
This paper investigates the oscillatory behavior of nonlinear third-order dynamic equations on time scales. Our main approach is to transform the equation from its semi-canonical form into a more tractable canonical form. This transformation simplifies the analysis of oscillation behavior and allows us to derive new oscillation criteria. These criteria guarantee that all solutions to the equation oscillate. Our results extend and improve upon existing findings in the literature, particularly for the special cases where T=R and T=Z. Additionally, we provide illustrative examples to demonstrate the practical application of the developed criteria.
Citation: Ahmed M. Hassan, Clemente Cesarano, Sameh S. Askar, Ahmad M. Alshamrani. Oscillatory behavior of solutions of third order semi-canonical dynamic equations on time scale[J]. AIMS Mathematics, 2024, 9(9): 24213-24228. doi: 10.3934/math.20241178
[1] | Jalil Manafian, Onur Alp Ilhan, Sizar Abid Mohammed . Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. AIMS Mathematics, 2020, 5(3): 2461-2483. doi: 10.3934/math.2020163 |
[2] | Mahmoud A. E. Abdelrahman, Sherif I. Ammar, Kholod M. Abualnaja, Mustafa Inc . New solutions for the unstable nonlinear Schrödinger equation arising in natural science. AIMS Mathematics, 2020, 5(3): 1893-1912. doi: 10.3934/math.2020126 |
[3] | M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque . New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199 |
[4] | Haikun Liu, Yongqiang Fu . On the variable exponential fractional Sobolev space Ws(·),p(·). AIMS Mathematics, 2020, 5(6): 6261-6276. doi: 10.3934/math.2020403 |
[5] | Samir Kumar Bhandari, Dhananjay Gopal, Pulak Konar . Probabilistic α-min Ciric type contraction results using a control function. AIMS Mathematics, 2020, 5(2): 1186-1198. doi: 10.3934/math.2020082 |
[6] | Manikandan G, Perumal R . Mate and mutual mate functions in a seminearring. AIMS Mathematics, 2020, 5(5): 4974-4982. doi: 10.3934/math.2020318 |
[7] | Huaji Cheng, Yanxia Hu . Exact solutions of the generalized (2+1)-dimensional BKP equation by the G'/G-expansion method and the first integral method. AIMS Mathematics, 2017, 2(3): 562-579. doi: 10.3934/Math.2017.2.562 |
[8] | Johnny Henderson, Abdelghani Ouahab, Samia Youcefi . Existence results for ϕ-Laplacian impulsive differential equations with periodic conditions. AIMS Mathematics, 2019, 4(6): 1610-1633. doi: 10.3934/math.2019.6.1610 |
[9] | Abdelkrim Salim, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On the nonlocal hybrid (k,φ)-Hilfer inverse problem with delay and anticipation. AIMS Mathematics, 2024, 9(8): 22859-22882. doi: 10.3934/math.20241112 |
[10] | Murali Ramdoss, Divyakumari Pachaiyappan, Inho Hwang, Choonkil Park . Stability of an n-variable mixed type functional equation in probabilistic modular spaces. AIMS Mathematics, 2020, 5(6): 5903-5915. doi: 10.3934/math.2020378 |
This paper investigates the oscillatory behavior of nonlinear third-order dynamic equations on time scales. Our main approach is to transform the equation from its semi-canonical form into a more tractable canonical form. This transformation simplifies the analysis of oscillation behavior and allows us to derive new oscillation criteria. These criteria guarantee that all solutions to the equation oscillate. Our results extend and improve upon existing findings in the literature, particularly for the special cases where T=R and T=Z. Additionally, we provide illustrative examples to demonstrate the practical application of the developed criteria.
Fractional partial differential equations (FPDEs) are the generalizations of classical partial differential equations with integer orders, which are used to describe several phenomena in many fields of sciences, such as mechanics, signal processing, plasma physics, systems identification, electricity, chemistry, biology, control theory and other areas.
The exact solutions of FPDEs play a crucial role in the study of nonlinear sciences. It is used to describe observed various qualitative and quantitative features of nonlinear phenomenons in many fields of mathematical physics, it can let our better understand some complex physics phenomena. Therefore, it is an important task to seek more exact solutions of different forms for the FPDEs.
In recent decades, with the development of science and technology, especially symbolic computation package such as Maple and Mathematica, many researchers have presented many direct and powerful approaches to establish exact solutions of fractional partial differential equations. For example, the fractional sub-equation method [1,2], the first integral method [3], the extended fractional Riccati expansion method [4], the fractional complex transform [5], the Jacobi elliptic equation method [6], the fractional mapping method [7], the (G′/G)-expansion method [8], the improved fractional (DαG/G) method [9], the extended fractional (DαξG/G)-expansion method [10], the separation variables approach [11], the modified extended tanh method [12], the exp(−Φ(ξ)) method [13,14], the invariant subspace method [15], and other methods [16,17,18,19]. Due to these methods, various exact solutions or numerical solutions of FPDEs have been established successfully.
The two variable (ϕ′/ϕ,1/ϕ)-expansion method is the generalization of (G′/G)-expansion method, the main idea of this method is that the solutions to FPDEs are represented as a polynomial in two variables (ϕ′/ϕ) and (1/ϕ), wherein ϕ=ϕ(ξ) satisfies the second order ODE ϕ″+δϕ=μ, where δ and μ are constants. The objective of this article is to establish further general and some fresh close form solitary wave solution to the time-fractional Kuramoto-Sivashinsky (K-S) equation, (3+1)-dimensional time-fractional KdV-Zakharov-Kuznetsov (KdV-ZK) equation and time-fractional Sharma-Tasso-Olver (FSTO) equation by means of the two variable (ϕ′/ϕ,1/ϕ)-expansion method, the results suggest that the method is significative and further general.
The organization of the paper is as follows. In Section 2, the description of conformable fractional derivative and its properties are given. In Section 3, we describe the algorithm for solving time-fractional partial differential equations by using the two variable (ϕ′/ϕ,1/ϕ)-expansion method with the help of fractional complex transform. In Section 4, we apply the two variable (ϕ′/ϕ,1/ϕ)-expansion to the time-fractional K-S equation, (3+1)-dimensional KdV-ZK equation and FSTO equation. In Section 5, some typical wave figures of the exact solutions are given. Results and discussion part are added in Section 6. The conclusion part is in Section 7.
In fractional calculus, the most famous fractional derivatives are the Riemann-Liouville and the Caputo fractional derivatives, the Riemann-Liouville fractional derivative is defined as follows [20]:
If n is a positive integer and αϵ[n−1,n], the α derivative of a function f is given by
Dαt(f)(t)=1Γ(n−α)dndtn∫taf(x)(t−x)α−n+1dx. | (2.1) |
Also, the Caputo fractional derivative is defined as follows [20]
Dαt(f)(t)=1Γ(n−α)dndtn∫taf(n)(x)(t−x)α−n+1dx. | (2.2) |
Some flaws arise in these definitions of these fractional derivatives, for example, all these derivatives do not satisfy: the known formula of the derivative of the product of two functions, the known formula of the derivative of the quotient of two functions and the chain rule of two functions.
In 2014, Khalil et al. [21] introduced a novel definition of fractional derivative named the conformable fractional derivative to overcome the flaws found in Riemann-Liouville and the Caupto fractional derivatives.
Definition 1. Suppose f: [0,∞)→R is a function. Then, the conformable fractional derivative of f of order α is defined as
Dαt(f)(t)=lim | (2.3) |
for all t > 0 and \alpha\in(0, 1] . If f is \alpha -differentiable in some (0, a) , a > 0 , and lim_{t\rightarrow 0^+}f^{(\alpha)}(t) exists, then f^{(\alpha)}(0) = lim_{t\rightarrow 0^+}f^{(\alpha)}(t) .
Some properties of the conformable fractional derivative are given below as in [21]
Thereom 1. Suppose \alpha\in(0, 1] , and f = f(t) and g = g(t) are \alpha- differentiable at t > 0 . Then
\begin{equation} \ D^\alpha_t(af+bg) = aD^\alpha_t(f)+bD^\alpha_t(g), \ \ \ \ \ \forall a, b\in R. \end{equation} | (2.4) |
\begin{equation} \ D^\alpha_t(t^\mu) = \mu t^{\mu-\alpha}, \ \ \ \ \ \forall \mu \in R. \end{equation} | (2.5) |
\begin{equation} \ D^\alpha_t(fg) = fD^\alpha_t(g)+gD^\alpha_t(f). \end{equation} | (2.6) |
\begin{equation} \ D^\alpha_t(\frac{f}{g}) = \frac{gD^\alpha_t(f)-fD^\alpha_t(g)}{g^2}. \end{equation} | (2.7) |
If, in addition to f differentiable, then
\begin{equation} \ D^\alpha_t(f)(t) = t^{1-\alpha}\frac{df}{dt}. \end{equation} | (2.8) |
Thereom 2. Suppose functions f, g : [0, \infty) \rightarrow R be \alpha- differentiable, where (0 < \alpha \leq1) . Then the following rule is obtained
\begin{equation} \ D^\alpha_t(f\circ g)(t) = t^{1-\alpha}g'(t)f'(g(t)). \end{equation} | (2.9) |
The above equations play an important role in fractional calculus in the following sections.
In this section we give the description of the two variable (\phi'/\phi, 1/\phi) -expansion method to find exact traveling wave solutions of time-fractional partial differential equation.
Suppose that a time-fractional partial differential equation in the variables x, y, z, t is given by
\begin{equation} \ P(u, u_{x}, u_{y}, u_{z}, u_{xx}, u_{xy}, u_{xz}, u_{xxx}, \cdots, D_{t}^{\alpha}u, D_{tt}^{2\alpha}u, \cdots) = 0, \ \ \ \ 0 \lt \alpha\leq 1, \end{equation} | (3.1) |
where D_{t}^{\alpha}u, D_{tt}^{2\alpha}u are fraction-order derivatives of u with respect to t , P is a polynomial of u = u(x, y, z, t) and its various partial conformable derivatives including the highest order derivatives and nonlinear terms.
We use the conformable wave transformation:
\begin{equation} \ u(x, y, z, t) = u(\xi), \xi = c(x+y+z-\frac{\upsilon t^{\alpha}}{\alpha}), \end{equation} | (3.2) |
where c and \upsilon are constant to be determine later, the FPDE (3.1) is reduced to the following nonlinear ordinary differential equation (ODE) for u(x, y, z, t) = u(\xi) :
\begin{equation} \ P(u, cu', c^2u'', c^3u''', \cdots, -c\upsilon u', \ldots) = 0, \end{equation} | (3.3) |
where u' = u_\xi, u'' = u_{\xi\xi}, \cdots.
We suppose the solution u of (3.3) can be expressed in the following form:
\begin{equation} u = \sum\limits_{i = 0}^{n} a_i (\frac{\phi'}{\phi})^i+\sum\limits_{j = 0}^{n-1} b_i (\frac{\phi'}{\phi})^j\frac{1}{\phi}, \end{equation} | (3.4) |
where a_i, b_j(i = 0, 1, 2, \ldots, n; j = 0, 1, 2, \ldots, n-1) are constants and a_nb_{n-1}\neq 0 . The positive number n can be determined by considering the homogeneous balance between the highest order derivatives and nonlinear terms appearing in (3.3). The function \phi = \phi(\xi) satisfies the second order linear ODE in the form
\begin{equation} \phi''+\delta \phi = \mu, \end{equation} | (3.5) |
where \delta and \mu are constants. Equation (3.5) has three types of general solution with double arbitrary parameters as follows [22]:
\begin{equation} \ \phi(\xi) = \left\{\begin{array}{cc} A_1\cosh(\sqrt{-\delta}\xi)+A_2\sinh(\sqrt{-\delta}\xi)+\frac{\mu}{\delta}, \ \rm{when} \ \ \ \delta \lt 0, \\ A_1\cos(\sqrt{\delta}\xi)+A_2\sin(\sqrt{\delta}\xi)+\frac{\mu}{\delta}, \ \ \ \ \ \ \ \ \ \rm{when} \ \ \ \delta \gt 0, \\ A_1\xi+A_2+\frac{\mu}{2}\xi^2, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \rm{when} \ \ \ \delta = 0.\ \end{array}\right. \end{equation} | (3.6) |
and
\begin{equation} \ \left(\frac{\phi'}{\phi}\right)^2 = \left\{\begin{array}{cc} (\delta A_1^2-\delta A_2^2-\frac{\mu^2}{\delta})(\frac{1}{\phi})^2-\delta+\frac{2\mu}{\phi}, \ \ \ \rm{when} \ \delta \lt 0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (\delta A_1^2+\delta A_2^2-\frac{\mu^2}{\delta})(\frac{1}{\phi})^2-\delta+\frac{2\mu}{\phi}, \ \ \ \rm{when} \ \delta \gt 0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (A_1^2-2\mu A_2)(\frac{1}{\phi})^2+\frac{2\mu}{\phi}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \rm{when} \ \delta = 0. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{array}\right. \end{equation} | (3.7) |
where A_1, A_2 are arbitrary constants.
By substituting (3.4) into (3.3) and using the second order linear ODE (3.5) and (3.7), collecting all terms with the same order of \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} together, the left-hand side of (3.3) is converted into another polynomial in \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} . Equating each coefficient of this different power terms to zero yields a set of algebraic equations for a_i, b_j(i = 0, 1, 2, \ldots, n; j = 0, 1, 2, \ldots, n-1), \delta, \mu, c and \upsilon .
Assuming constants a_i, b_j(i = 0, 1, 2, \ldots, n; j = 0, 1, 2, \ldots, n-1), \delta, \mu, c and \upsilon can be determined by solving the nonlinear algebraic equations. Then substituting these terms and the general solutions (3.6) of (3.5) into (3.4), we can obtain more exact traveling wave solutions of (3.1).
In this subsection, we investigate more general and new exact traveling wave solutions of time-fractional differential equations by means of the two variable (\phi'/\phi, 1/\phi) -expansion method.
we consider the time-fractional Kuramoto-Sivashinsky (K-S) equation [23]:
\begin{equation} \ D_{t}^{\alpha}u+auu_x+bu_{xx}+ku_{xxxx} = 0, \end{equation} | (4.1) |
where 0 < \alpha\leq 1 and a, b, k are arbitrary constants.
The K-S equation (4.1) was examined as a prototypical example of spatiotemporal chaos in one space dimension. This equation represents the motion of a fluid going down a vertical wall, the variations of the position of a flame front, or a spatially uniform oscillating chemical reaction in a homogeneous medium.
To solve (4.1), we use the wave transformations:
\begin{equation} \ u = u(\xi), \ \ \ \xi = c(x-\frac{\upsilon t^{\alpha}}{\alpha}), \end{equation} | (4.2) |
then (4.1) is reduced into a nonlinear ODE in the form
\begin{equation} \ -c\upsilon u'(\xi)+acu(\xi)u'(\xi)+bc^2u''(\xi)+kc^4u^{(4)}(\xi) = 0. \end{equation} | (4.3) |
By reducing (4.3), we get
\begin{equation} \ -\upsilon u'(\xi)+au(\xi)u'(\xi)+bcu''(\xi)+kc^3u^{(4)}(\xi) = 0. \end{equation} | (4.4) |
By balancing the highest order derivative term u^{(4)} and nonlinear term uu' in (4.4), the value of n can be determined, which is n = 3 in this problem. Therefore, by (3.4), we have the following ansatz:
\begin{equation} u(\xi) = a_0+a_1\left(\frac{\phi'}{\phi}\right)+a_2\left(\frac{\phi'}{\phi}\right)^{2}+a_3\left(\frac{\phi'}{\phi}\right)^{3}+b_0\frac{1}{\phi}+b_1\left(\frac{\phi'}{\phi}\right) \frac{1}{\phi}+b_2\left(\frac{\phi'}{\phi}\right)^{2}\frac{1}{\phi}, \end{equation} | (4.5) |
where a_0, a_1, a_2, a_3, b_0, b_1 and b_2 are constants to be determined later, and function \phi(\xi) satisfies (3.5).
By substituting (4.5) into (4.4) and using the second order linear ODE (3.5) and (3.7), collecting all terms with the same order of \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} together, the left-hand side of (4.4) is converted into another polynomial in \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} . Equating each coefficient of this different power terms to zero yields a set of algebraic equations for a_0, a_1, a_2, a_3, b_0, b_1, b_2, \delta, \mu, k, a, b, c and \upsilon . Solving this system of algebraic equations, with the aid of Maple, we obtain
1. a_1 = \pm\frac{3b_2\delta}{2\sqrt{\Xi_i}}, \ a_2 = -\frac{b_2\mu}{2\Xi_i}, \ a_3 = \pm\frac{b_2}{\sqrt{\Xi_i}}, b_0 = \frac{b_2(\mu^2+\Xi_i\delta)}{\Xi_i}, \ b_1 = \mp\frac{3b_2\mu}{2\sqrt{\Xi_i}}, \ b = \pm\frac{19b_2a\delta}{60c\sqrt{\Xi_i}}, \ \ |
\begin{equation} \ k = \pm\frac{ab_2}{60c^3\sqrt{\Xi_i}}, \ \ \upsilon = \frac{a(b_2\mu\delta+2a_0\Xi_i)}{2\Xi_i}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{equation} | (4.6) |
2. a_1 = \pm\frac{21b_2\delta}{22\sqrt{\Xi_i}}, \ a_2 = -\frac{b_2\mu}{2\Xi_i}, \ a_3 = \pm\frac{b_2}{\sqrt{\Xi_i}}, b_0 = \frac{b_2(11\mu^2+5\Xi_i\delta)}{11\Xi_i}, \ \ b_1 = \mp\frac{3b_2\mu}{2\sqrt{\Xi_i}}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
\begin{equation} \ b = \mp\frac{19b_2a\delta}{660c\sqrt{\Xi_i}}, \ \ k = \pm\frac{ab_2}{60c^3\sqrt{\Xi_i}}, \ \ \upsilon = \frac{a(b_2\mu\delta+2a_0\Xi_i)}{2\Xi_i}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{equation} | (4.7) |
where \Xi_i(i = 1, 2, 3) are given later.
Substituting (4.6) and (4.7) and the general solutions (3.6) of Eq. (3.5) into (4.5), we obtain more exact traveling wave solutions of (4.1):
\begin{equation} u_{1i}(\xi) = a_0\pm\frac{3b_2\delta}{2\sqrt{\Xi_i}}\Phi_i-\frac{b_2\mu}{2\Xi_i}\Phi_i^2\pm\frac{b_2}{\sqrt{\Xi_i}}\Phi_i^3+\Psi_i(\frac{b_2(\mu^2+\Xi_i\delta)}{\Xi_i} \mp\frac{3b_2\mu}{2\sqrt{\Xi_i}}\Phi_i+b_2\Phi_i^2), \end{equation} | (4.8) |
where \xi = c(x-\frac{(b_2\delta\mu+2a_0\Xi_i)a}{2\Xi_i\alpha}t^\alpha), \ \ b = \pm\frac{19b_2a\delta}{60c\sqrt{\Xi_i}}, \ \ k = \pm\frac{ab_2}{60c^3\sqrt{\Xi_i}}.
\begin{equation} u_{2i}(\xi) = a_0\pm\frac{21b_2\delta}{22\sqrt{\Xi_i}}\Phi_i-\frac{b_2\mu}{2\Xi_i}\Phi_i^2\pm\frac{b_2}{\sqrt{\Xi_i}}\Phi_i^3+\Psi_i(\frac{b_2(11\mu^2+5\Xi_i\delta)}{11\Xi_i} \mp\frac{3b_2\mu}{2\sqrt{\Xi_i}}\Phi_i+b_2\Phi_i^2), \end{equation} | (4.9) |
where \xi = c(x-\frac{(b_2\delta\mu+2a_0\Xi_i)a}{2\Xi_i\alpha}t^\alpha), \ \ b = \mp\frac{19b_2a\delta}{660c\sqrt{\Xi_i}}, \ \ k = \pm\frac{ab_2}{60c^3\sqrt{\Xi_i}} .
When i = 1 for \delta < 0 , i = 2 for \delta > 0 , i = 3 for \delta = 0 . And
\begin{equation} \Phi_1 = \frac{A_1\sinh(\sqrt{-\delta}\xi)+A_2\cosh(\sqrt{-\delta}\xi)}{A_1\cosh(\sqrt{-\delta}\xi)+A_2\sinh(\sqrt{-\delta}\xi)+\mu/\delta}\cdot\sqrt{-\delta}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{equation} | (4.10) |
\begin{equation} \Psi_1 = \frac{1}{A_1\cosh(\sqrt{-\delta}\xi)+A_2\sinh(\sqrt{-\delta}\xi)+\mu/\delta}, \ \ \Xi_1 = A_1^2\delta-A_2^2\delta-\mu^2/\delta. \end{equation} | (4.11) |
\begin{equation} \Phi_2 = \frac{-A_1\sin(\sqrt{\delta}\xi)+A_2\cos(\sqrt{\delta}\xi)}{A_1\cos(\sqrt{\delta}\xi)+A_2\sin(\sqrt{\delta}\xi)+\mu/\delta}\cdot\sqrt{\delta}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{equation} | (4.12) |
\begin{equation} \Psi_2 = \frac{1}{A_1\cos(\sqrt{\delta}\xi)+A_2\sin(\sqrt{\delta}\xi)+\mu/\delta}, \ \ \Xi_2 = A_1^2\delta+A_2^2\delta-\mu^2/\delta.\ \ \ \ \ \ \ \ \end{equation} | (4.13) |
\begin{equation} \Phi_3 = \frac{A_1+\mu\xi}{A_1\xi+A_2+\mu\xi^2/2}, \ \Psi_3 = \frac{1}{A_1\xi+A_2+\mu\xi^2/2}, \ \ \Xi_3 = A_1^2-2A_2\mu.\ \ \ \end{equation} | (4.14) |
Since A_1 and A_2 are arbitrary constants, one may choose arbitrarily their values. For example, if we choose A_1 = 0 , A_2\neq 0 and \mu = 0 in (4.8), we obtain some traveling wave solutions.
Case 1.1 when \delta < 0 , we have
\begin{equation} u_1(\xi) = a_0+\frac{b_2\delta}{A_2}\left(\frac{3}{2}\coth(\sqrt{-\delta}\xi)-\coth^3(\sqrt{-\delta}\xi)- \rm{csch}^3(\sqrt{-\delta}\xi)\right), (A_2 \gt 0), \ \ \ \end{equation} | (4.15) |
where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = \frac{19b_2a\delta}{60A_2c\sqrt{-\delta}}, \ \ k = \frac{ab_2}{60c^3A_2\sqrt{-\delta}}.
\begin{equation} u_2(\xi) = a_0-\frac{b_2\delta}{A_2}\left(\frac{3}{2}\coth(\sqrt{-\delta}\xi)-\coth^3(\sqrt{-\delta}\xi)+ \rm{csch}^3(\sqrt{-\delta}\xi)\right), (A_2 \lt 0), \ \ \ \end{equation} | (4.16) |
where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = -\frac{19b_2a\delta}{60A_2c\sqrt{-\delta}}, \ \ k = -\frac{ab_2}{60c^3A_2\sqrt{-\delta}}.
Case 1.2 when \delta > 0 , we have
\begin{equation} u_3(\xi) = a_0+\frac{b_2\delta}{A_2}\left(\frac{3}{2}\cot(\sqrt{\delta}\xi)+\cot^3(\sqrt{\delta}\xi)+\csc^3(\sqrt{\delta}\xi)\right), (A_2 \gt 0), \ \ \ \end{equation} | (4.17) |
where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = \frac{19b_2a\delta}{60A_2c\sqrt{\delta}}, \ \ k = \frac{ab_2}{60c^3A_2\sqrt{\delta}}.
\begin{equation} u_4(\xi) = a_0-\frac{b_2\delta}{A_2}\left(\frac{3}{2}\cot(\sqrt{\delta}\xi)+\cot^3(\sqrt{\delta}\xi)-\csc^3(\sqrt{\delta}\xi)\right), (A_2 \lt 0), \ \ \ \end{equation} | (4.18) |
where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = -\frac{19b_2a\delta}{60A_2c\sqrt{\delta}}, \ \ k = -\frac{ab_2}{60c^3A_2\sqrt{\delta}}.
Again if A_2 = 0 , A_1\neq 0 and \mu = 0 in (4.8), we obtain some traveling wave solutions.
Case 2.1 when \delta < 0 , we have
\begin{equation} u_5(\xi) = a_0+\frac{b_2\delta \sqrt{-\delta}}{\sqrt{A_1^2\delta}}\left(\frac{3}{2}\tanh(\sqrt{-\delta}\xi)-\tanh^3(\sqrt{-\delta}\xi)\right)+\frac{b_2\delta}{A_1} \rm{sech}^3(\sqrt{-\delta}\xi), \end{equation} | (4.19) |
where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = \frac{19b_2a\delta}{60c\sqrt{A_1^2\delta}}, \ \ k = \frac{ab_2}{60c^3\sqrt{A_1^2\delta}}.
Case 2.2 when \delta > 0 , we have
\begin{equation} u_6(\xi) = a_0-\frac{b_2\delta}{A_1}\left(\frac{3}{2}\tan(\sqrt{\delta}\xi)+\tan^3(\sqrt{\delta}\xi))-\sec^3(\sqrt{\delta}\xi)\right), (A_1 \gt 0), \end{equation} | (4.20) |
where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = \frac{19b_2a\delta}{60c A_1\sqrt{\delta}}, \ \ k = \frac{ab_2}{60c^3 A_1\sqrt{\delta}}.
\begin{equation} u_7(\xi) = a_0+\frac{b_2\delta}{A_1}\left(\frac{3}{2}\tan(\sqrt{\delta}\xi)+\tan^3(\sqrt{\delta}\xi))+\sec^3(\sqrt{\delta}\xi)\right), (A_1 \lt 0), \end{equation} | (4.21) |
where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = -\frac{19b_2a\delta}{60c A_1\sqrt{\delta}}, \ \ k = -\frac{ab_2}{60c^3 A_1\sqrt{\delta}}.
If we choose A_1 = 0 , A_2\neq 0 and \mu = 0 in (4.9), we obtain some traveling wave solutions, for example
Case 3.1 when \delta < 0 , we have
\begin{equation} u_8(\xi) = a_0+\frac{b_2\delta}{A_2}\left(\frac{21}{22}\coth(\sqrt{-\delta}\xi)-\coth^3(\sqrt{-\delta}\xi)+ \left(\frac{5}{11}-\coth^2(\sqrt{-\delta}\xi)\right) \rm{csch}(\sqrt{-\delta}\xi)\right), (A_2 \gt 0), \ \ \ \end{equation} | (4.22) |
where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = -\frac{19b_2a\delta}{660A_2c\sqrt{-\delta}}, \ \ k = \frac{ab_2}{60c^3A_2\sqrt{-\delta}}.
\begin{equation} u_9(\xi) = a_0-\frac{b_2\delta}{A_2}\left(\frac{21}{22}\coth(\sqrt{-\delta}\xi)-\coth^3(\sqrt{-\delta}\xi)- \left(\frac{5}{11}-\coth^2(\sqrt{-\delta}\xi)\right) \rm{csch}(\sqrt{-\delta}\xi)\right), (A_2 \lt 0), \ \ \ \end{equation} | (4.23) |
where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = \frac{19b_2a\delta}{660A_2c\sqrt{-\delta}}, \ \ k = -\frac{ab_2}{60c^3A_2\sqrt{-\delta}}.
Case 3.2 when \delta > 0 , we have
\begin{equation} u_{10}(\xi) = a_0+\frac{b_2\delta}{A_2}\left(\frac{21}{22}\cot(\sqrt{\delta}\xi)+\cot^3(\sqrt{\delta}\xi)+ \left(\frac{5}{11}+\cot^2(\sqrt{\delta}\xi)\right)\csc(\sqrt{\delta}\xi)\right), (A_2 \gt 0), \ \ \ \end{equation} | (4.24) |
where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = -\frac{19b_2a\delta}{660A_2c\sqrt{\delta}}, \ \ k = \frac{ab_2}{60c^3A_2\sqrt{\delta}}.
\begin{equation} u_{11}(\xi) = a_0-\frac{b_2\delta}{A_2}\left(\frac{21}{22}\cot(\sqrt{\delta}\xi)+\cot^3(\sqrt{\delta}\xi)- \left(\frac{5}{11}+\cot^2(\sqrt{\delta}\xi)\right)\csc(\sqrt{\delta}\xi)\right), (A_2 \lt 0), \ \ \ \end{equation} | (4.25) |
where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = \frac{19b_2a\delta}{660A_2c\sqrt{\delta}}, \ \ k = -\frac{ab_2}{60c^3A_2\sqrt{\delta}}.
Again if A_2 = 0 , A_1\neq 0 and \mu = 0 in (4.9), we obtain some traveling wave solutions.
Case 4.1 when \delta < 0 , we have
\begin{equation} u_{12}(\xi) = a_0+\frac{b_2\delta\sqrt{-\delta}}{\sqrt{A_1^2\delta}}\left(\frac{21}{22}\tanh(\sqrt{-\delta}\xi)-\tanh^3(\sqrt{-\delta}\xi)\right)+\frac{b_2\delta}{A_1} \left(\frac{5}{11}-\tanh^2(\sqrt{-\delta}\xi)\right) \rm{sech}(\sqrt{-\delta}\xi), \end{equation} | (4.26) |
where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = -\frac{19b_2a\delta}{660c\sqrt{A_1^2\delta}}, \ \ k = \frac{ab_2}{60c^3\sqrt{A_1^2\delta}}.
Case 4.2 when \delta > 0 , we have
\begin{equation} u_{13}(\xi) = a_0-\frac{b_2\delta}{A_1}\left(\frac{21}{22}\tan(\sqrt{\delta}\xi)+\tan^3(\sqrt{\delta}\xi)- \left(\frac{5}{11}+\tan^2(\sqrt{\delta}\xi)\right)\sec(\sqrt{\delta}\xi)\right), (A_1 \gt 0), \ \ \ \end{equation} | (4.27) |
where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = -\frac{19b_2a\delta}{660A_1c\sqrt{\delta}}, \ \ k = \frac{ab_2}{60c^3A_1\sqrt{\delta}}.
\begin{equation} u_{14}(\xi) = a_0+\frac{b_2\delta}{A_1}\left(\frac{21}{22}\tan(\sqrt{\delta}\xi)+\tan^3(\sqrt{\delta}\xi)+ \left(\frac{5}{11}+\tan^2(\sqrt{\delta}\xi)\right)\sec(\sqrt{\delta}\xi)\right), (A_1 \lt 0), \ \ \ \end{equation} | (4.28) |
where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = \frac{19b_2a\delta}{660A_1c\sqrt{\delta}}, \ \ k = -\frac{ab_2}{60c^3A_1\sqrt{\delta}}.
Consider the (3+1)-dimensional time-fractional KdV-Zakharov-Kuznetsov (KdV-ZK) equation [24,25]:
\begin{equation} \ D_{t}^{\alpha}u+auu_x+u_{xxx}+b(u_{xyy}+u_{xzz}) = 0, \end{equation} | (4.29) |
where 0 < \alpha\leq 1 and a, b are arbitrary constants.
It is well known that the Korteweg-de Vries (KdV) equation arises as an model for one-dimensional long wavelength surface waves propagating in weakly nonlinear dispersive media, as well as the evolution of weakly nonlinear ion acoustic waves in plasmas. The ZK equation is one of two well-studied canonical two-dimensional extensions of the Korteweg-de Vries equation. In recent, S. Shoo et al. [25] found some new exact traveling wave solutions of Eq. (4.29) by the simplest equation method.
To solve (4.29), we use the wave transformations:
\begin{equation} \ u = u(\xi), \ \ \ \xi = c(x+y+z-\frac{\upsilon t^{\alpha}}{\alpha}), \end{equation} | (4.30) |
then (4.29) is reduced into a nonlinear ODE in the form
\begin{equation} \ -c\upsilon u'(\xi)+acu(\xi)u'(\xi)+c^3(1+2b)u'''(\xi) = 0. \end{equation} | (4.31) |
By reducing (4.31), we get
\begin{equation} \ -\upsilon u'(\xi)+au(\xi)u'(\xi)+c^2(1+2b)u'''(\xi) = 0. \end{equation} | (4.32) |
Further by integrating (4.32) with respect to \xi , we get
\begin{equation} \ -\upsilon u(\xi)+\frac{a}{2}u^2(\xi)+c^2(1+2b)u''(\xi) = 0. \end{equation} | (4.33) |
By balancing the highest order derivative term u'' and nonlinear term u^2 in (4.33), the value of n can be determined, which is n = 2 in this problem. Therefore, by equation (3.4), we have the following ansatz:
\begin{equation} u(\xi) = a_0+a_1\left(\frac{\phi'}{\phi}\right)+a_2\left(\frac{\phi'}{\phi}\right)^{2}+b_0\frac{1}{\phi}+b_1\left(\frac{\phi'}{\phi}\right) \frac{1}{\phi}, \end{equation} | (4.34) |
where a_0, a_1, a_2, b_0 and b_1 are constants to be determined later, and function \phi(\xi) satisfies (3.5).
By substituting (4.34) into (4.33) and using the second order linear ODE (3.5) and (3.7), collecting all terms with the same order of \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} together, the left-hand side of (4.33) is converted into another polynomial in \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} . Equating each coefficient of this different power terms to zero yields a set of algebraic equations for a_0, a_1, a_2, b_0, b_1, \delta, \mu, a, b, c and \upsilon . Solving this system of algebraic equations, with the aid of Maple, we obtain
\begin{equation} \ 1. a_0 = \pm\frac{b_1\delta}{\sqrt{\Xi_i}}, \ \ a_1 = 0, \ \ a_2 = \pm\frac{b_1}{\sqrt{\Xi_i}}, \ \ b_0 = \mp\frac{b_1\mu}{\sqrt{\Xi_i}}, \ \ b = -\frac{6c^2\sqrt{\Xi_i}\pm ab_1}{12c^2\sqrt{\Xi_i}}, \ \ \upsilon = \pm\frac{\delta ab_1}{6\sqrt{\Xi_i}}.\ \ \end{equation} | (4.35) |
\begin{equation} \ 2. a_0 = \pm\frac{2b_1\delta}{3\sqrt{\Xi_i}}, \ \ a_1 = 0, \ \ a_2 = \pm\frac{b_1}{\sqrt{\Xi_i}}, \ \ b_0 = \mp\frac{b_1\mu}{\sqrt{\Xi_i}}, \ \ b = -\frac{6c^2\sqrt{\Xi_i}\pm ab_1}{12c^2\sqrt{\Xi_i}}, \ \ \upsilon = \mp\frac{\delta ab_1}{6\sqrt{\Xi_i}}.\ \ \end{equation} | (4.36) |
Substituting (4.35) and (4.36) and the general solutions (3.6) of Eq. (3.5) into (4.34), we obtain more exact solutions of (4.29):
\begin{equation} u_{1i}(\xi) = \pm\frac{b_1\delta}{\sqrt{\Xi_i}}\pm\frac{b_1}{\sqrt{\Xi_i}}\Phi_i^2+b_1\Psi_i(\mp\frac{\mu}{\sqrt{\Xi_i}}+\Phi_i), \end{equation} | (4.37) |
where \xi = c(x+y+z\mp\frac{\delta ab_1}{6\sqrt{\Xi_i}\alpha}t^\alpha), \ \ b = -\frac{6c^2\sqrt{\Xi_i}\pm ab_1}{12c^2\sqrt{\Xi_i}} .
\begin{equation} u_{2i}(\xi) = \pm\frac{2b_1\delta}{3\sqrt{\Xi_i}}\pm\frac{b_1}{\sqrt{\Xi_i}}\Phi_i^2+b_1\Psi_i(\mp\frac{\mu}{\sqrt{\Xi_i}}+\Phi_i), \end{equation} | (4.38) |
where \xi = c(x+y+z\pm\frac{\delta ab_1}{6\sqrt{\Xi_i}\alpha}t^\alpha), \ \ b = -\frac{6c^2\sqrt{\Xi_i}\pm ab_1}{12c^2\sqrt{\Xi_i}} , in which i = 1 for \delta < 0 , i = 2 for \delta > 0 , i = 3 for \delta = 0 , and \Phi_i, \Psi_i, \Xi_i, \ (i = 1, 2, 3) see (4.10)-(4.14).
Here A_1 and A_2 are arbitrary constants. Therefore, one can freely select their values. If we choose A_1 = 0 , A_2\neq 0 , \mu = 0 and \delta > 0 in (4.37), we obtain some traveling wave solutions.
\begin{equation} u_1(\xi) = \frac{b_1\sqrt{\delta}}{A_2}\left(\csc^2(\sqrt{\delta}\xi)+\cot(\sqrt{\delta}\xi)\csc(\sqrt{\delta}\xi)\right), (A_2 \gt 0), \ \end{equation} | (4.39) |
where \xi = c(x+y+z-\frac{\delta ab_1}{6A_2\alpha\sqrt{\delta}}t^\alpha), b = -\frac{6c^2A_2\sqrt{\delta}+ ab_1}{12c^2A_2\sqrt{\delta}}.
\begin{equation} u_2(\xi) = -\frac{b_1\sqrt{\delta}}{A_2}\left(\csc^2(\sqrt{\delta}\xi)-\cot(\sqrt{\delta}\xi)\csc(\sqrt{\delta}\xi)\right), (A_2 \lt 0), \ \end{equation} | (4.40) |
where \xi = c(x+y+z+\frac{\delta ab_1}{6A_2\alpha\sqrt{\delta}}t^\alpha), b = \frac{-6c^2A_2\sqrt{\delta}+ ab_1}{12c^2A_2\sqrt{\delta}}.
If we choose A_1 = 0 , A_2\neq 0 , \mu = 0 and \delta < 0 in (4.38), we obtain some other traveling wave solutions.
\begin{equation} u_3(\xi) = -\frac{b_1\sqrt{-\delta}}{A_2}\left(\frac{2}{3}-\coth^2(\sqrt{-\delta}\xi)-\coth(\sqrt{-\delta}\xi) \rm{csch}(\sqrt{-\delta}\xi)\right), (A_2 \gt 0), \ \end{equation} | (4.41) |
where \xi = c(x+y+z+\frac{\delta ab_1}{6A_2\alpha\sqrt{-\delta}}t^\alpha), b = -\frac{6c^2A_2\sqrt{-\delta}+ ab_1}{12c^2A_2\sqrt{-\delta}}.
\begin{equation} u_4(\xi) = \frac{b_1\sqrt{-\delta}}{A_2}\left(\frac{2}{3}-\coth^2(\sqrt{-\delta}\xi)+\coth(\sqrt{-\delta}\xi) \rm{csch}(\sqrt{-\delta}\xi)\right), (A_2 \lt 0), \ \end{equation} | (4.42) |
where \xi = c(x+y+z-\frac{\delta ab_1}{6A_2\alpha\sqrt{-\delta}}t^\alpha), b = \frac{-6c^2A_2\sqrt{-\delta}+ ab_1}{12c^2A_2\sqrt{-\delta}}.
If we choose A_1 = 0 , A_2\neq 0 , \mu = 0 and \delta > 0 in (4.38), we obtain some traveling wave solutions.
\begin{equation} u_5(\xi) = \frac{b_1\sqrt{\delta}}{A_2}\left(\frac{2}{3}+\cot^2(\sqrt{\delta}\xi)+\cot(\sqrt{\delta}\xi)\csc(\sqrt{\delta}\xi)\right), (A_2 \gt 0), \ \end{equation} | (4.43) |
where \xi = c(x+y+z+\frac{\delta ab_1}{6A_2\alpha\sqrt{\delta}}t^\alpha), b = -\frac{6c^2A_2\sqrt{\delta}+ ab_1}{12c^2A_2\sqrt{\delta}}.
\begin{equation} u_6(\xi) = -\frac{b_1\sqrt{\delta}}{A_2}\left(\frac{2}{3}+\cot^2(\sqrt{\delta}\xi)-\cot(\sqrt{\delta}\xi)\csc(\sqrt{\delta}\xi)\right), (A_2 \gt 0), \ \end{equation} | (4.44) |
where \xi = c(x+y+z-\frac{\delta ab_1}{6A_2\alpha\sqrt{\delta}}t^\alpha), b = \frac{-6c^2A_2\sqrt{\delta}+ ab_1}{12c^2A_2\sqrt{\delta}}.
Similarly, we can write down the other families of exact solutions of Eq. (4.29) which are omitted for convenience.
Consider the time-fractional Sharma-Tasso-Olver (FSTO) equation [26,27]:
\begin{equation} \ D_{t}^{\alpha}u+3au_x^2+3au^2u_{x}+3auu_{xx}+au_{xxx} = 0, \end{equation} | (4.45) |
where a is an arbitrary constant and 0 < \alpha\leq 1 . The function u(x, t) is assumed to be a causal function of time. i.e. vanishing for t < 0 . The general response expression contains a parameter describing the order of the fractional derivative that can be varied to obtain various responses. In the case of \alpha = 1 , Eq. (4.45) reduces to the classical nonlinear STO equation. L. Song [26] found a rational approximation solution of Eq. (4.45) by the variational iteration method, the Adomian decomposition method and the homotopy perturbation method.
To solve (4.45), we use the wave transformations:
\begin{equation} \ u = u(\xi), \ \ \ \xi = c(x-\frac{\upsilon t^{\alpha}}{\alpha}), \end{equation} | (4.46) |
then (4.45) is reduced into a nonlinear ODE in the form
\begin{equation} \ -c\upsilon u'(\xi)+3ac^2u'^2(\xi)+3acu^2(\xi)u'(\xi)+3ac^2u(\xi)u''(\xi)+ac^3u'''(\xi) = 0. \end{equation} | (4.47) |
By reducing (4.47), we get
\begin{equation} \ -\upsilon u'(\xi)+3acu'^2(\xi)+3au^2(\xi)u'(\xi)+3acu(\xi)u''(\xi)+ac^2u'''(\xi) = 0. \end{equation} | (4.48) |
Further by integrating (4.48) with respect to \xi , we get
\begin{equation} \ -\upsilon u(\xi)+3acu(\xi)u'(\xi)+au^3(\xi)+ac^2u''(\xi) = 0. \end{equation} | (4.49) |
By balancing the highest order derivative term u'' and nonlinear term u^3 in (4.49), the value of n can be determined, which is n = 1 in this problem. Therefore, by Eq. (3.4), we have the following ansatz:
\begin{equation} u(\xi) = a_0+a_1\left(\frac{\phi'}{\phi}\right)+b_0\frac{1}{\phi}, \end{equation} | (4.50) |
where a_0, a_1 and b_0 are constants to be determined later, and function \phi(\xi) satisfies (3.5).
By substituting (4.50) into (4.49) and using the second order linear ODE (3.5) and (3.7), collecting all terms with the same order of \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} together, the left-hand side of (4.49) is converted into another polynomial in \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} . Equating each coefficient of this different power terms to zero yields a set of algebraic equations for a_0, a_1, b_0, \delta, \mu, a, c and \upsilon . Solving this system of algebraic equations, with the aid of Maple, we obtain
\begin{equation} \ 1. a_0 = 0, \ \ a_1 = c, \ \ b_0 = \pm\sqrt{\Xi_i}c, \ \ \upsilon = -ac^2\delta.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{equation} | (4.51) |
\begin{equation} \ 2. a_0 = 0, \ \ a_1 = \pm\frac{b_0}{\sqrt{\Xi_i}}, \ \ c = \pm\frac{2b_0}{\sqrt{\Xi_i}}, \ \ \upsilon = -\frac{b_0^2a\delta}{\Xi_i}.\ \ \ \ \ \ \ \ \ \ \ \ \end{equation} | (4.52) |
\begin{equation} \ 3. a_0 = \pm\sqrt{-\frac{\delta}{\Xi_i}}b_0, \ \ a_1 = \frac{b_0}{\sqrt{\Xi_i}}, \ \ c = \frac{2b_0}{\sqrt{\Xi_i}}, \ \ \upsilon = -\frac{4b_0^2a\delta}{\Xi_i}.\ \ \ \end{equation} | (4.53) |
\begin{equation} \ 4. a_0 = \pm\sqrt{-\frac{\delta}{\Xi_i}}b_0, \ \ a_1 = -\frac{b_0}{\sqrt{\Xi_i}}, \ \ c = -\frac{2b_0}{\sqrt{\Xi_i}}, \ \ \upsilon = -\frac{4b_0^2a\delta}{\Xi_i}. \end{equation} | (4.54) |
Substituting (4.51)-(4.54) and the general solutions (3.6) of Eq. (3.5) into (4.50), we obtain more exact solutions of (4.45):
\begin{equation} u_{1i}(\xi) = c\Phi_i\pm\sqrt{\Xi_i}c\Psi_i, \end{equation} | (4.55) |
where \xi = c(x+\frac{ac^2\delta t^\alpha}{\alpha}).
\begin{equation} u_{2i}(\xi) = \pm\frac{b_0}{\sqrt{\Xi_i}}\Phi_i+b_0\Psi_i, \end{equation} | (4.56) |
where \xi = \pm\frac{2b_0}{\sqrt{\Xi_i}}(x+\frac{b_0^2a\delta t^\alpha}{\Xi_i\alpha}).
\begin{equation} u_{3i}(\xi) = \pm\sqrt{-\frac{\delta}{\Xi_i}}b_0+\frac{b_0}{\sqrt{\Xi_i}}\Phi_i+b_0\Psi_i, \end{equation} | (4.57) |
where \xi = \frac{2b_0}{\sqrt{\Xi_i}}(x+\frac{4b_0^2a\delta t^\alpha}{\Xi_i\alpha}).
\begin{equation} u_{4i}(\xi) = \pm\sqrt{-\frac{\delta}{\Xi_i}}b_0-\frac{b_0}{\sqrt{\Xi_i}}\Phi_i+b_0\Psi_i, \end{equation} | (4.58) |
where \xi = -\frac{2b_0}{\sqrt{\Xi_i}}(x+\frac{4b_0^2a\delta t^\alpha}{\Xi_i\alpha}), in which i = 1 for \delta < 0 , i = 2 for \delta > 0 , i = 3 for \delta = 0 , and \Phi_i, \Psi_i, \Xi_i, \ (i = 1, 2, 3) see (4.10)-(4.14).
Here A_1 and A_2 are arbitrary constants. Therefore, one can freely select their values. If we choose A_1 = 0 , A_2\neq 0 , \mu = 0 and \delta < 0 in (4.55), we the traveling wave solution:
\begin{equation} u_1(\xi) = c\sqrt{-\delta}\left(\coth(\sqrt{-\delta}\xi)\pm \rm{csch}(\sqrt{-\delta}\xi)\right).\ \end{equation} | (4.59) |
If we choose A_1 = 0 , A_2\neq 0 , \mu = 0 and \delta > 0 in (4.55), we obtain the traveling wave solution:
\begin{equation} u_2(\xi) = c\sqrt{\delta}\left(\cot(\sqrt{\delta}\xi)\pm\csc(\sqrt{\delta}\xi)\right).\ \end{equation} | (4.60) |
If we choose A_2 = 0 , A_1\neq 0 , \mu = 0 and \delta > 0 in (4.55), we obtain the traveling wave solution:
\begin{equation} u_3(\xi) = -c\sqrt{\delta}\left(\tan(\sqrt{\delta}\xi)\pm\sec(\sqrt{\delta}\xi)\right).\ \end{equation} | (4.61) |
where \xi = c(x+\frac{ac^2\delta}{\alpha}t^\alpha).
Similarly, we can write down the other families of exact solutions of Eq. (4.45) which are omitted for convenience.
In this section, some typical wave figures are given as follows (Figure 1-3):
The basic idea of the two variable (\phi'/\phi, 1/\phi) -expansion method is to research the new exact traveling wave solutions of the mentioned Eqs. (4.1), (4.29) and Eq. (4.45). The Eqs. (4.1), (4.29) and (4.29) have been studied using various techniques, among them, Authors obtained some new solutions, but the researches considered the Jumaries modified Riemann-Liouville derivative sense for their solution techniques. Nonetheless, the existing analytical solutions reported in [23,24,27] are not correct because the utilized definitions of fractional derivative have some shortcomings that could not be overlooked [21]. Chen et al. [25] found some new solutions of Eq. (4.29) expressed by tanh, coth, tan and cot form. In our case, first time we considered the conformable fractional derivative sense and two variable (\phi'/\phi, 1/\phi) -expansion method for the Eqs. (4.1), (4.29) and (4.45), we found some new solutions expressed by tanh, coth, sech, csch, tan, cot, sec and csc form. To our knowledge, the solutions obtained have not been reported in former literature. So, all the solutions are new in this article.
In this study, the two variable (\phi'/\phi, 1/\phi) -expansion method with the help of conformable wave transformation has been applied to find out exact traveling wave solutions of time-fractional differential equations. We have obtained some new and further general solitary wave solutions to three nonlinear time fractional differential equation, namely, time-fractional K-S equation, (3+1)-dimensional KdV-ZK equation and FSTO equation in terms of hyperbolic, trigonometric and rational function solution involving parameters. These solutions have important physical implications, for example, these solutions forces are convenient to characterize the hydromagnetic waves in cold plasma, acoustic waves in inharmonic crystals and acoustic-gravity waves incompressible fluids. The obtained results show that the two variable (\phi'/\phi, 1/\phi) -expansion method is direct, consistent, reliable, very much attractive and an effective powerful mathematical tool for obtaining the exact solutions of other time fractional differential equations, and it can be generalized to nonlinear space-time fractional differential equations and space fractional differential equations. Finally, our results in this article have been checked using the Maple by putting them back into the original equation.
The authors would like to express their deepest appreciation to the reviewers for their valuable suggestions and comments to improve the article.
This work was supported by the Middle-Aged Academic Backbone of Honghe University (No. 2014GG0105; No.2015GG0207), Scientific Research Foundation of Yunnan Education Department (No. 2018JS479) Yunnan Applied Basic Research Project(No.2018FH001013; 2018FH001014) and the Natural Science Foundation of Education Committee of Yunnan Province (No. 2019J0558).
The authors declare no conflict of interest.
[1] | S. Hilger, Ein maßkettenkalkül mit anwendung auf zentrumsmannigfaltigkeiten, PhD thesis, 1988. |
[2] |
S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18–56. https://doi.org/10.1007/BF03323153 doi: 10.1007/BF03323153
![]() |
[3] | M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Springer Science & Business Media, 2001. https://doi.org/10.1007/978-1-4612-0201-1 |
[4] |
G. S. Guseinov, B. Kaymakçalan, On a disconjugacy criterion for second order dynamic equations on time scales, J. Comput. Appl. Math., 141 (2002), 187–196. https://doi.org/10.1016/S0377-0427(01)00445-9 doi: 10.1016/S0377-0427(01)00445-9
![]() |
[5] |
R. Agarwal, M. Bohner, D. O'Regan, A. Peterson, Advances in dynamic equations on time scales, J. Comput. Appl. Math., 141 (2002), 1–26. https://doi.org/10.1016/S0377-0427(01)00432-0 doi: 10.1016/S0377-0427(01)00432-0
![]() |
[6] |
R. P. Agarwal, M. Bohner, Basic calculus on time scales and some of its applications, Results Math., 35 (1999), 3–22. https://doi.org/10.1007/BF03322019 doi: 10.1007/BF03322019
![]() |
[7] | M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Boston: Birkhäuser, 2003. https://doi.org/10.1007/978-0-8176-8230-9 |
[8] |
R. P. Agarwal, M. Bohner, T. Li, C. Zhang, Hille and Nehari type criteria for third-order delay dynamic equations, J. Differ. Equ. Appl., 19 (2013), 1563–1579. https://doi.org/10.1080/10236198.2013.766729 doi: 10.1080/10236198.2013.766729
![]() |
[9] |
T. S. Hassan, R. Agarwal, W. Mohammed, Oscillation criteria for third-order functional half-linear dynamic equations, Adv. Differ. Equ., 2017 (2017), 1–28. https://doi.org/10.1186/s13662-016-1057-2 doi: 10.1186/s13662-016-1057-2
![]() |
[10] |
G. Chatzarakis, J. Džurina, I. Jadlovská, Oscillatory and asymptotic properties of third-order quasilinear delay differential equations, J. Inequal. Appl., 2019 (2019), 1–17. https://doi.org/10.1186/s13660-019-1967-0 doi: 10.1186/s13660-019-1967-0
![]() |
[11] |
G. E. Chatzarakis, S. R. Grace, I. Jadlovská, Oscillation criteria for third-order delay differential equations, Adv. Differ. Equ., 2017 (2017), 1–11. https://doi.org/10.1186/s13662-016-1057-2 doi: 10.1186/s13662-016-1057-2
![]() |
[12] | L. Erbe, B. Karpuz, A. Peterson, Kamenev-type oscillation criteria for higher-order neutral delay dynamic equations, Int. J. Differ. Equ., 6 (2011), 1–16. |
[13] |
L. Erbe, A. Peterson, S. H. Saker, Asymptotic behavior of solutions of a third-order nonlinear dynamic equation on time scales, J. Comput. Appl. Math., 181 (2005), 92–102. https://doi.org/10.1016/j.cam.2004.11.021 doi: 10.1016/j.cam.2004.11.021
![]() |
[14] |
T. S. Hassan, Oscillation of third order nonlinear delay dynamic equations on time scales, Math. Comput. Model., 49 (2009), 1573–1586. https://doi.org/10.1016/j.mcm.2008.12.011 doi: 10.1016/j.mcm.2008.12.011
![]() |
[15] |
Y. Wang, Z. Xu, Asymptotic properties of solutions of certain third-order dynamic equations, J. Comput. Appl. Math., 236 (2012), 2354–2366. https://doi.org/10.1016/j.cam.2011.11.021 doi: 10.1016/j.cam.2011.11.021
![]() |
[16] |
S. Salem, A. M. Hassan, Oscillatory behavior of solutions of third-order nonlinear neutral delay dynamic equations on time scales, Mediterr. J. Math., 20 (2023), 308. https://doi.org/10.1007/s00009-023-02506-y doi: 10.1007/s00009-023-02506-y
![]() |
[17] |
F. Masood, O. Moaaz, G. AlNemer, H. El-Metwally, More effective criteria for testing the asymptotic and oscillatory behavior of solutions of a class of third-order functional differential equations, Axioms, 12 (2023), 1112. https://doi.org/10.3390/axioms12121112 doi: 10.3390/axioms12121112
![]() |
[18] |
L. Gao, S. Liu, X. Zheng, New oscillatory theorems for third-order nonlinear delay dynamic equations on time scales, J. Appl. Math. Phys., 6 (2018), 232. https://doi.org/10.4236/jamp.2018.61023 doi: 10.4236/jamp.2018.61023
![]() |
[19] | H. Wu, L. Erbe, A. Peterson, Oscillation of solution to second-order half-linear delay dynamic equations on time scales, 2016. |
[20] |
Y. Yu, Q. Wang, Q. Bi, C. Lim, Multiple-s-shaped critical manifold and jump phenomena in low frequency forced vibration with amplitude modulation, Int. J. Bifurcat. Chaos, 29 (2019), 1930012. https://doi.org/10.1142/S021812741930012X doi: 10.1142/S021812741930012X
![]() |
[21] |
O. Moaaz, B. Qaraad, R. A. El-Nabulsi, O. Bazighifan, New results for kneser solutions of third-order nonlinear neutral differential equations, Mathematics, 8 (2020), 686. https://doi.org/10.3390/math8050686 doi: 10.3390/math8050686
![]() |
[22] |
O. Moaaz, D. Chalishajar, O. Bazighifan, Asymptotic behavior of solutions of the third order nonlinear mixed type neutral differential equations, Mathematics, 8 (2020), 485. https://doi.org/10.3390/math8040485 doi: 10.3390/math8040485
![]() |
[23] |
O. Moaaz, R. A. El-Nabulsi, W. Muhsin, O. Bazighifan, Improved oscillation criteria for 2nd-order neutral differential equations with distributed deviating arguments, Mathematics, 8 (2020), 849. https://doi.org/10.3390/math8050849 doi: 10.3390/math8050849
![]() |
[24] |
S. S. Santra, A. K. Sethi, O. Moaaz, K. M. Khedher, S. W. Yao, New oscillation theorems for second-order differential equations with canonical and non-canonical operator via riccati transformation, Mathematics, 9 (2021), 1111. https://doi.org/10.3390/math9101111 doi: 10.3390/math9101111
![]() |
[25] |
A. Muhib, T. Abdeljawad, O. Moaaz, E. M. Elabbasy, Oscillatory properties of odd-order delay differential equations with distribution deviating arguments, Appl. Sci., 10 (2020), 5952. https://doi.org/10.3390/app10175952 doi: 10.3390/app10175952
![]() |
[26] |
O. Moaaz, J. Awrejcewicz, A. Muhib, Establishing new criteria for oscillation of odd-order nonlinear differential equations, Mathematics, 8 (2020), 937. https://doi.org/10.3390/math8060937 doi: 10.3390/math8060937
![]() |
[27] |
J. R. Graef, Canonical, noncanonical, and semicanonical third order dynamic equations on time scales, Results Nonlinear Anal., 5 (2022), 273–278. https://doi.org/10.53006/rna.1075859 doi: 10.53006/rna.1075859
![]() |
[28] |
W. F. Trench, Canonical forms and principal systems for general disconjugate equations, T. Am. Math. Soc., 189 (1974), 319–327. https://doi.org/10.1090/S0002-9947-1974-0330632-X doi: 10.1090/S0002-9947-1974-0330632-X
![]() |
[29] | R. Agarwal, M. Bohner, An oscillation criterion for first order delay dynamic equations, Funct. Differ. Equ., 16 (2004), 11–17. |
[30] | R. Agarwal, M. Bohner, T. Li, C. Zhang, Oscillation of third-order nonlinear delay differential equations, Taiwan. J. Math., 17 (2013). https://doi.org/10.11650/tjm.17.2013.2095 |
[31] | B. Baculíková, J. Džurina, Oscillation of third-order neutral differential equations, Math. Comput. Model., 35 (2010), 215–226. |
[32] | S. R. Grace, R. P. Agarwal, M. F. Aktas, On the oscillation of third order functional differential equations, Indian J. Pure Appl. Math., 39 (2008), 491–507. |
1. | Aniqa Aniqa, Jamshad Ahmad, Soliton solution of fractional Sharma-Tasso-Olever equation via an efficient (G′/G)-expansion method, 2022, 13, 20904479, 101528, 10.1016/j.asej.2021.06.014 | |
2. | Hongkua Lin, Explicit Exact Solutions of Space-time Fractional Drinfel’d-Sokolov-Wilson Equations, 2021, 2068, 1742-6588, 012005, 10.1088/1742-6596/2068/1/012005 | |
3. | Sevil Çulha Ünal, Ayşegül Daşcıoğlu, Exact solutions of time fractional Korteweg–de Vries–Zakharov–Kuznetsov equation, 2021, 44, 0170-4214, 9557, 10.1002/mma.7379 | |
4. | Shumaila Naz, Qazi Mahmood Ul-Hassan, Jamshad ahmad, Aniqa Zulfiqar, Dynamics of new optical solutions for nonlinear equations via a novel analytical technique, 2022, 54, 0306-8919, 10.1007/s11082-022-03793-7 | |
5. | Mst Munny Khatun, M Ali Akbar, Zarina K Fayazova, Onur Alp İlhan, Various wave solutions to the nonlinear fractional Korteweg-de Vries Zakharov-Kuznetsov equation by a new approach to the two-variable expansion scheme, 2024, 99, 0031-8949, 035218, 10.1088/1402-4896/ad23ba | |
6. | Ramima Akter, Shuvo Sarker, Anish Adhikary, M. Ali Akbar, Pinakee Dey, M.S. Osman, Dynamics of geometric shape solutions for space-time fractional modified equal width equation with beta derivative, 2024, 11, 26668181, 100841, 10.1016/j.padiff.2024.100841 | |
7. | Yating Hao, Ben Gao, Exact solutions to the (3 + 1)-dimensional time-fractional KdV–Zakharov–Kuznetsov equation and modified KdV equation with variable coefficients, 2024, 98, 0973-7111, 10.1007/s12043-023-02693-z |