In this paper, we introduce a new subclass of analytic and bi-univalent functions in the open unit disc $ U. $ For this subclass of functions, estimates of the initial coefficients $ \left\vert A_{2}\right\vert $ and $ \left\vert A_{3}\right\vert $ of the Taylor-Maclaurin series are given. An application of Legendre polynomials to this subclass of functions is presented. Furthermore, our study discusses several special cases.
Citation: Abeer O. Badghaish, Abdel Moneim Y. Lashin, Amani Z. Bajamal, Fayzah A. Alshehri. A new subclass of analytic and bi-univalent functions associated with Legendre polynomials[J]. AIMS Mathematics, 2023, 8(10): 23534-23547. doi: 10.3934/math.20231196
In this paper, we introduce a new subclass of analytic and bi-univalent functions in the open unit disc $ U. $ For this subclass of functions, estimates of the initial coefficients $ \left\vert A_{2}\right\vert $ and $ \left\vert A_{3}\right\vert $ of the Taylor-Maclaurin series are given. An application of Legendre polynomials to this subclass of functions is presented. Furthermore, our study discusses several special cases.
[1] | S. Altınkaya, Bounds for a new subclass of bi-univalent functions subordinate to the Fibonacci numbers, Turk. J. Math., 44 (2020), 553–560. |
[2] | S. Altınkaya, S. Yalcın, Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Math., 353 (2015), 1075–1080. https://doi.org/10.1016/j.crma.2015.09.003 doi: 10.1016/j.crma.2015.09.003 |
[3] | R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25 (2012) 344–351. https://doi.org/10.1016/j.aml.2011.09.012 doi: 10.1016/j.aml.2011.09.012 |
[4] | D. A. Brannan, T. S.Taha, On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math., 31 (1986), 70–77. https://doi.org/10.1016/0039-6257(86)90059-7 doi: 10.1016/0039-6257(86)90059-7 |
[5] | M. Caglar, H. Orhan, N. Yagmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27 (2013), 1165–1171. https://doi.org/10.2298/FIL1307165C doi: 10.2298/FIL1307165C |
[6] | J. D. Jackson, Classical electrodynamics, John Wiley and Sons, New York, 1962. |
[7] | E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., 2 (2013), 49–60. https://doi.org/10.1365/s35128-013-0145-1 doi: 10.1365/s35128-013-0145-1 |
[8] | P. L. Duren, Univalent functions, Grundlehren Math. Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983. |
[9] | A. W. Goodman, Univalent functions, Vol I & II, Mariner publishing Company Inc., Tampa Florida, 1983. |
[10] | S. P. Goyal, R. Kumar, Coefficient estimates and quasi-subordination properties associated with certain subclasses of analytic and bi-univalent functions, Math. Slovaca, 65 (2015), 533–544. https://doi.org/10.1515/ms-2015-0038 doi: 10.1515/ms-2015-0038 |
[11] | S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functionwhich completes the proof.s defined by subordinations, Bull. Iranian Math. Soc., 41 (2015), 1103–1119. https://doi.org/10.1097/DSS.0000000000000475 doi: 10.1097/DSS.0000000000000475 |
[12] | T. Hayami, S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math. J., 22 (2012), 15–26. |
[13] | N. A. Khan, M. Sulaiman, P. Kumam, F. K. Alarfaj, Application of Legendre polynomials based neural networks for the analysis of heat and mass transfer of a non-Newtonian fluid in a porous channel, Adv. Cont. Discr. Mod., 2022 (2022). https://doi.org/10.1186/s13662-022-03676-x. doi: 10.1186/s13662-022-03676-x |
[14] | A. Y. Lashin, On certain subclasses of analytic and bi-univalent functions, J. Egypt. Math. Soc., 24 (2016), 220–225. https://doi.org/10.1016/j.joems.2015.04.004 doi: 10.1016/j.joems.2015.04.004 |
[15] | A. Y. Lashin, Coefficient estimates for two subclasses of analytic and bi-univalent functions, Ukr. Math. J., 70 (2019), 1484–1492. https://doi.org/10.1007/s11253-019-01582-2 doi: 10.1007/s11253-019-01582-2 |
[16] | A. Y. Lashin, F. Z. EL-Emam, Faber polynomial coefficients for certain subclasses of analytic and bi-univalent functions, Turk. J. Math., 44 (2020), 1345–1361. https://doi.org/10.1007/s11253-019-01582-2 doi: 10.1007/s11253-019-01582-2 |
[17] | A. Y. Lashin, A. O. Badghaish, A. Z. Bajamal, Bounds for two new subclasses of bi-univalent functions associated with legender polynomials, Mathematics, 9 (2021), 3188, https://doi.org/10.3390/math9243188. doi: 10.3390/math9243188 |
[18] | M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63–68. https://doi.org/10.1090/S0002-9939-1967-0206255-1 doi: 10.1090/S0002-9939-1967-0206255-1 |
[19] | Z. Lewandowski, S. S. Miller, E. Zlotkiewicz, Gamma-starlike functions, Annales Univ. Mariae Curie-Sklodowska Lublin-Polonia, 28 (1974), 53–58. |
[20] | N. Magesh, T. Rosy, S. Varma, Coefficient estimate problem for a new subclass of bi-univalent functions, J. Complex Anal., 2013 (2013), 474231. |
[21] | N. Magesh, J. Yamini, Coefficient bounds for certain subclasses of bi-univalent functions, Internat. Math. Forum, 8 (2013), 1337–1344. https://doi.org/10.12988/imf.2013.3595 doi: 10.12988/imf.2013.3595 |
[22] | J. Michael Hollas, Modern spectroscopy, John Wiley and Sons, Chichester, 1992. |
[23] | G. Murugusundaramoorthy, N. Magesh, V. Prameela, Coefficient bounds for certain subclasses of bi-univalent function, Abstr. Appl. Anal., 2013 (2013), 573017. |
[24] | S. S. Miller, On a class of starlike functions, Ann. Pol. Math., 32 (1976), 76–81. https://doi.org/10.1108/eb056604 doi: 10.1108/eb056604 |
[25] | Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952. |
[26] | M. Nunokawa, On certain mulivalent functions, Math. Japon., 36 (1991), 67–70. https://doi.org/10.1007/BF02935824 doi: 10.1007/BF02935824 |
[27] | M. Nunokawa, A certain class of starlike functions, In: Current Topics in Analytic Function Theory, H.M. Srivastava and S. Owa (Editors), World Scientific Publishing Company, Singapore, New Jersey, London and Hongkong, 1992,206–211. |
[28] | M. Obradovic, S. B. Joshi, On certain classes of strongly starlike functions, Taiwan. J. Math., 2 (1998), 297–302. |
[29] | M. Obradovic, S. Owa, A criterion for starlikeness, Math. Nachr., 140 (1989), 97–102. https://doi.org/10.1002/mana.19891400109 doi: 10.1002/mana.19891400109 |
[30] | Z. G. Peng, Q. Q. Han, On the coefficients of several classes of bi-univalent functions, Acta Math. Sci. Ser. B Engl. Ed., 34 (2014), 228–240. https://doi.org/10.1016/S0252-9602(13)60140-X doi: 10.1016/S0252-9602(13)60140-X |
[31] | S. Porwal, M. Darus, On a new subclass of bi-univalent functions, J. Egypt. Math. Soc., 21 (2013), 190–193. https://doi.org/10.1016/j.joems.2013.02.007 doi: 10.1016/j.joems.2013.02.007 |
[32] | K. S. Padmanabhan, On sufficient conditions for starlikeness, Indian J. Pure Appl. Math., 32 (2001), 543–550. |
[33] | C. Ramesha, S. Kumar, K. S. Padmanabhan, A sufficent condition for starlikeness, Chinese J. Math., 23 (1995), 167–171. |
[34] | H. M. Srivastava, S. Bulut, M. Caglar, N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (2013), 831–842. https://doi.org/10.2298/FIL1305831S doi: 10.2298/FIL1305831S |
[35] | H. Silverman, Convex and starlike criteria, Int. J. Math. Math. Sci., 22 (1999), 75–79. https://doi.org/10.1155/S0161171299220753 doi: 10.1155/S0161171299220753 |
[36] | T. S. Taha, Topics in univalent function theory, Ph.D. Thesis, University of London, 1981. |
[37] | A. Zireh, E. A. Adegani, M. Bidkham, Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasi-subordinate, Math. Slovaca, 68 (2018), 369–378. https://doi.org/10.1515/ms-2017-0108 doi: 10.1515/ms-2017-0108 |