Citation: Li-Tao Zhang, Xian-Yu Zuo, Shi-Liang Wu, Tong-Xiang Gu, Yi-Fan Zhang, Yan-Ping Wang. A two-sweep shift-splitting iterative method for complex symmetric linear systems[J]. AIMS Mathematics, 2020, 5(3): 1913-1925. doi: 10.3934/math.2020127
[1] |
O. Axelsson, A. Kucherov, Real valued iterative methods for solving complex symmetric linear systems, Numer. Linear Algebra Appl., 7 (2000), 197-218. doi: 10.1002/1099-1506(200005)7:4<197::AID-NLA194>3.0.CO;2-S
![]() |
[2] |
Z. Z. Bai, G. H. Golub, M. K. Ng, Hermitian and skew-Hermitian splitting methods for nonHermitian positive definite linear systems, SIAM J. Matrix Anal. A, 24 (2003), 603-626. doi: 10.1137/S0895479801395458
![]() |
[3] |
Z. Z. Bai, G. H. Golub, M. K. Ng, On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, Linear Algebra Appl., 428 (2008), 413-440. doi: 10.1016/j.laa.2007.02.018
![]() |
[4] |
Z. Z. Bai, M. Benzi, F. Chen, et al. Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems, IMA J. Numer. Anal., 33 (2013), 343-369. doi: 10.1093/imanum/drs001
![]() |
[5] |
Z. Z. Bai, On Hermitian and skew-Hermitian splitting iteration methods for continuous Sylvester equations, J. Comput. Math., 29 (2011), 185-198. doi: 10.4208/jcm.1009-m3152
![]() |
[6] |
Z. Z. Bai, M. Benzi, F. Chen, On preconditioned MHSS iteration methods for complex symmetric linear systems, Numer. Algorithms, 56 (2011), 297-317. doi: 10.1007/s11075-010-9441-6
![]() |
[7] |
Z. Z. Bai, On semi-convergence of Hermitian and skew-Hermitian splitting methods for singular linear systems, Computing, 89 (2010), 171-197. doi: 10.1007/s00607-010-0101-4
![]() |
[8] |
Z. Z. Bai, M. Benzi, F, Chen, Modified HSS iteration methods for a class of complex symmetric linear systems, Computing, 87 (2010), 93-111. doi: 10.1007/s00607-010-0077-0
![]() |
[9] |
Z. Z. Bai, X. P. Guo, On Newton-HSS methods for systems of nonlinear equations with positivedefinite Jacobian matrices, J. Comput. Math., 28 (2010), 235-260. doi: 10.4208/jcm.2009.10-m2836
![]() |
[10] |
Z. Z. Bai, Optimal parameters in the HSS-like methods for saddle-point problems, Numer. Linear Algebra Appl., 16 (2009), 447-479. doi: 10.1002/nla.626
![]() |
[11] |
Z. Z. Bai, X. Yang, On HSS-based iteration methods for weakly nonlinear systems, Appl. Numer. Math., 59 (2009), 2923-2936. doi: 10.1016/j.apnum.2009.06.005
![]() |
[12] |
Z. Z. Bai, G. H. Golub, L. Z. Lu, et al., Block triangular and skew-Hermitian splitting methods for positive-definite linear systems, SIAM J. Sci. Comput., 26 (2005), 844-863. doi: 10.1137/S1064827503428114
![]() |
[13] |
Z. Z. Bai, G. H. Golub, M. K. Ng, On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations, Numer. Linear Algebra Appl., 14 (2007), 319-335. doi: 10.1002/nla.517
![]() |
[14] |
Z. Z. Bai, G. H. Golub, J. Y. Pan, Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98 (2004), 1-32. doi: 10.1007/s00211-004-0521-1
![]() |
[15] | M. Benzi, D. Bertaccini, Block preconditioning of real-valued iterative algorithms for complex linear systems, IMA J. Numer. Anal., 28 (2008), 598-618. |
[16] |
M. Benzi, A generalization of the Hermitian and skew-Hermitian splitting iteration, SIAM J. Matrix Anal. Appl., 31 (2009), 360-374. doi: 10.1137/080723181
![]() |
[17] | M. Benzi, D. Bertaccini, Block preconditioning of real-valued iterative algorithms for complex linear systems, IMA J. Numer. Anal., 28 (2008), 598-618. |
[18] |
M. Benzi, G. H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numer., 14 (2005), 1-137. doi: 10.1017/S0962492904000212
![]() |
[19] | Y. Cao, Z. R. Ren, Two variants of the PMHSS iteration method for a class of complex symmetric indefinite linear systems, Appl. Math. Comput., 264 (2015), 61-71. |
[20] |
Y. Cao, J. Du, Q. Niu, Shift-splitting preconditioners for saddle point problems, J. Comput. Appl. Math., 272 (2014), 239-250. doi: 10.1016/j.cam.2014.05.017
![]() |
[21] |
C. R. Chen, C. F. Ma, A generalized shift-splitting preconditioner for complex symmetric linear systems, J. Comput. Appl. Math., 344 (2018), 691-700. doi: 10.1016/j.cam.2018.06.013
![]() |
[22] |
C. R. Chen, C. F. Ma, A generalized shift-splitting preconditioner for saddle point problems, Appl. Math. Lett., 43 (2015), 49-55. doi: 10.1016/j.aml.2014.12.001
![]() |
[23] |
D. Day, M. A. Heroux, Solving complex-valued linear systems via equivalent real formulations, SIAM J. Sci. Comput., 23 (2001), 480-498. doi: 10.1137/S1064827500372262
![]() |
[24] |
C. L. Li, C. F. Ma, Efficient parameterized rotated shift-splitting preconditioner for a class of complex linear systems, Numer. Algorithms, 80 (2019), 337-354. doi: 10.1007/s11075-018-0487-1
![]() |
[25] |
C. L. Li, C. F. Ma, On Euler preconditioner SHSS iterative method for a class of complex symmetric linear systems, ESAIM Math. Model. Num., 53 (2019), 1607-1627. doi: 10.1051/m2an/2019029
![]() |
[26] |
L. Li, T. Z. Huang, X. P. Liu, Modified Hermitian and skew-Hermitian splitting methods for nonHermitian positive-definite linear systems, Numer. Linear Algebra Appl., 14 (2007), 217-235. doi: 10.1002/nla.528
![]() |
[27] |
X. Li, A. L. Yang, Y. J. Wu, Lopsided PMHSS iteration method for a class of complex symmetric linear systems, Numer. Algorithms, 66 (2014), 555-568. doi: 10.1007/s11075-013-9748-1
![]() |
[28] | Y. Saad, Iterative Methods for Sparse Linear Systems, 2 Eds., SIAM, Philadelphia, 2003. |
[29] |
D. K. Salkuyeh, D. Hezari, V. Edalatpour, Generalized successive overrelaxation iterative method for a class of complex symmetric linear system of equations, Int. J. Comput. Math., 92 (2015), 802-815. doi: 10.1080/00207160.2014.912753
![]() |
[30] |
D. K. Salkuyeh, M. Masoudi, D. Hezari, On the generalized shift-splitting preconditioner for saddle point problems, Appl. Math. Lett., 48 (2015), 55-61. doi: 10.1016/j.aml.2015.02.026
![]() |
[31] |
S. L. Wu, Several variants of the Hermitian and skew-Hermitian splitting method for a class of complex symmetric linear systems, Numer. Linear Algebr., 22 (2015), 338-356. doi: 10.1002/nla.1952
![]() |
[32] | A. L. Yang, J. An, Y. J. Wu, A generalized preconditioned HSS method for non-Hermitian positive definite linear systems, Appl. Math. Comput., 216 (2010), 1715-1722. |