Research article Special Issues

Fractional differential equations with coupled slit-strips type integral boundary conditions

  • Received: 09 July 2019 Accepted: 04 September 2019 Published: 14 October 2019
  • MSC : 34A08, 34B10, 34B15

  • In this article, we discuss the existence of solutions for coupled hybrid fractional differential equations supplemented with coupled slit-strips type boundary conditions. We make use of the standard tools of fixed point theory to obtain the desired results, which are well-illustrated with examples.

    Citation: Bashir Ahmad, P. Karthikeyan, K. Buvaneswari. Fractional differential equations with coupled slit-strips type integral boundary conditions[J]. AIMS Mathematics, 2019, 4(6): 1596-1609. doi: 10.3934/math.2019.6.1596

    Related Papers:

  • In this article, we discuss the existence of solutions for coupled hybrid fractional differential equations supplemented with coupled slit-strips type boundary conditions. We make use of the standard tools of fixed point theory to obtain the desired results, which are well-illustrated with examples.


    加载中


    [1] B. Ahmad, R. P. Agarwal, Some new versions of fractional boundary value problems with slitstrips conditions, Bound.Value Probl., 2014 (2014), 175.
    [2] B. Ahmad, S. K. Ntouyas, A. Alsaedi, Existence results for a system of coupled hybrid fractional differential equations, The Scientific World J., 2014 (2014), 426438.
    [3] B. Ahmad, S. K. Ntouyas, J. Tariboon, A nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations, Acta Math. Sci., 36 (2016), 1631-1640. doi: 10.1016/S0252-9602(16)30095-9
    [4] B. Ahmad, S. K.Ntouyas, A coupled system of nonlocal fractional differential equations with coupled and uncoupled slit-strips type integral boundary conditions, J. Math. Sci., 226 (2017), 175-196. doi: 10.1007/s10958-017-3528-8
    [5] B. Ahmad, R. Luca, Existence of solutions for a system of fractional differential equations with coupled nonlocal boundary conditions, Fract. Calc. Appl. Anal., 21 (2018), 423-441. doi: 10.1515/fca-2018-0024
    [6] B. Ahmad, S. K. Ntouyas, A. Alsaedi, Fractional order differential systems involving right Caputo and left Riemann-Liouville fractional derivatives with nonlocal coupled conditions, Bound. Value Probl., 2019 (2019), 109.
    [7] M. Benchohra, J. R. Graef, S. Hamani, Existence results for boundary value problems with nonlinear fractional differential equations, Appl. Anal., 87 (2008), 851-863. doi: 10.1080/00036810802307579
    [8] A. Carvalho, C. M. A. Pinto, A delay fractional order model for the co-infection of malaria and HIV/AIDS, Int. J. Dyn. Cont., 5 (2017), 168-186. doi: 10.1007/s40435-016-0224-3
    [9] B. C. Dhage, S. B. Dhage, K. Buvaneswari, Existence of mild solutions of nonlinear boundary value problems of coupled hybrid fractional integro differential equations, J. Fract. Calc. Appl., 10 (2019), 191-206.
    [10] Y. Ding, Z. Wang, H. Ye, Optimal control of a fractional-order HIV-immune system with memory, IEEE Trans. Cont. Syst. Technol., 20 (2012), 763-769. doi: 10.1109/TCST.2011.2153203
    [11] M. Faieghi, S. Kuntanapreeda, H. Delavari, et al. LMI-based stabilization of a class of fractionalorder chaotic systems, Nonlin. Dynam., 72 (2013), 301-309. doi: 10.1007/s11071-012-0714-6
    [12] A. Granas, J. Dugundji, Fixed Point Theory, New York: Springer-Verlag, 2005.
    [13] N. He, J. Wang, L. L. Zhang, et al. An improved fractional-order differentiation model for image denoising, Signal Process., 112 (2015), 180-188. doi: 10.1016/j.sigpro.2014.08.025
    [14] J. Henderson, R. Luca, Nonexistence of positive solutions for a system of coupled fractional boundary value problems, Bound. Value Probl., 2015 (2015), 138.
    [15] M. A. E. Herzallah, D. Baleanu, On fractional order hybrid differential equations, Abstr. Appl. Anal., 2014 (2014), 389386.
    [16] K. Hilal, A. Kajouni, Boundary value problem for hybrid differential equations, with fractional order, Adv. Difference Eq., 2015 (2015), 183.
    [17] M. Iqbal, Y. Li, K. Shah, et al. Application of topological degree method for solutions of coupled systems of multipoints boundary value problems of fractional order hybrid differential equations, Complexity, 2017 (2017), 7676814.
    [18] M. Javidi, B. Ahmad, Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system, Ecol. Model., 318 (2015), 8-18. doi: 10.1016/j.ecolmodel.2015.06.016
    [19] P. Karthikeyan, R. Arul, Existence of solutions for Hadamard fractional hybrid differential equations with impulsive and nonlocal conditions, J. Fract. Calc. Appl., 9 (2018), 232-240.
    [20] P. Karthikeyan, K. Buvaneswari, A note on coupled fractional hybrid differential equations involving Banach algebra, Malaya J. Mat., 6 (2018), 843-849. doi: 10.26637/MJM0604/0021
    [21] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam: North-Holland Mathematics Studies, 2006.
    [22] C. F. Li, X. N. Luo, Y. Zhou, Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations, Comput. Math. Appl., 59 (2010), 1363-1375. doi: 10.1016/j.camwa.2009.06.029
    [23] S. Li, H. Yin, L. Li, The solution of a cooperative fractional hybrid differential system, Appl. Math. Lett., 91 (2019), 48-54. doi: 10.1016/j.aml.2018.11.008
    [24] Z. Liu, J. Sun, Nonlinear boundary value problems of fractional differential systems, Comput. Math. Appl., 64 (2012), 463-475. doi: 10.1016/j.camwa.2011.12.020
    [25] M. Lundqvist, Silicon Strip Detectors for Scanned Multi-Slit X-Ray Imaging, Stockholm: Kungl Tekniska Hogskolan, 2003.
    [26] L. Lv, J. Wang, W. Wei, Existence and uniqueness results for fractional differential equations with boundary value conditions, Opuscula Math., 31 (2011), 629-643. doi: 10.7494/OpMath.2011.31.4.629
    [27] T. Mellow, L. Karkkainen, On the sound fields of infinitely long strips, J. Acoust. Soc. Am., 130 (2011), 153-167. doi: 10.1121/1.3596474
    [28] S. K. Ntouyas, M. Obaid, A coupled system of fractional differential equations with nonlocal integral boundary conditions, Adv. Differ. Eq., 2012 (2012), 130.
    [29] N. Nyamoradi, M. Javidi, B. Ahmad, Dynamics of SVEIS epidemic model with distinct incidence, Int. J. Biomath., 8 (2015), 1550076.
    [30] Y. Z. Povstenko, Fractional Thermoelasticity, New York: Springer, 2015.
    [31] J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Dordrecht: Springer, 2007.
    [32] G. Wang, K. Pei, R. P. Agarwal, et al. Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line, J. Comput. Appl. Math., 343 (2018), 230-239. doi: 10.1016/j.cam.2018.04.062
    [33] F. Zhang, G. Chen, C. Li, et al. Chaos synchronization in fractional differential systems, Philos. Trans. R. Soc., 371 (2013), 20120155.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3621) PDF downloads(477) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog