Furthermore, we find estimates on the Taylor-Maclaurin coefficients $ |a_2| $ and $ |a_3| $ for functions in these new subclasses. Several (known or new) consequences of the results are also pointed out.

    Citation: Gangadharan Murugusundaramoorthy, Luminiţa-Ioana Cotîrlă. Bi-univalent functions of complex order defined by Hohlov operator associated with legendrae polynomial[J]. AIMS Mathematics, 2022, 7(5): 8733-8750. doi: 10.3934/math.2022488

    Related Papers:

  • In this paper, we introduce and investigate two new subclasses of the function class $ \Sigma $ of bi-univalent functions of complex order defined in the open unit disk, which are associated with the Hohlov operator, satisfying subordinate conditions. Furthermore, we find estimates on the Taylor-Maclaurin coefficients $ |a_2| $ and $ |a_3| $ for functions in these new subclasses. Several (known or new) consequences of the results are also pointed out.



    加载中


    [1] E. A. Adegani, A. Zireh, M. Jafari, Coefficient estimates for a new subclass of analytic and bi-univalent functions by Hadamard product, Bol. Soc. Paran. Mat., 39 (2021), 87–104. https://doi.org/10.5269/bspm.39164 doi: 10.5269/bspm.39164
    [2] R. M. Ali, S. K. Leo, V. Ravichandran, S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda star-like and convex functions, Appl. Math. Lett., 25 (2012), 344–351. https://doi.org/10.1016/j.aml.2011.09.012 doi: 10.1016/j.aml.2011.09.012
    [3] D. A. Brannan, J. Clunie, W. E. Kirwan, Coefficient estimates for a class of star-like functions, Canad. J. Math., 22 (1970), 476–485. https://doi.org/10.4153/CJM-1970-055-8 doi: 10.4153/CJM-1970-055-8
    [4] D. A. Brannan, J. G. Clunie (Editors), Aspects of Contemporary Complex Analysis, Academic Press, London, 1980.
    [5] D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, Studia Univ. Babeş-Bolyai Math., 31 (1986), 70–77. https://doi.org/10.2307/3615823 doi: 10.2307/3615823
    [6] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429–446. https://doi.org/10.1090/S0002-9947-1969-0232920-2 doi: 10.1090/S0002-9947-1969-0232920-2
    [7] S. Bulut, Coefficient estimates for a subclass of meromorphic bi-univalent functions defined by subordination, Stud. Univ. Babes-Bolyai Math., 65 (2020), 57–66.
    [8] B. C. Carlson, D. B. Shafer, Starlike and prestarlike Hypergeometric functions, J. Math. Anal., 15, (1984), 737–745.
    [9] J. Dziok, H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), 1–13. https://doi.org/10.1016/S0377-0427(98)00235-0 doi: 10.1016/S0377-0427(98)00235-0
    [10] J. Dziok, H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Intergral Transforms Spec. Funct., 14 (2003), 7–18. https://doi.org/10.1080/10652460304543 doi: 10.1080/10652460304543
    [11] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Classical Anal., 2 (2013), 49–60. https://doi.org/10.3901/JME.2013.06.060 doi: 10.3901/JME.2013.06.060
    [12] M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Functionen, J. London Math. Soc., 8 (1933), 85–89. https://doi.org/10.1524/zkri.1933.85.1.89 doi: 10.1524/zkri.1933.85.1.89
    [13] B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569–1573. https://doi.org/10.1016/j.aml.2011.03.048 doi: 10.1016/j.aml.2011.03.048
    [14] A. W. Goodman, Univalent Functions, Mariner Publishing Company Inc., Tampa, FL, USA, 1983, Volumes Ⅰ and Ⅱ.
    [15] T. Hayami, S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math. J., 22 (2012), 15–26.
    [16] Yu. E. Hohlov, Convolution operators that preserve univalent functions, Ukrain. Mat. Zh., 37 (1985), 220–226. https://doi.org/10.1007/BF01059717 doi: 10.1007/BF01059717
    [17] Yu. E. Hohlov, Hadamard convolutions, hypergeometric functions and linear operators in the class of univalent functions, Dokl. Akad. Nauk Ukrain. SSR Ser. A, 7 (1984), 25–27.
    [18] M. V. Kukushkin, On Solvability of the Sonin–Abel Equation in the Weighted Lebesgue Space, Fractal Fract., 5 (2021), 77. https://doi.org/10.3390/fractalfract5030077 doi: 10.3390/fractalfract5030077
    [19] A. Y. Lashin, Coefficient Estimates for Two Subclasses of Analytic and Bi-Univalent Functions, Ukr. Math. J., 70 (2019), 1484–1492. https://doi.org/10.1007/s11253-019-01582-2 doi: 10.1007/s11253-019-01582-2
    [20] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63–68. https://doi.org/10.1090/S0002-9939-1967-0206255-1 doi: 10.1090/S0002-9939-1967-0206255-1
    [21] R. J. Libera, Some classes of regular univalent functions, Proc.Amer.Math. Soc., 16 (1965), 755-758. https://doi.org/10.1090/S0002-9939-1965-0178131-2 doi: 10.1090/S0002-9939-1965-0178131-2
    [22] X. F. Li, A. P. Wang, Two new subclasses of bi-univalent functions, Internat. Math. Forum, 7 (2012), 1495–1504.
    [23] W. C. Ma, D. Minda, A unified treatment of some special classes of functions, Proceedings of the Conference on Complex Analysis, Tianjin, 1992,157–169, Conf. Proc. Lecture Notes Anal. 1. Int. Press, Cambridge, MA, 1994.
    [24] B. Muckenhoupt, Mean Convergence of Jacobi Series, Proc. Am. Math. Soc., 23 (1969), 306–310. https://doi.org/10.1090/S0002-9939-1969-0247360-5 doi: 10.1090/S0002-9939-1969-0247360-5
    [25] G. Murugusundaramoorthy, H.O. Guney, K. Vijaya, Coefficient bounds for certain suclasses of Bi-prestarlike functions associated with the Gegenbauer polynomial, Adv. Stud. Contemp. Math., 32 (2022), 5–15.
    [26] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $z<1$, Arch. Rational Mech. Anal., 32 (1969), 100–112. https://doi.org/10.1007/BF00247676 doi: 10.1007/BF00247676
    [27] M. Obradovic, T. Yaguchi, H. Saitoh, On some conditions for univalence and starlikeness in the unit disc, Rend. Math. Ser. VII., 12 (1992), 869–877.
    [28] C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.
    [29] T. Panigarhi, G. Murugusundaramoorthy, Coefficient bounds for Bi- univalent functions analytic functions associated with Hohlov operator, Proc. Jangjeon Math. Soc., 16 (2013), 91–100. https://doi.org/10.14419/gjma.v1i2.937 doi: 10.14419/gjma.v1i2.937
    [30] H. M. Srivastava, G. Murugusundaramoorthy, N. Magesh, Certain subclasses of bi-univalent functions associated with the Hohlov operator, Glob. J. Math. Anal., 2 (2013), 67–73.
    [31] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192. https://doi.org/10.1016/j.aml.2010.05.009 doi: 10.1016/j.aml.2010.05.009
    [32] H. M. Srivastava, Some Fox-Wright generalized hypergeometric functions and associated families of convolution operators, Appl. Anal. Discrete Math., 1 (2007), 56–71. https://doi.org/10.2298/AADM0701056S doi: 10.2298/AADM0701056S
    [33] V. Kiryakova, Criteria for univalence of the Dziok–Srivastava and the Srivastava–Wright operators in the class A, Appl. Math. Comput., 218 (2011), 883–892. https://doi.org/10.1016/j.amc.2011.01.076 doi: 10.1016/j.amc.2011.01.076
    [34] H. M. Srivastava, M. Kamali, A. Urdaletova, A study of the Fekete-Szegö functional and coefficient estimates for subclasses of analytic functions satisfying a certain subordination condition and associated with the Gegenbauer polynomials, AIMS Mathematics, 7 (2022), 2568–2584. https://doi.org/10.3934/math.2022144 doi: 10.3934/math.2022144
    [35] H. M. Srivastava, A. K. Wanas, R. Srivastava, Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials, Symmetry, 13 (2021), 1–14.
    [36] H. M. Srivastava, A. K. Wanas, G. Murugusundaramoorthy, A certain family of bi-univalent functions associated with the Pascal distribution series based upon the Horadam polynomials, Surveys Math. Appl., 16 (2021), 193–205.
    [37] H. M. Srivastava, Ş. Altınkaya, S. Yalçin, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A: Sci., 43 (2019), 1873–1879.
    [38] H. M. Srivastava, Operators of basic (or $q-$) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci., 44 (2020), 327–344.
    [39] H. M. Srivastava, A. K. Wanas, H..Gney, New Families of Bi-univalent Functions Associated with the Bazilevič Functions and the $\lambda-$ Pseudo-Starlike Functions. Iran J. Sci. Technol. Trans. Sci., 45 (2021), 1799–1804.
    [40] H. M. Srivastava, A. Motamednezhad, E. A. Adegani, Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator, Mathematics, 8 (2020), 1–12.
    [41] H. M. Srivastava, A. K. Wanas, Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J., 59 (2019), 493–503. https://doi.org/10.1002/ijch.201800133 doi: 10.1002/ijch.201800133
    [42] H. M. Srivastava, S. Gaboury, F. Ghanim, Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma-Minda type, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat., (RACSAM) 112 (2018), 1157–1168. https://doi.org/10.1007/s13398-017-0416-5 doi: 10.1007/s13398-017-0416-5
    [43] H. M. Srivastava, S. Altinkaya, S. Yalcin, Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator, Filomat, 32 (2018), 503–516. https://doi.org/10.2298/FIL1802503S doi: 10.2298/FIL1802503S
    [44] H. M. Srivastava, P. W. Karlsson, Multiple Gaussian hypergeometric series, Wiley, New York., 1985.
    [45] H. M. Srivastava, D. Raducanu, P. A. Zaprawa, Certain subclass of analytic functions defined by means of differential subordination, Filomat, 30 (2016), 3743–3757. https://doi.org/10.2298/FIL1614743S doi: 10.2298/FIL1614743S
    [46] H. M. Srivastava, Certain $q$-polynomial expansions for functions of several variables. Ⅰ and Ⅱ, IMA J. Appl. Math., 30 (1983), 205–209. https://doi.org/10.1507/endocrj1954.30.205 doi: 10.1507/endocrj1954.30.205
    [47] A. Cătaş, On the Fekete-Szegö problem for certain classes of meromorphic functions using $p, q-$derivative operator and a p, q-wright type hypergeometric function, Symmetry, 13 (2021), 2143.
    [48] G. I. Oros, L. I. Cotîrlă, Coefficient Estimates and the Fekete–Szegö Problem for New Classes of m-Fold Symmetric Bi-Univalent Functions, Mathematics 10 (2022), 129. https://doi.org/10.3390/math10010129 doi: 10.3390/math10010129
    [49] V. D. Breaz, A. Cătaş, L.I. Cotîrlă, On the Upper Bound of the Third Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function, An. St. Univ. Ovidius Constanta, 2022.
    [50] T. S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.
    [51] Q. H. Xu, Y. C. Gui, H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25 (2012), 990–994. https://doi.org/10.1016/j.aml.2011.11.013 doi: 10.1016/j.aml.2011.11.013
    [52] Q. H. Xu, H. G. Xiao, H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218 (2012), 11461–11465. https://doi.org/10.1016/j.amc.2012.05.034 doi: 10.1016/j.amc.2012.05.034
    [53] P. Zaprawa, On the Fekete-Szeg$\ddot{o}$ problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21 (2014), 169–178.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1931) PDF downloads(120) Cited by(8)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog