Research article Special Issues

Some fractional integral inequalities for the Katugampola integral operator

  • Received: 22 December 2018 Accepted: 14 February 2019 Published: 20 February 2019
  • MSC : 30C45

  • In this paper, several new integral inequalities are established by using Katugampola integral operator.

    Citation: Ravi Shanker Dubey, Pranay Goswami. Some fractional integral inequalities for the Katugampola integral operator[J]. AIMS Mathematics, 2019, 4(2): 193-198. doi: 10.3934/math.2019.2.193

    Related Papers:

  • In this paper, several new integral inequalities are established by using Katugampola integral operator.


    加载中


    [1] I. Podlubni, Fractional Differential Equations, Academic Press, San Diego, 1999.
    [2] R. Gorenflo and F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order, Springer Verlag, Wien and New York (1997), 223-276.
    [3] U. N. Katugampola, A New Approach to Generalized Fractional Derivatives, Bull. Math. Anal. Appl., 6 (2014), 1-15.
    [4] F. Jarad, E. Ugurlu, T. Abdeljawad, et al. On a new class of fractional operators, Adv. Differ. Equ-NY, 2017 (2017), 247.
    [5] F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J-Spec. Top., 226 (2017), 3457-3471. doi: 10.1140/epjst/e2018-00021-7
    [6] G. Gruss, Uber das maximum des absoluten Betrages vo$\frac{1}{\left(b-a\right)} \int _{a}^{b}{ f}({ x}){ g}({ x}){ dx} -$ $\frac{1}{\left(b-a\right)} \left(\int _{a}^{b}{ f}({ x}){ dx} \right)\left(\frac{1}{\left(b-a\right)} \int _{a}^{b}g({ x}){ dx} \right),$ Math. Z., 39 (1935), 215-226.
    [7] D. S. Mitrinovic, J. E. Pecaric, A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993.
    [8] Z. Dahmani, L. Tabharit , S. Taf, New generalisations of Grüss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2 (2010), 93-99.
    [9] S. S. Dragomir, Some integral inequalities of Grüss type, RGMIA Research Report Collection, 1 (1998).
    [10] A. McD Mercer, An improvement of the Grüss inequality, J. Inequal. Pure Appl. Math., 6 (2005), 1-4.
    [11] S. M. Malamud, Some complements to the Jenson and Chebyshev inequalities and a problem of W. Walter, P. Am. Math. Soc., 129 (2001), 2671-2678. doi: 10.1090/S0002-9939-01-05849-X
    [12] S. Belarbi and Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math., 10 (2009), 1-12.
    [13] B. G. Pachpatte, A note on Chebyshev-Grüss type inequalities for differential functions, Tamsui Oxford Journal of Mathematical Sciences, 22 (2006), 29-36.
    [14] S. Marinkovic, P. Rajkovic and M. Stankovic, The inequalities for some types q- integrals, Comput. Math. Appl., 56 (2008), 2490-2498. doi: 10.1016/j.camwa.2008.05.035
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3861) PDF downloads(735) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog