Citation: Johnny Henderson, Abdelghani Ouahab, Samia Youcefi. Existence results for ϕ-Laplacian impulsive differential equations with periodic conditions[J]. AIMS Mathematics, 2019, 4(6): 1610-1633. doi: 10.3934/math.2019.6.1610
[1] | Z. Agur, L. Cojocaru, G. Mazaur, et al. Pulse mass measles vaccination across age cohorts, Proc. Nat. Acad. Sci. USA, 90 (1993), 11698-11702. |
[2] | D. D. Bainov, P. S. Simeonov, Systems with Impulse Effect: Stability, Theory and Applications, New York: Halsted Press, 1989. |
[3] | M. Benchohra, J. Henderson, S. K. Ntouyas, Impulsive Differential Equations and Inclusions, New York: Hindawi Publishing Corporation, 2006. |
[4] | A. Benmezaï, S. Djebali, T. Moussaoui, Multiple positive solutions for ϕ-Laplacian BVPs, Panamer. Math. J., 17 (2007), 53-73. |
[5] | C. Bereanu, J. Mawhin, Non-homogeneous boundary value problems for some nonlinear equations with singular ϕ-Laplacian, J. Math. Anal. Appl., 352 (2009), 218-233. |
[6] | C. Bereanu, J. Mawhin, Periodic solutions of nonlinear perturbations of ϕ-Laplacians with possibly bounded ϕ, Nonlinear Anal. Theor., 68 (2008), 1668-1681. |
[7] | A. Capietto, J. Mawhin, F. Zanolin, Continuation theorems for periodic perturbations of autonomous systems, Trans. Amer. Math. Soc., 329 (1992), 41-72. |
[8] | S. Djebali, L. Gorniewicz, A. Ouahab, Existence and Structure of Solution Sets for Impulsive Differential Inclusions, Lecture Notes, Nicolaus Copernicus University, 13 (2012). |
[9] | S. Djebali, L. Gorniewicz, A. Ouahab, Solutions Sets for Differential Equations and Inclusions, Berlin: Walter de Gruyter, 2013. |
[10] | P. Fitzpatrick, M. Martelli, J. Mawhin, et al. Topological Methods for Ordinary Differential Equations, Springer-Verlag, 1991. |
[11] | R. E. Gaines, J. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Berlin: Springer-Verlag, 1977. |
[12] | W. Ge, J. Ren, An extension of Mawhin's continuation theorem and its application to boundary value problems with a p-Laplacian, Nonlinear Anal. Theor., 58 (2004), 477-488. |
[13] | J. R. Graef, J. Henderson, A. Ouahab, Impulsive Differential Inclusions: A Fixed Pont Approach, Berlin: Walter de Gruyter, 2013. |
[14] | A. Halanay, D. Wexler, Teoria Calitativa a Systeme cu Impulduri, Editura Republicii Socialiste Romania, Bucharest, 1968. |
[15] | J. Henderson, A. Ouahab, S. Youcefi, Existence and topological structure of solution sets for ϕ-Laplacian impulsive differential equations, Electron. J. Differ. Eq., 56 (2012), 1-16. |
[16] | V. Lakshmikantham, D. Bainov, P.S. Simenov, Theory of Impulsive Differential Equations, Singapore: World Scientific, 1989. |
[17] | J. Mawhin, Periodic solutions of nonlinear functional differential equations, J. Differ. Eq., 10 (1971), 240-261. |
[18] | R. Manasevich, J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operators, J. Differ. Eq., 145 (1998), 367-393. |
[19] | V. D. Milman, A. A. Myshkis, On the stability of motion in the presence of impulses (in Russian), Sib. Math. J., 1 (1960), 233-237. |
[20] | J. J. Nieto, D. O'Regan, Variational approach to impulsive differential equations, Nonlinear Anal. Real., 10 (2009), 680-690. |
[21] | D. O'Regan, Y. J. Cho, Y. Q. Chen, Topological Degree Theory and Applications, Chapman and Hall, 2006. |
[22] | L. Pan, Existence of periodic solutions for second order delay differential equations with impulses, Electron. J. Differ. Eq., 37 (2011), 1-12. |
[23] | D. Qian, X. Li, Periodic solutions for ordinary differential equations with sublinear impulsive effects, J. Math. Anal. Appl., 303 (2005), 288-303. |
[24] | I. Rachunkova, J. Stryja, Dirichlet problem with ϕ-Laplacian and mixed singularities, Nonlinear Oscil., 11 (2008), 80-96. |
[25] | I. Rachunkova, M. Tvrdy, Second order periodic problem with ϕ-Laplacian and impulses, Nonlinear Anal. Theor., 63 (2005), 257-266. |
[26] | I. Rachunkova, M. Tvrdy, Periodic problems with ϕ-Laplacian involving non-ordered lower and upper functions, Fixed Point Theory, 6 (2005), 99-112. |
[27] | I. Rachunkova, M. Tverdy, Existence result for impulsive second order periodic problems, Nonlinear Anal. Theor., 59 (2004), 133-146. |
[28] | M. Samoilenko, N. Perestyuk, Impulsive Differential Equations, Singapore: World Scientific, 1995. |
[29] | N. A. Perestyuk, V. A. Plotnikov, A. M. Samoilenko, et al. Differential Equations with Impulse Effects. Multivalued Right-hand Sides with Discontinuities, Berlin: Walter de Gruyter, 2011. |
[30] | J. Sun, H. Chen, L. Yang, Existence and multiplicity of solutions for impulsive differential equation with two parameters via variational method, Nonlinear Anal. Theor., 73 (2010), 440-449. |
[31] | J. Tomeček, Dirichlet boundary value problem for differential equation with ϕ-Laplacian and state-dependent impulses, Math. Slovaca, 67 (2017), 483-500. |
[32] | J. Zhen, M. Zhien, H. Maoan, The existence of periodic solutions of the n-species Lotka-Volterra competition systems with impulsive, Chaos, Solitons, Fractals, 22 (2004), 181-188. |
[33] | Z. Zhitao, Existence of solutions for second order impulsive differential equations, Appl. Math. JCU, 12 (1997), 307-320. |