Citation: Mahmoud A. E. Abdelrahman, Sherif I. Ammar, Kholod M. Abualnaja, Mustafa Inc. New solutions for the unstable nonlinear Schrödinger equation arising in natural science[J]. AIMS Mathematics, 2020, 5(3): 1893-1912. doi: 10.3934/math.2020126
[1] | M. A. E. Abdelrahman, M. Kunik, The interaction of waves for the ultra-relativistic Euler equations, J. Math. Anal. Appl., 409 (2014), 1140-1158. doi: 10.1016/j.jmaa.2013.07.009 |
[2] | M. A. E. Abdelrahman, M. Kunik, The ultra-relativistic Euler equations, Math. Meth. Appl. Sci., 38 (2015), 1247-1264. doi: 10.1002/mma.3141 |
[3] | M. A. E. Abdelrahman, Global solutions for the ultra-relativistic Euler equations, Nonlinear Anal, 155 (2017), 140-162. doi: 10.1016/j.na.2017.01.014 |
[4] | M. A. E. Abdelrahman, On the shallow water equations, Z. Naturforsch., 72 (2017), 873-879. |
[5] | M. A. E. Abdelrahman, M. A. Sohaly, A. R. Alharbi, The new exact solutions for the deterministic and stochastic (2+1)-dimensional equations in natural sciences, J. Taibah Sci., 13 (2019), 834-843. doi: 10.1080/16583655.2019.1644832 |
[6] | H. C. Yaslan, E. Girgin, New exact solutions for the conformable space-time fractional KdV, CDG, (2+1)-dimensional CBS and (2+1)-dimensional AKNS equations, J. Taibah Sci., 13 (2019), 1-8. doi: 10.1080/16583655.2018.1515303 |
[7] | M. A. E. Abdelrahman, Cone-grid scheme for solving hyperbolic systems of conservation laws and one application, Comp. Appl. Math., 37 (2018), 3503-3513. doi: 10.1007/s40314-017-0527-9 |
[8] | P. Razborova, B. Ahmed, A. Biswas, Solitons, shock waves and conservation laws of RosenauKdV-RLW equation with power law nonlinearity, Appl. Math. Inf. Sci., 8 (2014), 485-491. doi: 10.12785/amis/080205 |
[9] | A. Biswas, M. Mirzazadeh, Dark optical solitons with power law nonlinearity using G0/Gexpansion, Optik, 125 (2014), 4603-4608. doi: 10.1016/j.ijleo.2014.05.035 |
[10] | M. Younis, S. Ali, S. A. Mahmood, Solitons for compound KdV Burgers equation with variable coefficients and power law nonlinearity, Nonlinear Dyn., 81 (2015), 1191-1196. doi: 10.1007/s11071-015-2060-y |
[11] | A. H. Bhrawy, An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system, Appl. Math. Comput., 247 (2014), 30-46. |
[12] | Y. J. Ren, H. Q. Zhang, A generalized F-expansion method to find abundant families of Jacobi elliptic function solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation, Chaos Solitons Fractals, 27 (2006), 959-979. doi: 10.1016/j.chaos.2005.04.063 |
[13] | J. L. Zhang, M. L. Wang, Y. M. Wang, et al., The improved F-expansion method and its applications, Phys. Lett. A., 357 (2006), 103-109. |
[14] | M. L. Wang, J. L. Zhang, X. Z. Li, The $(\frac{G^{'}}{G})$-expansion method and travelling wave solutions of nonlinear evolutions equations in mathematical physics, Phys. Lett. A., 372 (2008), 417-423. doi: 10.1016/j.physleta.2007.07.051 |
[15] | S. Zhang, J. L. Tong, W. Wang, A generalized $(\frac{G^{'}}{G})$-expansion method for the mKdv equation with variable coefficients, Phys. Lett. A., 372 (2008), 2254-2257. doi: 10.1016/j.physleta.2007.11.026 |
[16] | W. Malfliet, Solitary wave solutions of nonlinear wave equation, Am. J. Phys., 60 (1992), 650-654. doi: 10.1119/1.17120 |
[17] | W. Malfliet, W. Hereman, The tanh method: Exact solutions of nonlinear evolution and wave equations, Phys. Scr., 54 (1996), 563-568. doi: 10.1088/0031-8949/54/6/003 |
[18] | A. M. Wazwaz, The tanh method for travelling wave solutions of nonlinear equations, Appl. Math. Comput., 154 (2004), 714-723. |
[19] | J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30 (2006), 700-708. doi: 10.1016/j.chaos.2006.03.020 |
[20] | H. Aminikhad, H. Moosaei, M. Hajipour, Exact solutions for nonlinear partial differential equations via Exp-function method, Numer, Methods Partial Differ. Equations, 26 (2009), 1427-1433. |
[21] | E. Fan, H. Zhang, A note on the homogeneous balance method, Phys. Lett. A., 246 (1998), 403-406. doi: 10.1016/S0375-9601(98)00547-7 |
[22] | M. L. Wang, Exct solutions for a compound KdV-Burgers equation, Phys. Lett. A., 213 (1996), 279-287. doi: 10.1016/0375-9601(96)00103-X |
[23] | C. Q. Dai, J. F. Zhang, Jacobian elliptic function method for nonlinear differential difference equations, Chaos Solutions Fractals, 27 (2006), 1042-1049. doi: 10.1016/j.chaos.2005.04.071 |
[24] | E. Fan, J. Zhang, Applications of the Jacobi elliptic function method to special-type nonlinear equations, Phys. Lett. A., 305 (2002), 383-392. doi: 10.1016/S0375-9601(02)01516-5 |
[25] | A. M. Wazwaz, Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE. method, Comput. Math. Appl., 50 (2005), 1685-1696. doi: 10.1016/j.camwa.2005.05.010 |
[26] | A. M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Math. Comput. Modell., 40 (2004), 499-508. doi: 10.1016/j.mcm.2003.12.010 |
[27] | C. Yan, A simple transformation for nonlinear waves, Phys. Lett. A., 224 (1996), 77-84. doi: 10.1016/S0375-9601(96)00770-0 |
[28] | E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A., 277 (2000), 212-218. doi: 10.1016/S0375-9601(00)00725-8 |
[29] | A. M. Wazwaz, The extended tanh method for abundant solitary wave solutions of nonlinear wave equations, Appl. Math. Comput., 187 (2007), 1131-1142. |
[30] | X. F. Yang, Z. C. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Diff. Equation., 1 (2015), 117-133. |
[31] | M. A. E. Abdelrahman, M. A. Sohaly, On the new wave solutions to the MCH equation, Indian J. Phys., 93 (2019), 903-911. doi: 10.1007/s12648-018-1354-6 |
[32] | M. A. E. Abdelrahman, M. A. Sohaly, Solitary waves for the nonlinear Schrödinger problem with the probability distribution function in stochastic input case, Eur. Phys. J. Plus., 132 (2017), 339. |
[33] | M. A. E. Abdelrahman, A note on Riccati-Bernoulli sub-ODE method combined with complex transform method applied to fractional differential equations, Nonlinear Eng. Model. Appl., 7 (2018), 279-285. doi: 10.1515/nleng-2017-0145 |
[34] | J. Liu, M. S. Osman, W. Zhu, et al., Different complex wave structures described by the Hirota equation with variable coefficients in inhomogeneous optical fibers, Appl. Phys. B, 125 (2019), 175. |
[35] | V. S. Kumar, H. Rezazadeh, M. Eslami, et al., Jacobi elliptic function expansion method for solving KdV equation with conformable derivative and dual-power law nonlinearity, Int. J. Appl. Comput. Math., 5 (2019), 127. |
[36] | B. Ghanbari, M. S. Osman, D. Baleanu, Generalized exponential rational function method for extended ZakharovKuzetsov equation with conformable derivative, Mod. Phys. Lett. A, 34 (2019) 1950155. |
[37] | M. S. Osman, A. M. Wazwaz, A general bilinear form to generate different wave structures of solitons for a (3+1)-dimensional BoitiLeonMannaPempinelli equation, Math. Methods Appl. Sci., 42 (2019), 6277-6283. doi: 10.1002/mma.5721 |
[38] | M. S. Osman, Multi-soliton rational solutions for quantum ZakharovKuznetsov equation in quantum magnetoplasmas, Wave Random Complex Media, 26 (2016), 434-443. doi: 10.1080/17455030.2016.1166288 |
[39] | M. S. Osman, B. Ghanbari, J. A. T. Machado, New complex waves in nonlinear optics based on the complex Ginzburg-Landau equation with Kerr law nonlinearity, Eur. Phys. J. Plus, 134 (2019), 20. |
[40] | M. S. Osman, One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient SawadaKotera equation, Nonlinear Dyn., 96 (2019), 1491. |
[41] | K. Hosseini, D. Kumar, M. Kaplan, et al., New exact traveling wave solutions of the unstable nonlinear Schrödinger equations, Commun. Theor. Phys., 68 (2017), 761-767. doi: 10.1088/0253-6102/68/6/761 |
[42] | K. Hosseini, A. Zabihi, F. Samadani, et al. New explicit exact solutions of the unstable nonlinear Schrödinger's equation using the expa and hyperbolic function methods, Opt. Quant. Electron., 50 (2018), 82. |
[43] | M. Pawlik, G. Rowlands, The propagation of solitary waves in piezoelectric semiconductors, J. Phys. C, 8 (1975), 1189-1204. doi: 10.1088/0022-3719/8/8/022 |
[44] | E. Tala-Tebue, Z. I. Djoufack, E. Fendzi-Donfack, et al., Exact solutions of the unstable nonlinear Schrödinger equation with the new Jacobi elliptic function rational expansion method and the exponential rational function method, Optik, 127 (2016), 11124-11130. doi: 10.1016/j.ijleo.2016.08.116 |
[45] | D. Lu, A. R. Seadawy, M. Arshad, Applications of extended simple equation method on unstable nonlinear Schrdinger equations, Optik, 140 (2017), 136-144. doi: 10.1016/j.ijleo.2017.04.032 |
[46] | A. M. Wazwaz, The sine-cosine method for obtaining solutions with compact and noncompact structures, Appl. Math. Comput., 159 (2004), 559-576. |
[47] | F. Tascan, A. Bekir, Analytic solutions of the (2+1)-dimensional nonlinear evolution equations using the sinecosine method, Appl. Math. Comput., 215 (2009), 3134-3139. |
[48] | M. A. E. Abdelrahman, M. A. Sohaly, The development of the deterministic nonlinear PDEs in particle physics to stochastic case, Results Phys., 9 (2018), 344-350. doi: 10.1016/j.rinp.2018.02.032 |
[49] | S. Z. Hassan, M. A. E. Abdelrahman, Solitary wave solutions for some nonlinear time fractional partial differential equations, Pramana J. Phys., 91 (2018), 67. |
[50] | D. Kumar, J. Singh, D. Baleanu, et al., Analysis of a fractional model of the Ambartsumian equation, Eur. Phys. J. Plus, 133 (2018), 259. |
[51] | A. Korkmaz, K. Hosseini, Exact solutions of a nonlinear conformable time-fractional parabolic equation with exponential nonlinearity using reliable methods, Opt. Quant. Electron., 49 (2017), 278. |
[52] | K. Hosseini, A. Bekir, R. Ansari, Exact solutions of nonlinear conformable time-fractional Boussinesq equations using the exp(-φ(ξ))-expansion method, Opt. Quant. Electron., 49 (2017), 131. |
[53] | K. Hosseini, A. Bekir, M. Kaplan, et al., On a new technique for solving the nonlinear conformable time-fractional differential equations, Opt. Quant. Electron., 49 (2017), 343. |
[54] | K. Hosseini, P. Mayeli, A. Bekir, et al., Density-dependent conformable space-time fractional diffusion-Rreaction equation and its exact solutions, Commun. Theor. Phys., 69 (2018), 1-4. doi: 10.1088/0253-6102/69/1/1 |
[55] | K. Hosseini, Y. J. Xu, P. Mayeli, et al., A study on the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities, Optoelectron. Adv. Mat., 11 (2017), 423-429. |
[56] | K. Hosseini, A. Korkmaz, A. Bekir, et al., New wave form solutions of nonlinear conformable time-fractional Zoomeron equation in (2+1)-dimensions, Waves in Random and Complex Media, (2019), Available from: https://doi.org/10.1080/17455030.2019.1579393. |