Research article

Soliton solutions and stability analysis of the stochastic nonlinear reaction-diffusion equation with multiplicative white noise in soliton dynamics and optical physics

  • Received: 20 November 2024 Revised: 16 January 2025 Accepted: 22 January 2025 Published: 24 January 2025
  • MSC : 34L30, 35A24, 35B35, 35C08, 74J35

  • In this article, we explored the stochastic nonlinear reaction-diffusion (RD) equation under the influence of multiplicative white noise. To obtain novel soliton solutions, we employed two powerful analytical techniques: the unified Riccati equation expansion method and the modified Kudryashov method. These methods yield a diverse set of soliton solutions, including combo-dark solitons, dark solitons, singular solitons, combo-bright-singular solitons, and periodic wave solutions. We also performed a comprehensive stability analysis of the stochastic nonlinear RD equation with multiplicative white noise. The findings provide valuable insights into the behavior of solitons in stochastic nonlinear systems, with significant implications for fields such as mathematical physics, nonlinear science, and applied mathematics. These results hold particular relevance for soliton dynamics in optical physics, where they can be applied to improve understanding of wave propagation in noisy environments, signal transmission, and the design of robust optical communication systems.

    Citation: Nafissa T. Trouba, Huiying Xu, Mohamed E. M. Alngar, Reham M. A. Shohib, Haitham A. Mahmoud, Xinzhong Zhu. Soliton solutions and stability analysis of the stochastic nonlinear reaction-diffusion equation with multiplicative white noise in soliton dynamics and optical physics[J]. AIMS Mathematics, 2025, 10(1): 1859-1881. doi: 10.3934/math.2025086

    Related Papers:

  • In this article, we explored the stochastic nonlinear reaction-diffusion (RD) equation under the influence of multiplicative white noise. To obtain novel soliton solutions, we employed two powerful analytical techniques: the unified Riccati equation expansion method and the modified Kudryashov method. These methods yield a diverse set of soliton solutions, including combo-dark solitons, dark solitons, singular solitons, combo-bright-singular solitons, and periodic wave solutions. We also performed a comprehensive stability analysis of the stochastic nonlinear RD equation with multiplicative white noise. The findings provide valuable insights into the behavior of solitons in stochastic nonlinear systems, with significant implications for fields such as mathematical physics, nonlinear science, and applied mathematics. These results hold particular relevance for soliton dynamics in optical physics, where they can be applied to improve understanding of wave propagation in noisy environments, signal transmission, and the design of robust optical communication systems.



    加载中


    [1] M. Iqbal, A. Ganie, M. Miah, M. Osman, Extracting the ultimate new soliton solutions of some nonlinear time fractional PDEs via the conformable fractional derivative, Fractal Fract., 8 (2024), 210. https://doi.org/10.3390/fractalfract8040210 doi: 10.3390/fractalfract8040210
    [2] S. Ahmad, N. Becheikh, L. Kolsi, T. Muhammad, Z. Ahmad, M. Nasrat, Uncovering the stochastic dynamics of solitons of the Chaffee-Infante equation, Sci. Rep., 14 (2024), 19485. https://doi.org/10.1038/s41598-024-67116-4 doi: 10.1038/s41598-024-67116-4
    [3] I. Alraddadi, M. Chowdhury, M. Abbas, K. El-Rashidy, J. Borhan, M. Miah, et al., Dynamical behaviors and abundant new soliton solutions of two nonlinear PDEs via an efficient expansion method in industrial engineering, Mathematics, 12 (2024), 2053. https://doi.org/10.3390/math12132053 doi: 10.3390/math12132053
    [4] N. Mhadhbi, S. Gana, M. Alsaeedi, Exact solutions for nonlinear partial differential equations via a fusion of classical methods and innovative approaches, Sci. Rep., 14 (2024), 6443. https://doi.org/10.1038/s41598-024-57005-1 doi: 10.1038/s41598-024-57005-1
    [5] S. Zhang, G. Zhu, W. Huang, H. Wang, C. Yang, Y. Lin, Symbolic computation of analytical solutions for nonlinear partial differential equations based on bilinear neural network method, Nonlinear Dyn., in press. https://doi.org/10.1007/s11071-024-10715-7
    [6] Y. Ye, H. Fan, Y. Li, X. Liu, H. Zhang, Conformable bilinear neural network method: a novel method for time-fractional nonlinear partial differential equations in the sense of conformable derivative, Nonlinear Dyn., in press. https://doi.org/10.1007/s11071-024-10495-0
    [7] H. Hu, L. Qi, X. Chao, Physics-informed neural networks (PINN) for computational solid mechanics: numerical frameworks and applications, Thin-Wall. Struct., 205 (2024), 112495. https://doi.org/10.1016/j.tws.2024.112495 doi: 10.1016/j.tws.2024.112495
    [8] J. Linghu, W. Gao, H. Dong, Y. Nie, Higher-order multi-scale physics-informed neural network (HOMS-PINN) method and its convergence analysis for solving elastic problems of authentic composite materials, J. Comput. Appl. Math., 456 (2025), 116223. https://doi.org/10.1016/j.cam.2024.116223 doi: 10.1016/j.cam.2024.116223
    [9] S. Sarker, R. Karim, M. Akbar, M. Osman, P. Dey, Soliton solutions to a nonlinear wave equation via modern methods, J. Umm Al-Qura Univ. Appll. Sci., 10 (2024), 785–792. https://doi.org/10.1007/s43994-024-00137-x doi: 10.1007/s43994-024-00137-x
    [10] X. Gao, Symbolic computation on a (2+1)-dimensional generalized nonlinear evolution system in fluid dynamics, plasma physics, nonlinear optics and quantum mechanics, Qual. Theory Dyn. Syst., 23 (2024), 202. https://doi.org/10.1007/s12346-024-01045-5 doi: 10.1007/s12346-024-01045-5
    [11] X. Gao, In plasma physics and fluid dynamics: symbolic computation on a (2+1)-dimensional variable-coefficient Sawada-Kotera system, Appl. Math. Lett., 159 (2025), 109262. https://doi.org/10.1016/j.aml.2024.109262 doi: 10.1016/j.aml.2024.109262
    [12] P. Singh, K. Senthilnathan, Evolution of a solitary wave: optical soliton, soliton molecule and soliton crystal, Discov. Appl. Sci., 6 (2024), 464. https://doi.org/10.1007/s42452-024-06152-1 doi: 10.1007/s42452-024-06152-1
    [13] X, Gao, Hetero-Bäcklund transformation, bilinear forms and multi-solitons for a (2+1)-dimensional generalized modified dispersive water-wave system for the shallow water, Chinese J. Phys., 92 (2024), 1233–1239. https://doi.org/10.1016/j.cjph.2024.10.004 doi: 10.1016/j.cjph.2024.10.004
    [14] H. Wilhelmsson, Simultaneous diffusion and reaction processes in plasma dynamics, Phys. Rev. A, 38 (1988), 1482. https://doi.org/10.1103/PhysRevA.38.1482 doi: 10.1103/PhysRevA.38.1482
    [15] D. Anderson, R. Jancel, H. Wilhelmsson, Similarity solution of the evolution equation describing the combined effects of diffusion and recombination in plasmas, Phys. Rev. A, 30 (1984), 2113. https://doi.org/10.1103/PhysRevA.30.2113 doi: 10.1103/PhysRevA.30.2113
    [16] H. Wilhelmsson, Similarity solution of two coupled reaction-diffusion rate equations, Phys. Rev. A, 35 (1987), 1957. https://doi.org/10.1103/PhysRevA.35.1957 doi: 10.1103/PhysRevA.35.1957
    [17] R. Kumar, R. Kaushal, A. Prasad, Soliton-like solutions of certain types of nonlinear diffusion-reaction equations with variable coefficient, Phys. Lett. A, 372 (2008), 1862–1866. https://doi.org/10.1016/j.physleta.2007.10.061 doi: 10.1016/j.physleta.2007.10.061
    [18] R. Kumar, R. Kaushal, A. Prasad, Some new solitary and travelling wave solutions of certain nonlinear diffusion-reaction equations using auxiliary equation method, Phys. Lett. A, 372 (2008), 3395–3399. https://doi.org/10.1016/j.physleta.2008.01.062 doi: 10.1016/j.physleta.2008.01.062
    [19] M. Morgado, M. Rebelo, Numerical approximation of distributed order reaction-diffusion equations, J. Comput. Appl. Math., 275 (2015), 216–227. https://doi.org/10.1016/j.cam.2014.07.029 doi: 10.1016/j.cam.2014.07.029
    [20] J. Li, Barycentric rational collocation method for fractional reaction-diffusion equation, AIMS Mathematics, 8 (2023), 9009–9026. https://doi.org/10.3934/math.2023451 doi: 10.3934/math.2023451
    [21] M. Abdelrahman, W. Mohammed, M. Alesemi, S. Albosaily, The effect of multiplicative noise on the exact solutions of nonlinear Schrödinger equation, AIMS Mathematics, 6 (2021), 2970–2980. https://doi.org/10.3934/math.2021180 doi: 10.3934/math.2021180
    [22] S. Albosaily, W. Mohammed, M. Aiyashi, M. Abdelrahman, Exact solutions of the (2+1)-dimensional stochastic chiral nonlinear Schrödinger equation, Symmetry, 12 (2020), 1874. https://doi.org/10.3390/sym12111874 doi: 10.3390/sym12111874
    [23] W. Mohammed, H. Ahmad, H. Boulares, F. Khelifi, M. El-Morshedy, Exact solutions of Hirota-Maccari system forced by multiplicative noise in the Itô sense, J. Low Freq. Noise V. A., 41 (2022), 74–84. https://doi.org/10.1177/14613484211028100 doi: 10.1177/14613484211028100
    [24] W. Mohammed, H. Ahmad, A. Hamza, E. Aly, M. El-Morshedy, E. Elabbasy, The exact solutions of the stochastic Ginzburg-Landau equation, Results Phys., 23 (2021), 103988. https://doi.org/10.1016/j.rinp.2021.103988 doi: 10.1016/j.rinp.2021.103988
    [25] W. Mohammed, N. Iqbal, A. Ali, M. El-Morshedy, Exact solutions of the stochastic new coupled Konno-Oono equation, Results Phys., 21 (2021), 103830. https://doi.org/10.1016/j.rinp.2021.103830 doi: 10.1016/j.rinp.2021.103830
    [26] W. Mohammed, M. El-Morshedy, The influence of multiplicative noise on the stochastic exact solutions of the Nizhnik-Novikov-Veselov system, Math. Comput. Simulat., 190 (2021), 192–202. https://doi.org/10.1016/j.matcom.2021.05.022 doi: 10.1016/j.matcom.2021.05.022
    [27] W. Mohammed, S. Albosaily, N. Iqbal, M. El-Morshedy, The effect of multiplicative noise on the exact solutions of the stochastic Burgers' equation, Wave. Random Complex, 34 (2024), 274–286. https://doi.org/10.1080/17455030.2021.1905914 doi: 10.1080/17455030.2021.1905914
    [28] T. Shaikh, M. Baber, N. Ahmed, N. Shahid, A. Akgül, M. De la Sen, On the soliton solutions for the stochastic Konno-Oono system in magnetic field with the presence of noise, Mathematics, 11 (2023), 1472. https://doi.org/10.3390/math11061472 doi: 10.3390/math11061472
    [29] M. Baber, N. Ahmed, M. Yasin, S. Ali, M. Ali, A. Akgül, et al., Abundant soliton solution for the time-fractional stochastic Gray-Scot model under the influence of noise and M-truncated derivative, Discov. Appl. Sci., 6 (2024), 119. https://doi.org/10.1007/s42452-024-05759-8 doi: 10.1007/s42452-024-05759-8
    [30] E. Zayed, M. El-Horbaty, B. Saad, A. Arnous, Y. Yildirim, Novel solitary wave solutions for stochastic nonlinear reaction-diffusion equation with multiplicative noise, Nonlinear Dyn., 112 (2024), 20199–20213. https://doi.org/10.1007/s11071-024-10085-0 doi: 10.1007/s11071-024-10085-0
    [31] Sirendaoreji, Unified Riccati equation expansion method and its application to two new classes of Benjamin-Bona-Mahony equations, Nonlinear Dyn., 89 (2017), 333–344. https://doi.org/10.1007/s11071-017-3457-6 doi: 10.1007/s11071-017-3457-6
    [32] K. Hosseini, A. Bekir, R. Ansari, New exact solutions of the conformable time-fractional Cahn-Allen and Cahn-Hilliard equations using the modified Kudryashov method, Optik, 132 (2017), 203–209. https://doi.org/10.1016/j.ijleo.2016.12.032 doi: 10.1016/j.ijleo.2016.12.032
    [33] M. Alosaimi, M. Al-Malki, K. Gepreel, Optical soliton solutions in optical metamaterials with full nonlinearity, J. Nonlinear Opt. Phys., in press. https://doi.org/10.1142/S0218863524500218
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(86) PDF downloads(36) Cited by(0)

Article outline

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog