Research article Special Issues

Oscillatory behavior of solutions of third order semi-canonical dynamic equations on time scale

  • Received: 27 April 2024 Revised: 12 July 2024 Accepted: 17 July 2024 Published: 16 August 2024
  • MSC : 34K11, 34C10, 34N05

  • This paper investigates the oscillatory behavior of nonlinear third-order dynamic equations on time scales. Our main approach is to transform the equation from its semi-canonical form into a more tractable canonical form. This transformation simplifies the analysis of oscillation behavior and allows us to derive new oscillation criteria. These criteria guarantee that all solutions to the equation oscillate. Our results extend and improve upon existing findings in the literature, particularly for the special cases where $ \mathbb{T} = \mathbb{R} $ and $ \mathbb{T} = \mathbb{Z} $. Additionally, we provide illustrative examples to demonstrate the practical application of the developed criteria.

    Citation: Ahmed M. Hassan, Clemente Cesarano, Sameh S. Askar, Ahmad M. Alshamrani. Oscillatory behavior of solutions of third order semi-canonical dynamic equations on time scale[J]. AIMS Mathematics, 2024, 9(9): 24213-24228. doi: 10.3934/math.20241178

    Related Papers:

  • This paper investigates the oscillatory behavior of nonlinear third-order dynamic equations on time scales. Our main approach is to transform the equation from its semi-canonical form into a more tractable canonical form. This transformation simplifies the analysis of oscillation behavior and allows us to derive new oscillation criteria. These criteria guarantee that all solutions to the equation oscillate. Our results extend and improve upon existing findings in the literature, particularly for the special cases where $ \mathbb{T} = \mathbb{R} $ and $ \mathbb{T} = \mathbb{Z} $. Additionally, we provide illustrative examples to demonstrate the practical application of the developed criteria.



    加载中


    [1] S. Hilger, Ein maßkettenkalkül mit anwendung auf zentrumsmannigfaltigkeiten, PhD thesis, 1988.
    [2] S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18–56. https://doi.org/10.1007/BF03323153 doi: 10.1007/BF03323153
    [3] M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Springer Science & Business Media, 2001. https://doi.org/10.1007/978-1-4612-0201-1
    [4] G. S. Guseinov, B. Kaymakçalan, On a disconjugacy criterion for second order dynamic equations on time scales, J. Comput. Appl. Math., 141 (2002), 187–196. https://doi.org/10.1016/S0377-0427(01)00445-9 doi: 10.1016/S0377-0427(01)00445-9
    [5] R. Agarwal, M. Bohner, D. O'Regan, A. Peterson, Advances in dynamic equations on time scales, J. Comput. Appl. Math., 141 (2002), 1–26. https://doi.org/10.1016/S0377-0427(01)00432-0 doi: 10.1016/S0377-0427(01)00432-0
    [6] R. P. Agarwal, M. Bohner, Basic calculus on time scales and some of its applications, Results Math., 35 (1999), 3–22. https://doi.org/10.1007/BF03322019 doi: 10.1007/BF03322019
    [7] M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Boston: Birkhäuser, 2003. https://doi.org/10.1007/978-0-8176-8230-9
    [8] R. P. Agarwal, M. Bohner, T. Li, C. Zhang, Hille and Nehari type criteria for third-order delay dynamic equations, J. Differ. Equ. Appl., 19 (2013), 1563–1579. https://doi.org/10.1080/10236198.2013.766729 doi: 10.1080/10236198.2013.766729
    [9] T. S. Hassan, R. Agarwal, W. Mohammed, Oscillation criteria for third-order functional half-linear dynamic equations, Adv. Differ. Equ., 2017 (2017), 1–28. https://doi.org/10.1186/s13662-016-1057-2 doi: 10.1186/s13662-016-1057-2
    [10] G. Chatzarakis, J. Džurina, I. Jadlovská, Oscillatory and asymptotic properties of third-order quasilinear delay differential equations, J. Inequal. Appl., 2019 (2019), 1–17. https://doi.org/10.1186/s13660-019-1967-0 doi: 10.1186/s13660-019-1967-0
    [11] G. E. Chatzarakis, S. R. Grace, I. Jadlovská, Oscillation criteria for third-order delay differential equations, Adv. Differ. Equ., 2017 (2017), 1–11. https://doi.org/10.1186/s13662-016-1057-2 doi: 10.1186/s13662-016-1057-2
    [12] L. Erbe, B. Karpuz, A. Peterson, Kamenev-type oscillation criteria for higher-order neutral delay dynamic equations, Int. J. Differ. Equ., 6 (2011), 1–16.
    [13] L. Erbe, A. Peterson, S. H. Saker, Asymptotic behavior of solutions of a third-order nonlinear dynamic equation on time scales, J. Comput. Appl. Math., 181 (2005), 92–102. https://doi.org/10.1016/j.cam.2004.11.021 doi: 10.1016/j.cam.2004.11.021
    [14] T. S. Hassan, Oscillation of third order nonlinear delay dynamic equations on time scales, Math. Comput. Model., 49 (2009), 1573–1586. https://doi.org/10.1016/j.mcm.2008.12.011 doi: 10.1016/j.mcm.2008.12.011
    [15] Y. Wang, Z. Xu, Asymptotic properties of solutions of certain third-order dynamic equations, J. Comput. Appl. Math., 236 (2012), 2354–2366. https://doi.org/10.1016/j.cam.2011.11.021 doi: 10.1016/j.cam.2011.11.021
    [16] S. Salem, A. M. Hassan, Oscillatory behavior of solutions of third-order nonlinear neutral delay dynamic equations on time scales, Mediterr. J. Math., 20 (2023), 308. https://doi.org/10.1007/s00009-023-02506-y doi: 10.1007/s00009-023-02506-y
    [17] F. Masood, O. Moaaz, G. AlNemer, H. El-Metwally, More effective criteria for testing the asymptotic and oscillatory behavior of solutions of a class of third-order functional differential equations, Axioms, 12 (2023), 1112. https://doi.org/10.3390/axioms12121112 doi: 10.3390/axioms12121112
    [18] L. Gao, S. Liu, X. Zheng, New oscillatory theorems for third-order nonlinear delay dynamic equations on time scales, J. Appl. Math. Phys., 6 (2018), 232. https://doi.org/10.4236/jamp.2018.61023 doi: 10.4236/jamp.2018.61023
    [19] H. Wu, L. Erbe, A. Peterson, Oscillation of solution to second-order half-linear delay dynamic equations on time scales, 2016.
    [20] Y. Yu, Q. Wang, Q. Bi, C. Lim, Multiple-s-shaped critical manifold and jump phenomena in low frequency forced vibration with amplitude modulation, Int. J. Bifurcat. Chaos, 29 (2019), 1930012. https://doi.org/10.1142/S021812741930012X doi: 10.1142/S021812741930012X
    [21] O. Moaaz, B. Qaraad, R. A. El-Nabulsi, O. Bazighifan, New results for kneser solutions of third-order nonlinear neutral differential equations, Mathematics, 8 (2020), 686. https://doi.org/10.3390/math8050686 doi: 10.3390/math8050686
    [22] O. Moaaz, D. Chalishajar, O. Bazighifan, Asymptotic behavior of solutions of the third order nonlinear mixed type neutral differential equations, Mathematics, 8 (2020), 485. https://doi.org/10.3390/math8040485 doi: 10.3390/math8040485
    [23] O. Moaaz, R. A. El-Nabulsi, W. Muhsin, O. Bazighifan, Improved oscillation criteria for 2nd-order neutral differential equations with distributed deviating arguments, Mathematics, 8 (2020), 849. https://doi.org/10.3390/math8050849 doi: 10.3390/math8050849
    [24] S. S. Santra, A. K. Sethi, O. Moaaz, K. M. Khedher, S. W. Yao, New oscillation theorems for second-order differential equations with canonical and non-canonical operator via riccati transformation, Mathematics, 9 (2021), 1111. https://doi.org/10.3390/math9101111 doi: 10.3390/math9101111
    [25] A. Muhib, T. Abdeljawad, O. Moaaz, E. M. Elabbasy, Oscillatory properties of odd-order delay differential equations with distribution deviating arguments, Appl. Sci., 10 (2020), 5952. https://doi.org/10.3390/app10175952 doi: 10.3390/app10175952
    [26] O. Moaaz, J. Awrejcewicz, A. Muhib, Establishing new criteria for oscillation of odd-order nonlinear differential equations, Mathematics, 8 (2020), 937. https://doi.org/10.3390/math8060937 doi: 10.3390/math8060937
    [27] J. R. Graef, Canonical, noncanonical, and semicanonical third order dynamic equations on time scales, Results Nonlinear Anal., 5 (2022), 273–278. https://doi.org/10.53006/rna.1075859 doi: 10.53006/rna.1075859
    [28] W. F. Trench, Canonical forms and principal systems for general disconjugate equations, T. Am. Math. Soc., 189 (1974), 319–327. https://doi.org/10.1090/S0002-9947-1974-0330632-X doi: 10.1090/S0002-9947-1974-0330632-X
    [29] R. Agarwal, M. Bohner, An oscillation criterion for first order delay dynamic equations, Funct. Differ. Equ., 16 (2004), 11–17.
    [30] R. Agarwal, M. Bohner, T. Li, C. Zhang, Oscillation of third-order nonlinear delay differential equations, Taiwan. J. Math., 17 (2013). https://doi.org/10.11650/tjm.17.2013.2095
    [31] B. Baculíková, J. Džurina, Oscillation of third-order neutral differential equations, Math. Comput. Model., 35 (2010), 215–226.
    [32] S. R. Grace, R. P. Agarwal, M. F. Aktas, On the oscillation of third order functional differential equations, Indian J. Pure Appl. Math., 39 (2008), 491–507.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(496) PDF downloads(40) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog