In this paper, we introduce and investigate two new subclasses of the function class Σ of bi-univalent functions of complex order defined in the open unit disk, which are associated with the Hohlov operator, satisfying subordinate conditions. Furthermore, we find estimates on the Taylor-Maclaurin coefficients |a2| and |a3| for functions in these new subclasses. Several (known or new) consequences of the results are also pointed out.
Citation: Gangadharan Murugusundaramoorthy, Luminiţa-Ioana Cotîrlă. Bi-univalent functions of complex order defined by Hohlov operator associated with legendrae polynomial[J]. AIMS Mathematics, 2022, 7(5): 8733-8750. doi: 10.3934/math.2022488
[1] | Bilal Khan, H. M. Srivastava, Muhammad Tahir, Maslina Darus, Qazi Zahoor Ahmad, Nazar Khan . Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(1): 1024-1039. doi: 10.3934/math.2021061 |
[2] | Erhan Deniz, Muhammet Kamali, Semra Korkmaz . A certain subclass of bi-univalent functions associated with Bell numbers and q−Srivastava Attiya operator. AIMS Mathematics, 2020, 5(6): 7259-7271. doi: 10.3934/math.2020464 |
[3] | Tariq Al-Hawary, Ala Amourah, Abdullah Alsoboh, Osama Ogilat, Irianto Harny, Maslina Darus . Applications of q−Ultraspherical polynomials to bi-univalent functions defined by q−Saigo's fractional integral operators. AIMS Mathematics, 2024, 9(7): 17063-17075. doi: 10.3934/math.2024828 |
[4] | Luminiţa-Ioana Cotîrlǎ . New classes of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(10): 10642-10651. doi: 10.3934/math.2021618 |
[5] | F. Müge Sakar, Arzu Akgül . Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator. AIMS Mathematics, 2022, 7(4): 5146-5155. doi: 10.3934/math.2022287 |
[6] | Sheza. M. El-Deeb, Gangadharan Murugusundaramoorthy, Kaliyappan Vijaya, Alhanouf Alburaikan . Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial. AIMS Mathematics, 2022, 7(2): 2989-3005. doi: 10.3934/math.2022165 |
[7] | Norah Saud Almutairi, Adarey Saud Almutairi, Awatef Shahen, Hanan Darwish . Estimates of coefficients for bi-univalent Ma-Minda-type functions associated with q-Srivastava-Attiya operator. AIMS Mathematics, 2025, 10(3): 7269-7289. doi: 10.3934/math.2025333 |
[8] | Abeer O. Badghaish, Abdel Moneim Y. Lashin, Amani Z. Bajamal, Fayzah A. Alshehri . A new subclass of analytic and bi-univalent functions associated with Legendre polynomials. AIMS Mathematics, 2023, 8(10): 23534-23547. doi: 10.3934/math.20231196 |
[9] | Prathviraj Sharma, Srikandan Sivasubramanian, Nak Eun Cho . Initial coefficient bounds for certain new subclasses of bi-univalent functions with bounded boundary rotation. AIMS Mathematics, 2023, 8(12): 29535-29554. doi: 10.3934/math.20231512 |
[10] | Ahmad A. Abubaker, Khaled Matarneh, Mohammad Faisal Khan, Suha B. Al-Shaikh, Mustafa Kamal . Study of quantum calculus for a new subclass of q-starlike bi-univalent functions connected with vertical strip domain. AIMS Mathematics, 2024, 9(5): 11789-11804. doi: 10.3934/math.2024577 |
In this paper, we introduce and investigate two new subclasses of the function class Σ of bi-univalent functions of complex order defined in the open unit disk, which are associated with the Hohlov operator, satisfying subordinate conditions. Furthermore, we find estimates on the Taylor-Maclaurin coefficients |a2| and |a3| for functions in these new subclasses. Several (known or new) consequences of the results are also pointed out.
Let A denote the class of functions of the form:
f(z)=z+∞∑n=2anzn, | (1.1) |
which are analytic in the open unit disk
U={z:z∈Cand|z|<1}. |
Further, by S we shall denote the class of all functions in A which are univalent in U. Some of the important and well-investigated subclasses of the univalent function class S include (for example) the class S∗(α) of starlike functions of order α in U and the class K(α) of convex functions of order α in U. It is well known that every function f∈S has an inverse f−1, defined by
f−1(f(z))=z(z∈U) |
and
f(f−1(w))=w(|w|<r0(f);r0(f)≧14), |
where
g(w)=f−1(w)=w−a2w2+(2a22−a3)w3−(5a32−5a2a3+a4)w4+⋯. | (1.2) |
A function f∈A is said to be bi-univalent in U if both f(z) and f−1(z) are univalent in U. Let Σ denote the class of bi-univalent functions in U given by (1.1). Note that the functions
f1(z)=z1−z,f2(z)=12log1+z1−z,f3(z)=−log(1−z) |
with their corresponding inverses
f−11(w)=w1+w,f−12(w)=e2w−1e2w+1,f−13(w)=ew−1ew |
are elements of Σ. This subject has been discussed extensively in the pioneering work by Srivastava et al. [31] who revived the study of analytic and bi-univalent functions in recent years. It was followed by many sequels to Srivastava et al. [31] (see for example, [3,4,5,20,26,50]).
An analytic function f is subordinate to an analytic function g, written f(z)≺g(z), provided there is an analytic function w defined on U with w(0)=0 and |w(z)|<1 sustaining f(z)=g(w(z)). Lately Ma and Minda [23] amalgamated various subclasses of starlike and convex functions for which either of the quantity z f′(z)f(z) or 1+z f″(z)f′(z) is subordinate to a more general superordinate function. For this persistence, they considered an analytic function ϕ with positive real part in the unit disk U,ϕ(0)=1,ϕ′(0)>0, and ϕ maps U onto a region starlike with respect to 1 and symmetric with respect to the real axis. The class of Ma-Minda starlike functions consists of functions f∈A satisfying the subordination z f′(z)f(z)≺ϕ(z). Similarly, the class of Ma-Minda convex functions of functions f∈A satisfying the subordination 1+z f″(z)f′(z)≺ϕ(z).
The convolution or Hadamard product of two functions f,h∈A is denoted by f∗h and is defined as
(f∗h)(z)=z+∞∑n=2anbnzn, | (1.3) |
where f(z) is given by (1.1) and h(z)=z+∞∑n=2bnzn. In terms of the Hadamard product (or convolution), the Dziok-Srivastava linear operator involving the generalized hypergeometric function, was introduced and studied systematically by Dziok and Srivastava [9,10] and (subsequently) by many other authors. In our present investigation, we recall a familiar convolution operator Ia,b,c due to Hohlov [16,17], which certainly a very specialized case of the widely- (and extensively-) investigated Dziok-Srivastava operator and also much more general convolution operator, known as the Srivastava-Wright operator [32] (also see [33]).
For the complex parameters a,bandc with c≠0,−1,−2,−3,⋯, the Gaussian hypergeometric function 2F1(a,b,c;z) is defined as
2F1(a,b,c;z)=∞∑n=0(a)n(b)n(c)nznn!=1+∞∑n=2(a)n−1(b)n−1(c)n−1zn−1(n−1)!(z∈U), | (1.4) |
where (α)n is the Pochhammer symbol (or the shifted factorial) defined as follows:
(α)n=Γ(α+n)Γ(α)={1(n=0)α(α+1)(α+2)⋯(α+n−1)(n=1,2,3,⋯). | (1.5) |
For the positive real values a,bandc with c≠0,−1,−2,−3,⋯, by using the Gaussian hypergeometric function given by (1.4), Hohlov [16,17] introduced the familiar convolution operator Ia,b,c as follows:
Ia,b;cf(z)=z2F1(a,b,c;z)∗f(z),=z+∞∑n=2φnanzn(z∈U), | (1.6) |
where
φn=(a)n−1(b)n−1(c)n−1(n−1)!. | (1.7) |
Hohlov [16,17] discussed some interesting geometrical properties exhibited by the operator Ia,b;c. The three-parameter family of operators Ia,b;c contains, as its special cases, most of the known linear integral or differential operators. In particular, if b=1 in (1.6), then Ia,b;c reduces to the Carlson-Shaffer operator.Similarly, it is easily seen that the Hohlov operator Ia,b;c is also a generalization of the Ruscheweyh derivative operator as well as the Bernardi-Libera-Livingston operator.
Recently there has been triggering interest to study bi-univalent function class Σ and obtained non-sharp coefficient estimates on the first two coefficients |a2| and |a3| of (1.1). But the coefficient problem for each of the following Taylor-Maclaurin coefficients:
|an|(n∈N∖{1,2};N:={1,2,3,⋯} |
is still an open problem(see [3,4,5,20,26,50]). Many researchers (see [13,15,22,31,51,52]) have recently introduced and investigated several interesting subclasses of the bi-univalent function class Σ and they have found non-sharp estimates on the first two Taylor-Maclaurin coefficients |a2| and |a3|.
In 1782, Adrien-Marie Legendre discovered Legendre polynomials, which have plentiful physical applications. The Legendre polynomials Pn(x), intermittently called Legendre functions of the first kind, are the particular solutions to the Legendre differential equation
(1−x2)y″−2xy′+n(n+1)y=0,n∈N0,|x|<1. |
Here and in the following, let C and N denote the sets of complex numbers and positive integers, respectively, and let N0=N∪{0}. The Legendre polynomials are defined by Rodrigues' formula
Pn(x)=12nn!dndxn(x2−1)n(n∈N0), | (1.8) |
for arbitrary real or complex values of the variable x. The Legendre polynomials Pn(x) are generated by the following function
(1−2xt+t2)−12=∞∑n=0Pn(x)tn, |
where the particular branch of (1−2xt+t2)−12 is taken to be 1 as t→0. The first few Legendre polynomials are
P0(x)=1,P1(x)=x,P2(x)=12(3x2−1),P3(x)=12(5x3−3x). | (1.9) |
A general case of the Legendre polynomials and their applications can be found in [18,24]. The function
ϕ(z)=1−z√1−2zcosα+z2, |
is in P for every real α (see [ [14], Page 102], [28]), where P is the Caratheodory class defined by
P={p(z)∈A:p(0)=1,ℜ(p(z))>0,z∈U}, |
p(z)=1+c1z+c2z2+⋯. By using (1.8), it is easy to check that
ϕ(z)=1+∞∑n=1[Pn(cosα)−Pn−1(cosα)]zn,=1+∞∑n=1Bnzn | (1.10) |
where
Bn=Pn(cosα)−Pn−1(cosα). |
In particular by using (1.9), we get
B1=cosα−1,B2=12(cosα−1)(1+3cosα) | (1.11) |
If we consider
1(ϕ(z))2=1−2zcosα+z2(1−z)2=1+2(1−cosα)z(1−z)2. |
From the geometric properties of the Koebe function, the function ϕ maps the unit disc onto the right plane ℜ(w)>0 minus the slit along the positive real axis from 1|cosα2| to ∞. ϕ(U) is univalent, symmetric with respect to the real axis and starlike with respect to ϕ(0)=1.
Motivated by aforementioned study on bi-univalent functions [2,11,13,15,22,29,30,31,51,52] and present investigation of bi univalent functions associated with various polynomials as well as by many recent works on the Fekete-Szegö functional and other coefficient estimates (see [1,7,25,34,35,36,37,38,39,40,41,42,43,47,48,49]) in the present paper we introduce new subclasses of the function class Σ of complex order ϑ∈C∖{0}, involving Hohlov operator Ia,b;c related with legendrae polynomial and find estimates on the coefficients |a2| and |a3| for functions in the new subclasses of function class Σ. Several related classes are also considered, and connection to earlier known results are stated.
Definition 1. A function f∈Σ given by (1.1) is said to be in the class Sa,b;cΣ(ϑ,λ,ϕ) if the following conditions are satisfied:
1+1ϑ(z(Ia,b;cf(z))′(1−λ)z+λIa,b;cf(z)−1)≺ϕ(z)(ϑ∈C∖{0};0≦λ≦1;z∈U) | (1.12) |
and
1+1ϑ(w(Ia,b;cg(w))′(1−λ)w+λIa,b;cg(w)−1)≺ϕ(w)(ϑ∈C∖{0};0≦λ≦1;w∈U), | (1.13) |
where the function g is given by(1.2).
On specializing the parameters λ and a,b,c one can state the various new subclasses of Σ as illustrated in the following examples.
Example 2. For λ=1 and ϑ∈C∖{0}, a function f∈Σ, given by (1.1) is said to be in the class Sa,b;cΣ(ϑ,ϕ) if the following conditions are satisfied:
1+1ϑ(z(Ia,b;cf(z))′Ia,b;cf(z)−1)≺ϕ(z) | (1.14) |
and
1+1ϑ(w(Ia,b;cg(w))′Ia,b;cg(w)−1)≺ϕ(w) | (1.15) |
where z,w∈U and the function g is given by(1.2).
Example 3. For λ=0 and ϑ∈C∖{0}, a function f∈Σ, given by (1.1) is said to be in the class Ga,b;cΣ(ϑ,ϕ) if the following conditions are satisfied:
1+1ϑ(Ia,b;cf(z))′−1)≺ϕ(z) | (1.16) |
and
1+1ϑ((Ia,b;cg(w))′−1)≺ϕ(w) | (1.17) |
where z,w∈U and the function g is given by (1.2).
It is of interest to note that for a=c and b=1, the class Sa,b;cΣ(ϑ,λ,ϕ) reduces to the following new subclasses
Example 4. For λ=1 and ϑ∈C∖{0}, a function f∈Σ, given by (1.1) is said to be in the class S∗Σ(ϑ,ϕ) if the following conditions are satisfied:
1+1ϑ(zf′(z)f(z)−1)≺ϕ(z)and1+1ϑ(wg′(w)g(w)−1)≺ϕ(w), |
where z,w∈U and the function g is given by (1.2).
Example 5. For λ=0 and ϑ∈C∖{0}, a function f∈Σ, given by (1.1) is said to be in the class H∗Σ(ϑ,ϕ) if the following conditions are satisfied:
1+1ϑ(f′(z)−1)≺ϕ(z)and1+1ϑ(g′(w)−1)≺ϕ(w), |
where z,w∈U and the function g is given by (1.2)
In the following section we find estimates on the coefficients |a2| and |a3| for functions in the above-defined subclasses Sa,b;cΣ(ϑ,λ,ϕ) of the function class Σ by employing the techniques used earlier by Deniz in [11].
In order to derive our main results, we shall need the following lemma.
Lemma 6. (see [28]) If h∈P, then |ck|≦2 for each k, where P is the family of all functions h, analytic in U, for which
ℜ{h(z)}>0(z∈U), |
where
h(z)=1+c1z+c2z2+⋯(z∈U). |
We begin by finding the estimates on the coefficients |a2| and |a3| for functions in the class Sa,b;cΣ(ϑ,λ,ϕ). Define the functions p(z) and q(z) by
p(z):=1+u(z)1−u(z)=1+p1z+p2z2+⋯ |
and
q(z):=1+v(z)1−v(z)=1+q1z+q2z2+⋯ |
or, equivalently,
u(z):=p(z)−1p(z)+1=12[p1z+(p2−p212)z2+⋯] |
and
v(z):=q(z)−1q(z)+1=12[q1z+(q2−q212)z2+⋯]. |
Then p(z) and q(z) are analytic in U with p(0)=1=q(0). Since u,v:U→U, the functions p(z) and q(z) have a positive real part in U, and |pi|≤2 and |qi|≤2.
Theorem 7. Let f be given by (1.1) and in the classSa,b;cΣ(ϑ,λ,ϕ). Then
|a2|≦√2|ϑ(1−cosα)|√|[2ϑ(λ2−2λ)(cosα−1)2+(2−λ)2(1−3cosα)]φ22+2ϑ(3−λ)(cosα−1)φ3| | (2.1) |
and
|a3|≦|ϑ||cosα−1|2(2−λ)2φ22+|ϑ||cosα−1|(3−λ)φ3 | (2.2) |
Proof. It follows from (1.12) and (1.13) that
1+1ϑ(z(Ia,b;cf(z))′(1−λ)z+λIa,b;cf(z)−1)=ϕ(u(z)) | (2.3) |
and
1+1ϑ(w(Ia,b;cg(w))′(1−λ)w+λIa,b;cg(w)−1)=ϕ(v(w)), | (2.4) |
where p(z) and q(w) in P and have the following forms:
ϕ(u(z))=1+12B1p1z+(12B1(p2−p212)+14B2p21)z2+⋯ | (2.5) |
and
ϕ(v(w))=1+12B1q1w+(12B1(q2−q212)+14B2q21)w2+⋯, | (2.6) |
respectively. Now, equating the coefficients in (2.3) and (2.4), we get
(2−λ)ϑφ2a2=12B1p1, | (2.7) |
(λ2−2λ)ϑφ22a22+(3−λ)ϑφ3a3=12B1(p2−p212)+14B2p21, | (2.8) |
−(2−λ)ϑφ2a2=12B1q1 | (2.9) |
and
(λ2−2λ)ϑφ22a22+(3−λ)ϑφ3(2a22−a3)=12B1(q2−q212)+14B2q21. | (2.10) |
From (2.7) and (2.9), we find that
a2=ϑB1p12(2−λ)φ2=−ϑB1q12(2−λ)φ2, | (2.11) |
which implies
p1=−q1. | (2.12) |
and
8(2−λ)2φ22a22=ϑ2B21(p21+q21). | (2.13) |
Adding (2.8)and (2.10), by using(2.11) and (2.12), we obtain
4([ϑ(λ2−2λ)B21+(2−λ)2(B1−B2)]φ22+ϑ(3−λ)B21φ3)a22=ϑ2B31(p2+q2). | (2.14) |
Thus, by using (1.11)
a22=ϑ2B31(p2+q2)4([ϑ(λ2−2λ)B21+(2−λ)2(B1−B2)]φ22+ϑ(3−λ)B21φ3)=ϑ2(cosα−1)2(p2+q2)4([ϑ(λ2−2λ)(cosα−1)2+12(2−λ)2(1−3cosα)]φ22+ϑ(3−λ)(cosα−1)φ3)=ϑ2(cosα−1)2(p2+q2)2([2ϑ(λ2−2λ)(cosα−1)2+(2−λ)2(1−3cosα)]φ22+2ϑ(3−λ)(cosα−1)φ3). | (2.15) |
Applying Lemma 6 for the coefficients p2 and q2, we immediately have
|a2|2≦2|ϑ(1−cosα)|2|[2ϑ(λ2−2λ)(cosα−1)2+(2−λ)2(1−3cosα)]φ22+2ϑ(3−λ)(cosα−1)φ3|. | (2.16) |
Hence,
|a2|≦√2|ϑ(1−cosα)|√|[2ϑ(λ2−2λ)(cosα−1)2+(2−λ)2(1−3cosα)]φ22+2ϑ(3−λ)(cosα−1)φ3|. |
This gives the bound on |a2| as asserted in (2.1).
Next, in order to find the bound on |a3|, by subtracting (2.10) from (2.8), we get
2(3−λ)ϑφ3a3−2(3−λ)ϑφ3a22=B12(p2−q2)+B2−B14(p21−q21). | (2.17) |
It follows from (2.11), (2.12) and (2.17) that
a3=a22+ϑB1(p2−q2)4(3−λ)φ3=ϑ2B21(p21+q21)8(2−λ)2φ22+ϑB1(p2−q2)4(3−λ)φ3 | (2.18) |
Applying Lemma 6 once again for the coefficients p2, q2 and using (1.11), we readily get
|a3|≦|ϑ(cosα−1)|2(2−λ)2φ22+|ϑ(cosα−1)|(3−λ)φ3. |
This completes the proof of Theorem 7.
Fixing λ=1 in Theorem 7, we have the following corollary.
Corollary 8. Let f be given by (1.1) and in the classSa,b;cΣ(ϑ,ϕ). Then
|a2|≦√2|ϑ(1−cosα)|√|[(1−3cosα)−2ϑ(cosα−1)2]φ22+4ϑ(cosα−1)φ3| | (2.19) |
and
|a3|≦|ϑ(cosα−1)|2φ22+|ϑ(cosα−1)|2φ3. | (2.20) |
Taking a=c and b=1, in Corollary 8, we get the following corollary.
Corollary 9. Let f be given by (1.1) and in the classS∗Σ(ϑ,ϕ).Then
|a2|≦√2|ϑ(1−cosα)|√|[(1−3cosα)−2ϑ(cosα−1)2]+4ϑ(cosα−1)| | (2.21) |
and
|a3|≦|ϑ(cosα−1)|2+|ϑ(cosα−1)|2. | (2.22) |
Fixing λ=0 in Theorem 7, we have the following corollary.
Corollary 10. Let f be given by (1.1) and in the classGa,b;cΣ(ϑ,ϕ).Then
|a2|≦|ϑ(1−cosα)|√|2(1−3cosα)φ22+3ϑ(cosα−1)φ3| | (2.23) |
and
|a3|≦|ϑ(cosα−1)|24φ22+|ϑ(cosα−1)|3φ3. | (2.24) |
Taking a=c and b=1, in Corollary 10, we get the following corollary.
Corollary 11. Let f be assumed by (1.1) and in the classH∗Σ(ϑ,ϕ). Then
|a2|≦|ϑ(1−cosα)|√|2(1−3cosα)+3ϑ(cosα−1)| | (2.25) |
and
|a3|≦|ϑ(cosα−1)|24+|ϑ(cosα−1)|3. | (2.26) |
Due to Zaprawa [53], we prove Fekete-Szegö inequalities [12] for functions f∈Sa,b;cΣ(ϑ,λ,ϕ).
Theorem 12. For ν∈R, let f be given by (1.1) and f∈Sa,b;cΣ(ϑ,λ,ϕ), then
|a3−νa22|≤{|ϑ(cosα−1)|(3−λ)φ3;0≤|h(ν)|≤|ϑ(cosα−1)|4(3−λ)φ34|h(ν)|;|h(ν)|≥|ϑ(cosα−1)|4(3−λ)φ3 |
where
h(ν)=ϑ2(1−ν)(cosα−1)22([2ϑ(λ2−2λ)(cosα−1)2+(2−λ)2(1−3cosα)]φ22+2ϑ(3−λ)(cosα−1)φ3). | (2.27) |
Proof. From (2.18), we have
a3−νa22=ϑB1(p2−q2)4(3−λ)φ3+(1−ν)a22. | (2.28) |
By substituting (2.15) in (2.28), we have
a3−νa22=ϑ(cosα−1)(p2−q2)4(3−λ)φ3+ϑ2(1−ν)(cosα−1)2(p2+q2)2([2ϑ(λ2−2λ)(cosα−1)2+(2−λ)2(1−3cosα)]φ22+2ϑ(3−λ)(cosα−1)φ3)=(h(ν)+ϑ(cosα−1)4(3−λ)φ3)c2+(h(ν)−ϑ(cosα−1)4(3−λ)φ3)d2, | (2.29) |
where
h(ν)=ϑ2(1−ν)(cosα−1)22([2ϑ(λ2−2λ)(cosα−1)2+(2−λ)2(1−3cosα)]φ22+2ϑ(3−λ)(cosα−1)φ3). |
Thus by taking modulus of (2.29), we conclude that
|a3−νa22|≤{|ϑ(cosα−1)|(3−λ)φ3;0≤|h(ν)|≤|ϑ(cosα−1)|4(3−λ)φ34|h(ν)|;|h(ν)|≥ϑ(cosα−1)4(3−λ)φ3 | (2.30) |
where h(ν) is given by (2.27).
By taking ν=1 in above Theorem one can easily state the following:
Remark 13. Let the function f be assumed by (1.1) and f∈Sa,b;cΣ(ϑ,λ,ϕ). Then
|a3−a22|≤|ϑ(cosα−1)|(3−λ)φ3. |
In [27], Obradovic et.al gave some criteria for univalence expressing by ℜ(f′(z))>0, for the linear combinations
τ(1+zf″(z)f′(z))+(1−τ)1f′(z)>0,(τ≥1,z∈U). |
Based on the above definitions recently, Lashin in [19] introduced and studied the new subclasses of bi-univalent function.
Definition 14. A function f∈Σ given by (1.1) is said to be in the class Ma,b,cΣ(τ,ϕ) if it satisfies the following conditions :
τ(1+z(Ia,b;cf(z))″(Ia,b;cf(z))′)+(1−τ)1(Ia,b;cf(z))′≺ϕ(z) | (3.1) |
and
τ(1+w(Ia,b;cg(w))″(Ia,b;cg(w))′)+(1−τ)1(Ia,b;cg(w))′≺ϕ(w) | (3.2) |
where τ≥1,z,w∈U and the function g is given by (1.2).
Remark 15. For a function f∈Σ given by (1.1), is said to be in the class Ma,b,cΣ(1,ϕ)≡Ka,b,cΣ(ϕ) if it satisfies the following conditions :
(1+z(Ia,b;cf(z))″(Ia,b;cf(z))′)≺ϕ(z)and(1+w(Ia,b;cg(w))″(Ia,b;cg(w))′)≺ϕ(w) |
where z,w∈U and the function g is given by (1.2).
Theorem 16. Let f be given by (1.1)and f∈Ma,b,cΣ(τ,ϕ), τ≥1. Then
|a2|≤min | (3.3) |
and
\begin{equation} |a_3| \leq \min\left\{\begin{array}{lcl}\frac{|1-\cos\alpha|}{3(3\tau-1)\varphi_3}+\frac{(1-\cos\alpha)^2 }{4(2\tau-1)^2\varphi^2_2} , \\ \frac{|1-\cos\alpha|}{3(3\tau-1)\varphi_3}+\frac{2 (1-\cos\alpha)^2}{\left|(2(1+\tau)(1-\cos\alpha) +8(2\tau-1)^2(3\cos\alpha-1))\varphi^2_2\right|}. \end{array}\right. \end{equation} | (3.4) |
Proof. It follows from (3.1) and (3.2) that
\begin{equation} \tau\left(1 +\frac{z(\mathfrak{I}_{a, b;c}f(z))''}{(\mathfrak{I}_{a, b;c}f(z))'}\right)+ (1 - \tau)\frac{1}{(\mathfrak{I}_{a, b;c}f(z))'} = \phi(u(z)) \end{equation} | (3.5) |
and
\begin{equation} \tau\left(1 +\frac{w(\mathfrak{I}_{a, b;c}g(w))''}{(\mathfrak{I}_{a, b;c}g(w))'}\right)+ (1 - \tau)\frac{1}{(\mathfrak{I}_{a, b;c}g(w))'} = \phi(v(w)). \end{equation} | (3.6) |
From (3.5) and (3.6), we have
\begin{eqnarray*} 1+2(2\tau-1)\varphi_2 a_2 z+\left[ 3(3\tau-1)\varphi_3 a_3+4 (1-2\tau)\varphi^2_2 a_2^2\right]z^2+\cdots \\ = 1+\frac{1}{2} B_{1} p_{1}z+ \left(\frac{1}{2} B_{1} (p_{2} - \frac{p_{1}^2}{2}) + \frac{1}{4} B_{2} p_{1}^2\right) z^2 + \cdots, \end{eqnarray*} |
and
\begin{eqnarray*} 1-2(2\tau-1)\varphi_2 a_2w+\left(2(5\tau-1)\varphi^2_2 a_2^2-3(3\tau-1)\varphi_3a_3\right)w^2-\cdots\\ = 1+\frac{1}{2} B_{1} q_{1}w+\left(\frac{1}{2} B_{1} (q_{2} - \frac{q_{1}^2}{2}) + \frac{1}{4} B_{2} q_{1}^2\right) w^2 + \cdots. \end{eqnarray*} |
Now, equating the coefficients, we get
\begin{equation} 2(2\tau-1)\varphi_2 a_2 = \frac{1}{2} B_{1} p_{1}, \end{equation} | (3.7) |
\begin{equation} 3(3\tau-1)\varphi_3 a_3+4 (1-2\tau)\varphi^2_2 a_2^2 = \frac{1}{2} B_{1} (p_{2} - \frac{p_{1}^2}{2}) + \frac{1}{4} B_{2} p_{1}^2, \end{equation} | (3.8) |
\begin{equation} -2(2\tau-1)\varphi_2 a_2 = \frac{1}{2} B_{1} q_{1}, \end{equation} | (3.9) |
and
\begin{equation} 2(5\tau-1)\varphi^2_2 a_2^2-3(3\tau-1)\varphi_3a_3 = \frac{1}{2} B_{1} (q_{2} - \frac{q_{1}^2}{2}) + \frac{1}{4} B_{2} q_{1}^2. \end{equation} | (3.10) |
From (3.7) and (3.9), we get
\begin{equation} p_1 = -q_1 \end{equation} | (3.11) |
From (3.7) by using (1.11),
\begin{eqnarray} |a_2|&\leq&\frac{ B_{1}}{2(2\tau-1)\varphi_2} \end{eqnarray} | (3.12) |
\begin{eqnarray} &\leq&\frac{ |\cos\alpha-1|}{2(2\tau-1)\varphi_2}. \end{eqnarray} | (3.13) |
Also
\begin{eqnarray} 32(2\tau-1)^2 \varphi^2_2a_2^2 & = & B^2_{1}(p_1^2 + q_1^2)\\ a_2^2& = & \frac{B_{1}^2 (p_1^2 + q_1^2)}{32(2\tau-1)^2\varphi^2_2} \end{eqnarray} | (3.14) |
Thus by (1.11), we get
\begin{equation} |a_2|\leq \frac{B_{1} }{2(2\tau-1)\varphi_2} = \frac{ |\cos\alpha-1|}{2(2\tau-1)\varphi_2} \end{equation} | (3.15) |
Now from (3.8), (3.10) and using (3.14), we obtain
\begin{equation} \left(2(1+\tau)B^2_1 -8(2\tau-1)^2(B_2-B_1)\right)\varphi^2_2 a_2^2 = \frac{B_1^3(p_2+q_2)}{2}. \end{equation} | (3.16) |
Thus, by (3.16) we obtain
\begin{eqnarray*} a_2^2 & = & \frac{ B_1^3(p_2+q_2)}{2\left(2(1+\tau)B^2_1 -8(2\tau-1)^2(B_2-B_1)\right)\varphi^2_2} \\ |a_2|^2& = & \frac{2 |B_1|^3}{\left|(2(1+\tau)B^2_1 +8(2\tau-1)^2(B_1- B_2))\varphi^2_2\right|} \\ & = &\frac{2 |1-\cos\alpha|^2}{\left|(2(1+\tau)(1-\cos\alpha) +4(2\tau-1)^2(3\cos\alpha-1))\varphi^2_2\right|}\\ |a_2| &\leq&\frac{\sqrt{2} |1-\cos\alpha|}{\sqrt{\left|(2(1+\tau)(1-\cos\alpha) +4(2\tau-1)^2(3\cos\alpha-1))\varphi^2_2\right|}} \end{eqnarray*} |
From (3.8) from (3.10) and using(3.11), we get
\begin{align} a_3 = \frac{B_1(p_2-q_2)}{12(3\tau-1)\varphi_3}+a_2^2. \end{align} | (3.17) |
Then taking modulus, we get
\begin{equation} |a_3| \leq \frac{B_1}{3(3\tau-1)\varphi_3}+|a_2^2|. \end{equation} | (3.18) |
Using (3.12) and (3.15), we get
\begin{align*} |a_3| &\leq \frac{B_1}{3(3\tau-1)\varphi_3}+\frac{B_{1}^2 }{4(2\tau-1)^2\varphi^2_2}\\ & = \frac{|1-\cos\alpha|}{3(3\tau-1)\varphi_3}+\frac{(1-\cos\alpha)^2 }{4(2\tau-1)^2\varphi^2_2}. \end{align*} |
Now by using (3.16) in (3.18),
\begin{align*} |a_3| &\leq \frac{|B_1|}{3(3\tau-1)\varphi_3}+|a_2^2|\\ & = \frac{|1-\cos\alpha|}{3(3\tau-1)\varphi_3}+\frac{2 (1-\cos\alpha)^2}{\left|(2(1+\tau)(1-\cos\alpha) +8(2\tau-1)^2(3\cos\alpha-1))\varphi^2_2\right|}. \end{align*} |
Due to Zaprawa [53], we prove Fekete-Szegö inequalities [12] for functions f\in \mathfrak{M}^{a, b, c}_{\Sigma}(\tau, \phi)
Theorem 17. For \nu\in\mathbb{R}, let f be given by (1.1) and f\in \mathfrak{M}^{a, b, c}_{\Sigma}(\tau, \phi), then
\begin{eqnarray*} \left|a_{3}-\nu a_{2}^{2}\right|\leq \left \{ \begin{array}{ll} \dfrac{|\cos\alpha-1|}{3(3\tau-1)\varphi_3} & ; 0 \leq \left|h(\nu)\right|\leq \dfrac{|\cos\alpha-1|}{12(3\tau-1)\varphi_3 } \\ 4\left|h(\nu)\right| & ; \left|h(\nu)\right|\geq \dfrac{|\cos\alpha-1|}{12(3\tau-1)\varphi_3} \end{array} \right. \end{eqnarray*} |
where
\begin{eqnarray*} h(\nu) = \frac{(1-\nu)(1-\cos\alpha)^2}{2\left|(2(1+\tau)(1-\cos\alpha) +4(2\tau-1)^2(3\cos\alpha-1))\varphi^2_2\right|}. \end{eqnarray*} |
Proof. From (3.17), we have
\begin{eqnarray} a_{3} -\nu a_{2}^{2} = \frac{B_1(p_2-q_2)}{12(3\tau-1)\varphi_3} + (1-\nu)a_{2}^{2}. \end{eqnarray} | (3.19) |
By substituting (3.16) in (3.19), we have
\begin{eqnarray} a_{3} -\nu a_{2}^{2} & = & \frac{B_1(p_2-q_2)}{12(3\tau-1)\varphi_3}+\frac{ B_1^3(p_2+q_2)(1-\nu)}{2\left(2(1+\tau)B^2_1 -8(2\tau-1)^2(B_2-B_1)\right)\varphi^2_2} \\ & = & \left(h(\nu) + \dfrac{(\cos\alpha-1)}{12(3\tau-1)\varphi_3} \right)p_{2} + \left(h(\nu) - \dfrac{(\cos\alpha-1)}{12(3\tau-1)\varphi_3 }\right)q_{2}, \end{eqnarray} | (3.20) |
where
\begin{eqnarray} h(\nu) = \frac{(1-\nu)(1-\cos\alpha)^2}{2\left|(2(1+\tau)(1-\cos\alpha) +4(2\tau-1)^2(3\cos\alpha-1))\varphi^2_2\right|} \end{eqnarray} | (3.21) |
Thus by taking modulus of (3.20), we get
\begin{eqnarray} \left|a_{3}-\nu a_{2}^{2}\right| \leq \left \{ \begin{array}{ll} \dfrac{|\cos\alpha-1|}{3(3\tau-1)\varphi_3} & ; 0 \leq \left|h(\nu)\right|\leq \dfrac{|\cos\alpha-1|}{12(3\tau-1)\varphi_3 } \\ 4\left|h(\nu)\right| & ; \left|h(\nu)\right|\geq \dfrac{|\cos\alpha-1|}{12(3\tau-1)\varphi_3} \end{array} \right. \end{eqnarray} | (3.22) |
where h(\nu) is given by (3.21).
By taking \nu = 1 in above Theorem one can easily state the following:
Remark 18. Let f be given by (1.1) and f\in \mathfrak{M}^{a, b, c}_{\Sigma, }(\tau, \phi) . Then
\begin{eqnarray*} \left|a_{3}-a_{2}^{2}\right| \leq \dfrac{|\cos\alpha-1|}{3(3\tau-1)\varphi_3}. \end{eqnarray*} |
If a = 1 , b = 1+\delta , c = 2+\delta with \Re(\delta) > -1 , then the operator \mathfrak{I}_{a, b, c}f turns into familiar Bernardi operator [6]
B_f(z) = [\mathfrak{I}_{a, b, c}(f)](z) = \frac{1+\delta} {z^\delta} \int_0^1 t^{\delta-1} f(t) dt. |
\mathfrak{I}_{1, 1, 2}f and \mathfrak{I}_{1, 2, 3}f are the famous Alexander [14] and Libera [21] operators, respectively. Further if b = 1 in (1.6), then \mathfrak{I}_{a, b; c} immediately yields the Carlson-Shaffer operator L(a, c)(f) : = \mathfrak{I}_{a, 1, c}f [8]. So, numerous other interesting corollaries and consequences of our main results (which are asserted by Theorem 7-Theorem 17) can be derived similarly. Further by fixing \alpha = \pi one can state the referents new results for the function classes defined in this paper. The facts involved may be left as an exercise for the interested reader. Also, motivating further researches on the subject-matter of this, we have chosen to draw the attention of the interested readers toward a considerably large number of related recent publications(see, for example, [38,44,45,46]). and developments in the area of mathematical analysis. In conclusion, we choose to reiterate an important observation, which was presented in the recently-published review-cum-expository review article by Srivastava ( [38], p. 340), who pointed out the fact that the results for the above-mentioned or new q- analogues can easily(and possibly trivially)be translated into the corresponding results for the so-called (p; q)- analogues(with 0 < |q| < p \leq 1 )by applying some obvious parametric and argument variations with the additional parameter p being redundant.
The authors would like to thank the referees for their careful reading and helpful comments.
The authors declare no conflict of interest in this paper.
[1] |
E. A. Adegani, A. Zireh, M. Jafari, Coefficient estimates for a new subclass of analytic and bi-univalent functions by Hadamard product, Bol. Soc. Paran. Mat., 39 (2021), 87–104. https://doi.org/10.5269/bspm.39164 doi: 10.5269/bspm.39164
![]() |
[2] |
R. M. Ali, S. K. Leo, V. Ravichandran, S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda star-like and convex functions, Appl. Math. Lett., 25 (2012), 344–351. https://doi.org/10.1016/j.aml.2011.09.012 doi: 10.1016/j.aml.2011.09.012
![]() |
[3] |
D. A. Brannan, J. Clunie, W. E. Kirwan, Coefficient estimates for a class of star-like functions, Canad. J. Math., 22 (1970), 476–485. https://doi.org/10.4153/CJM-1970-055-8 doi: 10.4153/CJM-1970-055-8
![]() |
[4] | D. A. Brannan, J. G. Clunie (Editors), Aspects of Contemporary Complex Analysis, Academic Press, London, 1980. |
[5] |
D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, Studia Univ. Babeş-Bolyai Math., 31 (1986), 70–77. https://doi.org/10.2307/3615823 doi: 10.2307/3615823
![]() |
[6] |
S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429–446. https://doi.org/10.1090/S0002-9947-1969-0232920-2 doi: 10.1090/S0002-9947-1969-0232920-2
![]() |
[7] | S. Bulut, Coefficient estimates for a subclass of meromorphic bi-univalent functions defined by subordination, Stud. Univ. Babes-Bolyai Math., 65 (2020), 57–66. |
[8] | B. C. Carlson, D. B. Shafer, Starlike and prestarlike Hypergeometric functions, J. Math. Anal., 15, (1984), 737–745. |
[9] |
J. Dziok, H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), 1–13. https://doi.org/10.1016/S0377-0427(98)00235-0 doi: 10.1016/S0377-0427(98)00235-0
![]() |
[10] |
J. Dziok, H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Intergral Transforms Spec. Funct., 14 (2003), 7–18. https://doi.org/10.1080/10652460304543 doi: 10.1080/10652460304543
![]() |
[11] |
E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Classical Anal., 2 (2013), 49–60. https://doi.org/10.3901/JME.2013.06.060 doi: 10.3901/JME.2013.06.060
![]() |
[12] |
M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Functionen, J. London Math. Soc., 8 (1933), 85–89. https://doi.org/10.1524/zkri.1933.85.1.89 doi: 10.1524/zkri.1933.85.1.89
![]() |
[13] |
B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569–1573. https://doi.org/10.1016/j.aml.2011.03.048 doi: 10.1016/j.aml.2011.03.048
![]() |
[14] | A. W. Goodman, Univalent Functions, Mariner Publishing Company Inc., Tampa, FL, USA, 1983, Volumes Ⅰ and Ⅱ. |
[15] | T. Hayami, S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math. J., 22 (2012), 15–26. |
[16] |
Yu. E. Hohlov, Convolution operators that preserve univalent functions, Ukrain. Mat. Zh., 37 (1985), 220–226. https://doi.org/10.1007/BF01059717 doi: 10.1007/BF01059717
![]() |
[17] | Yu. E. Hohlov, Hadamard convolutions, hypergeometric functions and linear operators in the class of univalent functions, Dokl. Akad. Nauk Ukrain. SSR Ser. A, 7 (1984), 25–27. |
[18] |
M. V. Kukushkin, On Solvability of the Sonin–Abel Equation in the Weighted Lebesgue Space, Fractal Fract., 5 (2021), 77. https://doi.org/10.3390/fractalfract5030077 doi: 10.3390/fractalfract5030077
![]() |
[19] |
A. Y. Lashin, Coefficient Estimates for Two Subclasses of Analytic and Bi-Univalent Functions, Ukr. Math. J., 70 (2019), 1484–1492. https://doi.org/10.1007/s11253-019-01582-2 doi: 10.1007/s11253-019-01582-2
![]() |
[20] |
M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63–68. https://doi.org/10.1090/S0002-9939-1967-0206255-1 doi: 10.1090/S0002-9939-1967-0206255-1
![]() |
[21] |
R. J. Libera, Some classes of regular univalent functions, Proc.Amer.Math. Soc., 16 (1965), 755-758. https://doi.org/10.1090/S0002-9939-1965-0178131-2 doi: 10.1090/S0002-9939-1965-0178131-2
![]() |
[22] | X. F. Li, A. P. Wang, Two new subclasses of bi-univalent functions, Internat. Math. Forum, 7 (2012), 1495–1504. |
[23] | W. C. Ma, D. Minda, A unified treatment of some special classes of functions, Proceedings of the Conference on Complex Analysis, Tianjin, 1992,157–169, Conf. Proc. Lecture Notes Anal. 1. Int. Press, Cambridge, MA, 1994. |
[24] |
B. Muckenhoupt, Mean Convergence of Jacobi Series, Proc. Am. Math. Soc., 23 (1969), 306–310. https://doi.org/10.1090/S0002-9939-1969-0247360-5 doi: 10.1090/S0002-9939-1969-0247360-5
![]() |
[25] | G. Murugusundaramoorthy, H.O. Guney, K. Vijaya, Coefficient bounds for certain suclasses of Bi-prestarlike functions associated with the Gegenbauer polynomial, Adv. Stud. Contemp. Math., 32 (2022), 5–15. |
[26] |
E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in z<1, Arch. Rational Mech. Anal., 32 (1969), 100–112. https://doi.org/10.1007/BF00247676 doi: 10.1007/BF00247676
![]() |
[27] | M. Obradovic, T. Yaguchi, H. Saitoh, On some conditions for univalence and starlikeness in the unit disc, Rend. Math. Ser. VII., 12 (1992), 869–877. |
[28] | C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975. |
[29] |
T. Panigarhi, G. Murugusundaramoorthy, Coefficient bounds for Bi- univalent functions analytic functions associated with Hohlov operator, Proc. Jangjeon Math. Soc., 16 (2013), 91–100. https://doi.org/10.14419/gjma.v1i2.937 doi: 10.14419/gjma.v1i2.937
![]() |
[30] | H. M. Srivastava, G. Murugusundaramoorthy, N. Magesh, Certain subclasses of bi-univalent functions associated with the Hohlov operator, Glob. J. Math. Anal., 2 (2013), 67–73. |
[31] |
H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192. https://doi.org/10.1016/j.aml.2010.05.009 doi: 10.1016/j.aml.2010.05.009
![]() |
[32] |
H. M. Srivastava, Some Fox-Wright generalized hypergeometric functions and associated families of convolution operators, Appl. Anal. Discrete Math., 1 (2007), 56–71. https://doi.org/10.2298/AADM0701056S doi: 10.2298/AADM0701056S
![]() |
[33] |
V. Kiryakova, Criteria for univalence of the Dziok–Srivastava and the Srivastava–Wright operators in the class A, Appl. Math. Comput., 218 (2011), 883–892. https://doi.org/10.1016/j.amc.2011.01.076 doi: 10.1016/j.amc.2011.01.076
![]() |
[34] |
H. M. Srivastava, M. Kamali, A. Urdaletova, A study of the Fekete-Szegö functional and coefficient estimates for subclasses of analytic functions satisfying a certain subordination condition and associated with the Gegenbauer polynomials, AIMS Mathematics, 7 (2022), 2568–2584. https://doi.org/10.3934/math.2022144 doi: 10.3934/math.2022144
![]() |
[35] | H. M. Srivastava, A. K. Wanas, R. Srivastava, Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials, Symmetry, 13 (2021), 1–14. |
[36] | H. M. Srivastava, A. K. Wanas, G. Murugusundaramoorthy, A certain family of bi-univalent functions associated with the Pascal distribution series based upon the Horadam polynomials, Surveys Math. Appl., 16 (2021), 193–205. |
[37] | H. M. Srivastava, Ş. Altınkaya, S. Yalçin, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A: Sci., 43 (2019), 1873–1879. |
[38] | H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci., 44 (2020), 327–344. |
[39] | H. M. Srivastava, A. K. Wanas, H..Gney, New Families of Bi-univalent Functions Associated with the Bazilevič Functions and the \lambda- Pseudo-Starlike Functions. Iran J. Sci. Technol. Trans. Sci., 45 (2021), 1799–1804. |
[40] | H. M. Srivastava, A. Motamednezhad, E. A. Adegani, Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator, Mathematics, 8 (2020), 1–12. |
[41] |
H. M. Srivastava, A. K. Wanas, Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J., 59 (2019), 493–503. https://doi.org/10.1002/ijch.201800133 doi: 10.1002/ijch.201800133
![]() |
[42] |
H. M. Srivastava, S. Gaboury, F. Ghanim, Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma-Minda type, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat., (RACSAM) 112 (2018), 1157–1168. https://doi.org/10.1007/s13398-017-0416-5 doi: 10.1007/s13398-017-0416-5
![]() |
[43] |
H. M. Srivastava, S. Altinkaya, S. Yalcin, Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator, Filomat, 32 (2018), 503–516. https://doi.org/10.2298/FIL1802503S doi: 10.2298/FIL1802503S
![]() |
[44] | H. M. Srivastava, P. W. Karlsson, Multiple Gaussian hypergeometric series, Wiley, New York., 1985. |
[45] |
H. M. Srivastava, D. Raducanu, P. A. Zaprawa, Certain subclass of analytic functions defined by means of differential subordination, Filomat, 30 (2016), 3743–3757. https://doi.org/10.2298/FIL1614743S doi: 10.2298/FIL1614743S
![]() |
[46] |
H. M. Srivastava, Certain q-polynomial expansions for functions of several variables. Ⅰ and Ⅱ, IMA J. Appl. Math., 30 (1983), 205–209. https://doi.org/10.1507/endocrj1954.30.205 doi: 10.1507/endocrj1954.30.205
![]() |
[47] | A. Cătaş, On the Fekete-Szegö problem for certain classes of meromorphic functions using p, q-derivative operator and a p, q-wright type hypergeometric function, Symmetry, 13 (2021), 2143. |
[48] |
G. I. Oros, L. I. Cotîrlă, Coefficient Estimates and the Fekete–Szegö Problem for New Classes of m-Fold Symmetric Bi-Univalent Functions, Mathematics 10 (2022), 129. https://doi.org/10.3390/math10010129 doi: 10.3390/math10010129
![]() |
[49] | V. D. Breaz, A. Cătaş, L.I. Cotîrlă, On the Upper Bound of the Third Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function, An. St. Univ. Ovidius Constanta, 2022. |
[50] | T. S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981. |
[51] |
Q. H. Xu, Y. C. Gui, H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25 (2012), 990–994. https://doi.org/10.1016/j.aml.2011.11.013 doi: 10.1016/j.aml.2011.11.013
![]() |
[52] |
Q. H. Xu, H. G. Xiao, H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218 (2012), 11461–11465. https://doi.org/10.1016/j.amc.2012.05.034 doi: 10.1016/j.amc.2012.05.034
![]() |
[53] | P. Zaprawa, On the Fekete-Szeg\ddot{o} problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21 (2014), 169–178. |
1. | Ying Cheng, Rekha Srivastava, Jin-Lin Liu, Applications of the q-Derivative Operator to New Families of Bi-Univalent Functions Related to the Legendre Polynomials, 2022, 11, 2075-1680, 595, 10.3390/axioms11110595 | |
2. | Ibtisam Aldawish, Sondekola Rudra Swamy, Basem Aref Frasin, A Special Family of m-Fold Symmetric Bi-Univalent Functions Satisfying Subordination Condition, 2022, 6, 2504-3110, 271, 10.3390/fractalfract6050271 | |
3. | Sondekola Rudra Swamy, Luminiţa-Ioana Cotîrlă, On τ-Pseudo-ν-Convex κ-Fold Symmetric Bi-Univalent Function Family, 2022, 14, 2073-8994, 1972, 10.3390/sym14101972 | |
4. | Sondekola Rudra Swamy, Basem Aref Frasin, Ibtisam Aldawish, Fekete–Szegö Functional Problem for a Special Family of m-Fold Symmetric Bi-Univalent Functions, 2022, 10, 2227-7390, 1165, 10.3390/math10071165 | |
5. | Ridong Wang, Manoj Singh, Shahid Khan, Huo Tang, Mohammad Faisal Khan, Mustafa Kamal, New Applications of Faber Polynomial Expansion for Analytical Bi-Close-to-Convex Functions Defined by Using q-Calculus, 2023, 11, 2227-7390, 1217, 10.3390/math11051217 | |
6. | Isra Al-shbeil, Nazar Khan, Fairouz Tchier, Qin Xin, Sarfraz Nawaz Malik, Shahid Khan, Coefficient Bounds for a Family of s-Fold Symmetric Bi-Univalent Functions, 2023, 12, 2075-1680, 317, 10.3390/axioms12040317 | |
7. | Likai Liu, Jie Zhai, Jin-Lin Liu, Second Hankel Determinant for a New Subclass of Bi-Univalent Functions Related to the Hohlov Operator, 2023, 12, 2075-1680, 433, 10.3390/axioms12050433 | |
8. | Sondekola Rudra Swamy, Luminita-Ioana Cotîrlă, A New Pseudo-Type κ-Fold Symmetric Bi-Univalent Function Class, 2023, 12, 2075-1680, 953, 10.3390/axioms12100953 | |
9. | Norah Saud Almutairi, Adarey Saud Almutairi, Awatef Shahen, Hanan Darwish, Estimates of coefficients for bi-univalent Ma-Minda-type functions associated with \mathfrak{q} -Srivastava-Attiya operator, 2025, 10, 2473-6988, 7269, 10.3934/math.2025333 |