Citation: M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque. New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative[J]. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199
[1] | G. C. Wu, A fractional variational iteration method for solving fractional nonlinear differential equations, Comput. Math. Appl., 61 (2011), 2186-2190. |
[2] | J. Ji, J. B. Zhang, Y. J. Dong, The fractional variational iteration method improved with the Adomian series, Appl. Math. Lett., 25 (2012), 2223-2226. doi: 10.1016/j.aml.2012.06.007 |
[3] | M. T. Gencoglu, H. M. Baskonus, H. Bulut, Numerical simulations to the noninear model of interpersonal relationship with time fractional derivative, AIP Conf. Proc., 1798 (2017), 020103. |
[4] | S. Guo, L. Mei, The fractional variational iteration method using He's polynomial, Phys. Lett. A, 375 (2011), 309-313. doi: 10.1016/j.physleta.2010.11.047 |
[5] | A. R. Seadawy, Approximation solutions to derivative nonlinear Schrodinger equation with computational applications by variational method, Eur. Phys. J. Plus, 130 (2015), 182. |
[6] | A. M. A. El-Sayed, S. H. Behiry, W. E. Raslan, Adomian's decomposition method for solving an intermediate fractional advection-dispersion equation, Comput. Math. Appl., 59 (2010), 1759-1765. doi: 10.1016/j.camwa.2009.08.065 |
[7] | A. M. A. El-Sayedand, M. Gaber, The Adomian's decomposition method for solving partial differential equation of fractional orderin finite domains, Phys. Lett. A, 359 (2006), 175-182. doi: 10.1016/j.physleta.2006.06.024 |
[8] | S.S. Ray, A new approach for the application of Adomian's decomposition method for the solution to fractional space diffusion equation with insulated ends, Appl. Math. Comput., 202 (2008), 544-549. |
[9] | Z. Odibat, S. Momani, A Generalized Differential Transform Method for Linear Partian Differential Equations of fractional Order, Appl. Math. Lett., 21 (2008), 194-199. |
[10] | V. S. Erturk, S. Momani, Z. Odibat, Application of Generalized Transformation Method to Multi-order Fractional Differential Equations, Commun. Nonlinear. Sci., 13 (2008), 1642-1654. doi: 10.1016/j.cnsns.2007.02.006 |
[11] | M. Yavuz, N. Ozdemir, H. M. Baskonus, Solution of fractional partial differential equation using the operator involving non-singular kernal, Eur. Phys. J. Plus, 133 (2018), 1-12. doi: 10.1140/epjp/i2018-11804-8 |
[12] | D. Kumar, J. Singh, H. M. Baskonus, et al., An effective computational approach for solving local fractional Telegraph equations, Nonlinear. Sci. Lett. A, 8 (2017), 200-206. |
[13] | M. Dehghan, J. Manafian, The solution of the variable coefficients fourth-order parabolic partial differential equations by homotopy perturbation method, Z. Naturforsch., 64 (2009), 420-430. |
[14] | M. Dehghan, J. Manafian, A. Saadatmandi, Application of semi-analytic methods for the Fitzhugh-Nagumo equation, which models the transmission of nerve impulses, Math. Meth. Appl. Sci., 33 (2010), 1384-1398. |
[15] | A. R. Seadawy, The generalized nonlinear higher order of KdV equations from the higher order nonlinear Schrodinger equation and its solutions, Optic, 139 (2017), 31-43. |
[16] | M. L. Wang, X. Z. Li, J. L. Zhang, The (G'/G)-expansion method and the traveling wave solutions to nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372 (2008), 417-423. doi: 10.1016/j.physleta.2007.07.051 |
[17] | B. Zhang, (G'/G)-expansion method for solving fractional partial differential equation in the theory of mathematical physics, Commun. Theor. Phys., 58 (2012), 623-630. |
[18] | M. A. Akbar, N. H. M. Ali, E. M. E. Zayed, A generalized and improved (G'/G)-expansion method for nonlinear evolution equation, Math. Probl. Eng., 20 (2012), 12-22. |
[19] | M. A. Akbar, N. H. M. Ali, E. M. E. Zayed, Abundant exact traveling wave solutions to the generalized Bretherton equation via the improved (G'/G)-expansion method, Commun. Theo. Phys., 57 (2012), 173-178. doi: 10.1088/0253-6102/57/2/01 |
[20] | H. M. Baskonusand H. Bulut, Regarding the prototype solutions for the nonlinear fractional order biological population model, AIP Conf. proc., 1738 (2016), 290004. |
[21] | H. Bulut, G. Yel, H. M. Baskonus, An application of improved Bernoulli sub-equation function method to the nonlinear time fractional Burgers equation, Tur. J. Math. Comput. Sci., 5 (2016), 1-17. |
[22] | M. Foroutan, I. Zamanpour, J. manafian, Applications of IBSOM and ETEM for solving the nonlinear chains of atoms with long range interactions, Eur. Phys. J. Plus, 132 (2017), 421. |
[23] | M. Foroutan, J. Manafian, A. Ranjbaran, Lump solution and its interaction to (3+1)-D potential-YTSF equation, Nonlinear. Dynam., 92 (2018), 2077-2092. doi: 10.1007/s11071-018-4182-5 |
[24] | A. Esen, T. A. Sulaiman, H. Bulut, et al. Optical solutions to the space time fractional (1+1)-dimensional couple nonlinear Schrodinger equation, Optic, 167 (2018), 150-156. |
[25] | J. Manafian, On the complex structure of the Biswas-Milovic equation for power, parabolic and dual parabolic law nonlinearities, Eur. Phys. J. Plus, 130 (2015), 1-20. doi: 10.1140/epjp/i2015-15001-1 |
[26] | M. Dehghan, J. Manafian, A. Saadatmandi, Analytical treatment of some partial differential equations arising in mathematical physics by using the Exp-function method, Int. J. Mod. Phys. B, 25 (2011), 2965-2981. doi: 10.1142/S021797921110148X |
[27] | M. A. Akbar, N. H. M. Ali, New solitary and periodic solutions to nonlinear evolution equation by Exp- function method, World Appl. Sci. J., 17 (2012),1603-1610. |
[28] | B. Lu, Backlund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations, Phys. Lett. A, 376 (2012), 2045-2048. doi: 10.1016/j.physleta.2012.05.013 |
[29] | S. M. Guo, L. Q. Mei, Y. Li, et al. The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics, Phys. Lett. A., 376 (2012), 407-411. doi: 10.1016/j.physleta.2011.10.056 |
[30] | S. Zhang, H. Q. Zhang, Fractional sub-equation method and its application to the nonlinear fractional PDEs, Phys. Lett. A, 375 (2011), 1069-1073. doi: 10.1016/j.physleta.2011.01.029 |
[31] | B. Lu, The first integral method for some time fractional differential equation, J. Math. Anal. Appl., 395 (2012), 684-693. doi: 10.1016/j.jmaa.2012.05.066 |
[32] | A. Bekir, O. Guner, O. Unsal, The First Integral Method for exact Solutions to nonlinear Fractional Differential Equation, J. Compt. Nonlinear. Dynam., 10 (2015). |
[33] | M. H. Uddin, M. A. Akbar, M. A. Khan, et al. Close Form Solutions to the Fractional Generalized Reaction Duffing Model and the Density Dependent Fractional Diffusion Reaction Equation, Appl. Comput. Math., 6 (2017), 177-184. doi: 10.11648/j.acm.20170604.13 |
[34] | L. X. Li, E. Q. Li, M. L. Wang, The (G'/G)-expansion method and its application to travelling wave solutions to the Zakharovequation, Appl. Math. B., 25 (2010), 454-462. doi: 10.1007/s11766-010-2128-x |
[35] | E. M. E. Zayed, M. A. M. Abdelaziz, The two variable (G'/G)-expansion method for solving the nonlinear KdV-mkdV equation, Math. Probl. Eng., 2012 (2012), 725061. |
[36] | H. M. Baskonus, H. Bulut, On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method, Open Math., 13 (2015), 547-556. |
[37] | S. H. Seyedi, B. N. Saray, A. Ramazani, On the multiscale simulation of squeezing nanofluid flow by a highprecision scheme, Power Tech., 340 (2018), 264-273. doi: 10.1016/j.powtec.2018.08.088 |
[38] | S. H. Seyedi, B. N. Saray, M. R. H. Nobari, Using interpolation scaling functions based on Galerkin method for solving non-Newtonian fluid flow between two vertical flat plates, Appl. Math. Comput., 269 (2015), 488-496. |
[39] | J. F. Alzaidy, Fractional sub-equation method and its application to the space time fractional differential equation in mathematical physics, British J. Math. Comput. Sci., 3 (2013), 153-163. doi: 10.9734/BJMCS/2013/2908 |
[40] | S. M. Ege, E. Misirli, The modified Kudryashov method for solving some fractional order nonlinear equations, Adv. Differ. Equations, 2014 (2014). |
[41] | A. Bekir, O. Guner, O. Unsal, The first integral method for exact solution to nonlinear fractional differential equations, J. Comput. Nonlinear Dynam., 10 (2015) 021020. |
[42] | M. Song, C. Yang, Exact traveling wave solutions to the Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation, Appl. Math. Comput., 216 (2010), 3234-3243. |
[43] | E. Aksoy, M. Kaplan, A. Bekir, Exponential rational function method for space time fractional differential equation, J. Waves Random. Complex Media, 26 (2016) 142-151. |
[44] | M. Ekici, E. M. E. Zayed, A. Sonmezoglu, A new fractional sub-equation for solving the space time fractional differential equation in mathematical physics, Comput. Methods Differ. Equations, 2 (2014), 153-170. |
[45] | R. Khalil, M. Al Horani, A. Yousef, et al. A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002 |
[46] | Y. Cenesiz, D. Baleanu, A. Kurt, et al. New exact solution to Burgers' type equations with conformable derivative, J. Waves Random. Complex Media, 27 (2016), 103-116. |
[47] | A. M. Wazwaz, Partial Differential Equations and Solitary Wave Theory, New York: Springer, 2009. |
[48] | S. T. Mohyud-Din, S. Bibi, Exact solutions for nonlinear fractional differential equations using (G'/G)-expansion method, Alexandria Eng. J., 57 (2018), 1003-1008. doi: 10.1016/j.aej.2017.01.035 |