Research article Special Issues

New solutions for the unstable nonlinear Schrödinger equation arising in natural science

  • Received: 08 November 2019 Accepted: 02 January 2020 Published: 18 February 2020
  • MSC : 35A20, 35A99, 83C15, 65Z05

  • In this work, three mathematical methods are applied, namely, the exp(-φ(ξ))-expansion method, the sine-cosine technique and the Riccati-Bernoulli sub-ODE method for constructing many new exact solutions of the unstable nonlinear Schrödinger equation. The exact solutions are obtained in the form of rational, exponential, trigonometric, hyperbolic functions. These solutions may be so important significance for the explanation of some practical physical problems. The computational work and obtained results show that the presented methods are simple, efficient, straightforward and powerful. Moreover, the presented methods can be employed to many other types of nonlinear partial differential equations arising in mathematics, mathematical physics and other areas of natural sciences. Some solutions are simulated for some particular choices of parameters.

    Citation: Mahmoud A. E. Abdelrahman, Sherif I. Ammar, Kholod M. Abualnaja, Mustafa Inc. New solutions for the unstable nonlinear Schrödinger equation arising in natural science[J]. AIMS Mathematics, 2020, 5(3): 1893-1912. doi: 10.3934/math.2020126

    Related Papers:

  • In this work, three mathematical methods are applied, namely, the exp(-φ(ξ))-expansion method, the sine-cosine technique and the Riccati-Bernoulli sub-ODE method for constructing many new exact solutions of the unstable nonlinear Schrödinger equation. The exact solutions are obtained in the form of rational, exponential, trigonometric, hyperbolic functions. These solutions may be so important significance for the explanation of some practical physical problems. The computational work and obtained results show that the presented methods are simple, efficient, straightforward and powerful. Moreover, the presented methods can be employed to many other types of nonlinear partial differential equations arising in mathematics, mathematical physics and other areas of natural sciences. Some solutions are simulated for some particular choices of parameters.


    加载中


    [1] M. A. E. Abdelrahman, M. Kunik, The interaction of waves for the ultra-relativistic Euler equations, J. Math. Anal. Appl., 409 (2014), 1140-1158. doi: 10.1016/j.jmaa.2013.07.009
    [2] M. A. E. Abdelrahman, M. Kunik, The ultra-relativistic Euler equations, Math. Meth. Appl. Sci., 38 (2015), 1247-1264. doi: 10.1002/mma.3141
    [3] M. A. E. Abdelrahman, Global solutions for the ultra-relativistic Euler equations, Nonlinear Anal, 155 (2017), 140-162. doi: 10.1016/j.na.2017.01.014
    [4] M. A. E. Abdelrahman, On the shallow water equations, Z. Naturforsch., 72 (2017), 873-879.
    [5] M. A. E. Abdelrahman, M. A. Sohaly, A. R. Alharbi, The new exact solutions for the deterministic and stochastic (2+1)-dimensional equations in natural sciences, J. Taibah Sci., 13 (2019), 834-843. doi: 10.1080/16583655.2019.1644832
    [6] H. C. Yaslan, E. Girgin, New exact solutions for the conformable space-time fractional KdV, CDG, (2+1)-dimensional CBS and (2+1)-dimensional AKNS equations, J. Taibah Sci., 13 (2019), 1-8. doi: 10.1080/16583655.2018.1515303
    [7] M. A. E. Abdelrahman, Cone-grid scheme for solving hyperbolic systems of conservation laws and one application, Comp. Appl. Math., 37 (2018), 3503-3513. doi: 10.1007/s40314-017-0527-9
    [8] P. Razborova, B. Ahmed, A. Biswas, Solitons, shock waves and conservation laws of RosenauKdV-RLW equation with power law nonlinearity, Appl. Math. Inf. Sci., 8 (2014), 485-491. doi: 10.12785/amis/080205
    [9] A. Biswas, M. Mirzazadeh, Dark optical solitons with power law nonlinearity using G0/Gexpansion, Optik, 125 (2014), 4603-4608. doi: 10.1016/j.ijleo.2014.05.035
    [10] M. Younis, S. Ali, S. A. Mahmood, Solitons for compound KdV Burgers equation with variable coefficients and power law nonlinearity, Nonlinear Dyn., 81 (2015), 1191-1196. doi: 10.1007/s11071-015-2060-y
    [11] A. H. Bhrawy, An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system, Appl. Math. Comput., 247 (2014), 30-46.
    [12] Y. J. Ren, H. Q. Zhang, A generalized F-expansion method to find abundant families of Jacobi elliptic function solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation, Chaos Solitons Fractals, 27 (2006), 959-979. doi: 10.1016/j.chaos.2005.04.063
    [13] J. L. Zhang, M. L. Wang, Y. M. Wang, et al., The improved F-expansion method and its applications, Phys. Lett. A., 357 (2006), 103-109.
    [14] M. L. Wang, J. L. Zhang, X. Z. Li, The $(\frac{G^{'}}{G})$-expansion method and travelling wave solutions of nonlinear evolutions equations in mathematical physics, Phys. Lett. A., 372 (2008), 417-423. doi: 10.1016/j.physleta.2007.07.051
    [15] S. Zhang, J. L. Tong, W. Wang, A generalized $(\frac{G^{'}}{G})$-expansion method for the mKdv equation with variable coefficients, Phys. Lett. A., 372 (2008), 2254-2257. doi: 10.1016/j.physleta.2007.11.026
    [16] W. Malfliet, Solitary wave solutions of nonlinear wave equation, Am. J. Phys., 60 (1992), 650-654. doi: 10.1119/1.17120
    [17] W. Malfliet, W. Hereman, The tanh method: Exact solutions of nonlinear evolution and wave equations, Phys. Scr., 54 (1996), 563-568. doi: 10.1088/0031-8949/54/6/003
    [18] A. M. Wazwaz, The tanh method for travelling wave solutions of nonlinear equations, Appl. Math. Comput., 154 (2004), 714-723.
    [19] J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30 (2006), 700-708. doi: 10.1016/j.chaos.2006.03.020
    [20] H. Aminikhad, H. Moosaei, M. Hajipour, Exact solutions for nonlinear partial differential equations via Exp-function method, Numer, Methods Partial Differ. Equations, 26 (2009), 1427-1433.
    [21] E. Fan, H. Zhang, A note on the homogeneous balance method, Phys. Lett. A., 246 (1998), 403-406. doi: 10.1016/S0375-9601(98)00547-7
    [22] M. L. Wang, Exct solutions for a compound KdV-Burgers equation, Phys. Lett. A., 213 (1996), 279-287. doi: 10.1016/0375-9601(96)00103-X
    [23] C. Q. Dai, J. F. Zhang, Jacobian elliptic function method for nonlinear differential difference equations, Chaos Solutions Fractals, 27 (2006), 1042-1049. doi: 10.1016/j.chaos.2005.04.071
    [24] E. Fan, J. Zhang, Applications of the Jacobi elliptic function method to special-type nonlinear equations, Phys. Lett. A., 305 (2002), 383-392. doi: 10.1016/S0375-9601(02)01516-5
    [25] A. M. Wazwaz, Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE. method, Comput. Math. Appl., 50 (2005), 1685-1696. doi: 10.1016/j.camwa.2005.05.010
    [26] A. M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Math. Comput. Modell., 40 (2004), 499-508. doi: 10.1016/j.mcm.2003.12.010
    [27] C. Yan, A simple transformation for nonlinear waves, Phys. Lett. A., 224 (1996), 77-84. doi: 10.1016/S0375-9601(96)00770-0
    [28] E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A., 277 (2000), 212-218. doi: 10.1016/S0375-9601(00)00725-8
    [29] A. M. Wazwaz, The extended tanh method for abundant solitary wave solutions of nonlinear wave equations, Appl. Math. Comput., 187 (2007), 1131-1142.
    [30] X. F. Yang, Z. C. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Diff. Equation., 1 (2015), 117-133.
    [31] M. A. E. Abdelrahman, M. A. Sohaly, On the new wave solutions to the MCH equation, Indian J. Phys., 93 (2019), 903-911. doi: 10.1007/s12648-018-1354-6
    [32] M. A. E. Abdelrahman, M. A. Sohaly, Solitary waves for the nonlinear Schrödinger problem with the probability distribution function in stochastic input case, Eur. Phys. J. Plus., 132 (2017), 339.
    [33] M. A. E. Abdelrahman, A note on Riccati-Bernoulli sub-ODE method combined with complex transform method applied to fractional differential equations, Nonlinear Eng. Model. Appl., 7 (2018), 279-285. doi: 10.1515/nleng-2017-0145
    [34] J. Liu, M. S. Osman, W. Zhu, et al., Different complex wave structures described by the Hirota equation with variable coefficients in inhomogeneous optical fibers, Appl. Phys. B, 125 (2019), 175.
    [35] V. S. Kumar, H. Rezazadeh, M. Eslami, et al., Jacobi elliptic function expansion method for solving KdV equation with conformable derivative and dual-power law nonlinearity, Int. J. Appl. Comput. Math., 5 (2019), 127.
    [36] B. Ghanbari, M. S. Osman, D. Baleanu, Generalized exponential rational function method for extended ZakharovKuzetsov equation with conformable derivative, Mod. Phys. Lett. A, 34 (2019) 1950155.
    [37] M. S. Osman, A. M. Wazwaz, A general bilinear form to generate different wave structures of solitons for a (3+1)-dimensional BoitiLeonMannaPempinelli equation, Math. Methods Appl. Sci., 42 (2019), 6277-6283. doi: 10.1002/mma.5721
    [38] M. S. Osman, Multi-soliton rational solutions for quantum ZakharovKuznetsov equation in quantum magnetoplasmas, Wave Random Complex Media, 26 (2016), 434-443. doi: 10.1080/17455030.2016.1166288
    [39] M. S. Osman, B. Ghanbari, J. A. T. Machado, New complex waves in nonlinear optics based on the complex Ginzburg-Landau equation with Kerr law nonlinearity, Eur. Phys. J. Plus, 134 (2019), 20.
    [40] M. S. Osman, One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient SawadaKotera equation, Nonlinear Dyn., 96 (2019), 1491.
    [41] K. Hosseini, D. Kumar, M. Kaplan, et al., New exact traveling wave solutions of the unstable nonlinear Schrödinger equations, Commun. Theor. Phys., 68 (2017), 761-767. doi: 10.1088/0253-6102/68/6/761
    [42] K. Hosseini, A. Zabihi, F. Samadani, et al. New explicit exact solutions of the unstable nonlinear Schrödinger's equation using the expa and hyperbolic function methods, Opt. Quant. Electron., 50 (2018), 82.
    [43] M. Pawlik, G. Rowlands, The propagation of solitary waves in piezoelectric semiconductors, J. Phys. C, 8 (1975), 1189-1204. doi: 10.1088/0022-3719/8/8/022
    [44] E. Tala-Tebue, Z. I. Djoufack, E. Fendzi-Donfack, et al., Exact solutions of the unstable nonlinear Schrödinger equation with the new Jacobi elliptic function rational expansion method and the exponential rational function method, Optik, 127 (2016), 11124-11130. doi: 10.1016/j.ijleo.2016.08.116
    [45] D. Lu, A. R. Seadawy, M. Arshad, Applications of extended simple equation method on unstable nonlinear Schrdinger equations, Optik, 140 (2017), 136-144. doi: 10.1016/j.ijleo.2017.04.032
    [46] A. M. Wazwaz, The sine-cosine method for obtaining solutions with compact and noncompact structures, Appl. Math. Comput., 159 (2004), 559-576.
    [47] F. Tascan, A. Bekir, Analytic solutions of the (2+1)-dimensional nonlinear evolution equations using the sinecosine method, Appl. Math. Comput., 215 (2009), 3134-3139.
    [48] M. A. E. Abdelrahman, M. A. Sohaly, The development of the deterministic nonlinear PDEs in particle physics to stochastic case, Results Phys., 9 (2018), 344-350. doi: 10.1016/j.rinp.2018.02.032
    [49] S. Z. Hassan, M. A. E. Abdelrahman, Solitary wave solutions for some nonlinear time fractional partial differential equations, Pramana J. Phys., 91 (2018), 67.
    [50] D. Kumar, J. Singh, D. Baleanu, et al., Analysis of a fractional model of the Ambartsumian equation, Eur. Phys. J. Plus, 133 (2018), 259.
    [51] A. Korkmaz, K. Hosseini, Exact solutions of a nonlinear conformable time-fractional parabolic equation with exponential nonlinearity using reliable methods, Opt. Quant. Electron., 49 (2017), 278.
    [52] K. Hosseini, A. Bekir, R. Ansari, Exact solutions of nonlinear conformable time-fractional Boussinesq equations using the exp(-φ(ξ))-expansion method, Opt. Quant. Electron., 49 (2017), 131.
    [53] K. Hosseini, A. Bekir, M. Kaplan, et al., On a new technique for solving the nonlinear conformable time-fractional differential equations, Opt. Quant. Electron., 49 (2017), 343.
    [54] K. Hosseini, P. Mayeli, A. Bekir, et al., Density-dependent conformable space-time fractional diffusion-Rreaction equation and its exact solutions, Commun. Theor. Phys., 69 (2018), 1-4. doi: 10.1088/0253-6102/69/1/1
    [55] K. Hosseini, Y. J. Xu, P. Mayeli, et al., A study on the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities, Optoelectron. Adv. Mat., 11 (2017), 423-429.
    [56] K. Hosseini, A. Korkmaz, A. Bekir, et al., New wave form solutions of nonlinear conformable time-fractional Zoomeron equation in (2+1)-dimensions, Waves in Random and Complex Media, (2019), Available from: https://doi.org/10.1080/17455030.2019.1579393.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4019) PDF downloads(417) Cited by(7)

Article outline

Figures and Tables

Figures(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog