Research article Special Issues

New measure of circular intuitionistic fuzzy sets and its application in decision making

  • Received: 24 February 2023 Revised: 01 July 2023 Accepted: 30 July 2023 Published: 08 August 2023
  • MSC : 28E10, 90B50, 91B06

  • Circular intuitionistic fuzzy sets are further extensions of intuitionistic fuzzy sets with a stronger ability to express uncertain information than intuitionistic fuzzy sets. This paper firstly defines a new distance measure for circular intuitionistic fuzzy sets based on the theory of circular intuitionistic fuzzy sets, considering the information of four aspects: membership degree, non-membership degree, radius and the assignment of hesitation degree, and proves that the new distance satisfies the distance measure conditions. Secondly, by constructing a manual testing framework, the new distance is analyzed in comparison with the existing distance metric to show the rationality of the new method. Finally, the method is applied to fuzzy multi-criteria decision making to further demonstrate the effectiveness and practicality of the method.

    Citation: Changlin Xu, Yaqing Wen. New measure of circular intuitionistic fuzzy sets and its application in decision making[J]. AIMS Mathematics, 2023, 8(10): 24053-24074. doi: 10.3934/math.20231226

    Related Papers:

  • Circular intuitionistic fuzzy sets are further extensions of intuitionistic fuzzy sets with a stronger ability to express uncertain information than intuitionistic fuzzy sets. This paper firstly defines a new distance measure for circular intuitionistic fuzzy sets based on the theory of circular intuitionistic fuzzy sets, considering the information of four aspects: membership degree, non-membership degree, radius and the assignment of hesitation degree, and proves that the new distance satisfies the distance measure conditions. Secondly, by constructing a manual testing framework, the new distance is analyzed in comparison with the existing distance metric to show the rationality of the new method. Finally, the method is applied to fuzzy multi-criteria decision making to further demonstrate the effectiveness and practicality of the method.



    加载中


    [1] L. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
    [2] K. Atanassov, Intuitionistic Fuzzy Sets, Heidelberg: Physica, 1999. https://doi.org/10.1007/978-3-7908-1870-3_1
    [3] K. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Set. Syst., 61 (1994), 137–142. https://doi.org/10.1016/0165-0114(94)90229-1 doi: 10.1016/0165-0114(94)90229-1
    [4] E. Szmidt, J. Kacprzyk, Distances between intuitionistic fuzzy sets, Fuzzy Set. Syst., 114 (2000), 505–518. https://doi.org/10.1016/S0165-0114(98)00244-9 doi: 10.1016/S0165-0114(98)00244-9
    [5] Z. Liang, P. Shi, Similarity measures on intuitionistic fuzzy sets, Pattern Recogn. Lett., 24 (2003), 2687–2693. https://doi.org/10.1016/S0167-8655(03)00111-9 doi: 10.1016/S0167-8655(03)00111-9
    [6] W. Du, Subtraction and division operations on intuitionistic fuzzy sets derived from the Hamming distance, Inf. Sci., 571 (2021), 206–224. https://doi.org/10.1016/j.ins.2021.04.068 doi: 10.1016/j.ins.2021.04.068
    [7] J. Mahanta, S. Panda, A novel distance measure for intuitionistic fuzzy sets with diverse applications, Int. J. Intell. Syst., 36 (2021), 615–627. https://doi.org/10.1002/int.22312 doi: 10.1002/int.22312
    [8] F. Xiao, A distance measure for intuitionistic fuzzy sets and its application to pattern classification problems, IEEE T. Syst. Man Cy.-S., 51 (2019), 3980–3992. https://doi.org/10.1109/TSMC.2019.2958635 doi: 10.1109/TSMC.2019.2958635
    [9] V. Khatibi, G. A. Montazer, Intuitionistic fuzzy set vs. fuzzy set application in medical pattern recognition, Artif. Intell. Med., 47 (2009), 43–52. https://doi.org/10.1016/j.artmed.2009.03.002 doi: 10.1016/j.artmed.2009.03.002
    [10] B. Gohain, R. Chutia, P. Dutta, Distance measure on intuitionistic fuzzy sets and its application in decision‐making, pattern recognition, and clustering problems, Int. J. Intell. Syst., 37 (2022), 2458–2501. https://doi.org/10.1002/int.22780 doi: 10.1002/int.22780
    [11] W. Zeng, H. Cui, Y. Liu, Q. Yin, Z. S. Xu, Novel distance measure between intuitionistic fuzzy sets and its application in pattern recognition, Iran. J. Fuzzy Syst., 19 (2022), 127–137. https://doi.org/10.22111/ijfs.2022.6947 doi: 10.22111/ijfs.2022.6947
    [12] Z. Xu, Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making, Fuzzy Optim. Decis. Ma., 6 (2007), 109–121. https://doi.org/10.1007/s10700-007-9004-z doi: 10.1007/s10700-007-9004-z
    [13] J. Gao, F. Guo, Z. Ma, X. Huang, Multi-criteria decision-making framework for large-scale rooftop photovoltaic project site selection based on intuitionistic fuzzy sets, Appl. Soft Comput., 102 (2021), 107098. https://doi.org/10.1016/j.asoc.2021.107098 doi: 10.1016/j.asoc.2021.107098
    [14] S. Liu, J. Zhang, B. Niu, L. Liu, X. He, A novel hybrid multi-criteria group decision-making approach with intuitionistic fuzzy sets to design reverse supply chains for COVID-19 medical waste recycling channels, Comput. Ind. Eng., 169 (2022), 108228. https://doi.org/10.1016/j.cie.2022.108228 doi: 10.1016/j.cie.2022.108228
    [15] W. Wang, J. Zhan, J. Mi, A three-way decision approach with probabilistic dominance relations under intuitionistic fuzzy information, Inf. Sci., 582 (2022), 114–145. https://doi.org/10.1016/j.ins.2021.09.018 doi: 10.1016/j.ins.2021.09.018
    [16] K. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Set. Syst., 31 (1989), 343–349. https://doi.org/10.1016/0165-0114(89)90205-4 doi: 10.1016/0165-0114(89)90205-4
    [17] K. Atanassov, Circular intuitionistic fuzzy sets, J. Intell. Fuzzy Syst., 39 (2020), 5981–5986. https://doi.org/10.3233/JIFS-189072 doi: 10.3233/JIFS-189072
    [18] C. Kahraman, N. Alkan, Circular intuitionistic fuzzy TOPSIS method with vague membership functions: Supplier selection application context, Notes Intuitionistic Fuzzy Set., 27 (2021), 24–52. http://dx.doi.org/10.7546/nifs.2021.27.1.24-52 doi: 10.7546/nifs.2021.27.1.24-52
    [19] C. Kahraman, I. Otay, Extension of VIKOR method using circular intuitionistic fuzzy sets, Int. Conf. Intell. Fuzzy Syst., 308 (2021), 48–57. https://doi.org/10.1007/978-3-030-85577-2_6 doi: 10.1007/978-3-030-85577-2_6
    [20] O. İrem, C. Kahraman, A novel circular intuitionistic fuzzy AHP & VIKOR methodology: An application to a multi-expert supplier evaluation problem, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28 (2022), 194–207. http://doi.org/10.5505/pajes.2021.90023 doi: 10.5505/pajes.2021.90023
    [21] T. Chen, A circular intuitionistic fuzzy evaluation method based on distances from the average solution to support multiple criteria intelligent decisions involving uncertainty, Eng. Appl. Artif. Intell., 117 (2023), 105499. https://doi.org/10.1016/j.engappai.2022.105499 doi: 10.1016/j.engappai.2022.105499
    [22] E. Çakır, M. A. Taş, Circular Intuitionistic Fuzzy Analytic Hierarchy Process for Remote Working Assessment in Covid-19, Int. Conf. Intell. Fuzzy Syst., 504 (2022), 589–597. https://doi.org/10.1007/978-3-031-09173-5_68 doi: 10.1007/978-3-031-09173-5_68
    [23] S. Chen, J. Tan, Handling multicriteria fuzzy decision-making problems based on vague set theory, Fuzzy Set. Syst., 67 (1994), 163–172. https://doi.org/10.1016/0165-0114(94)90084-1 doi: 10.1016/0165-0114(94)90084-1
    [24] D. Hong, C. choi, Multicriteria fuzzy decision-making problems based on vague set theory, Fuzzy Set. Syst., 114 (2000), 103–113. https://doi.org/10.1016/S0165-0114(98)00271-1 doi: 10.1016/S0165-0114(98)00271-1
    [25] E. Çakır, M. A. Taş, Z. Ulukan, Circular Intuitionistic Fuzzy Sets in Multi Criteria Decision Making, 11th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions and Artificial Intelligence - ICSCCW-2021, 2022. https://doi.org/10.1007/978-3-030-92127-9_9
    [26] K. Atanassov, E. Marinov, Four distances for circular intuitionistic fuzzy sets, Mathematics, 9 (2021), 1121. https://doi.org/10.3390/math9101121 doi: 10.3390/math9101121
    [27] N. Alkan, C. Kahraman, Circular intuitionistic fuzzy topsis method: Pandemic hospital location selection, J. Intell. Fuzzy Syst., 42 (2022), 295–316. https://doi.org/10.3233/JIFS-219193 doi: 10.3233/JIFS-219193
    [28] Y. Yang, F. Chiclana, Consistency of 2D and 3D distances of intuitionistic fuzzy sets, Expert Syst. Appl., 39 (2012), 8665–8670. https://doi.org/10.1016/j.eswa.2012.01.199 doi: 10.1016/j.eswa.2012.01.199
    [29] C. Xu, J. Shen, A new intuitionistic fuzzy set distance and its application in decision-making, Comput. Appl. Res., 37 (2020), 3627–3634. https://doi.org/10.19734/j.issn.1001-3695.2019.09.0545 doi: 10.19734/j.issn.1001-3695.2019.09.0545
    [30] X. Peng, New similarity measure and distance measure for Pythagorean fuzzy set, Complex Intell. Syst., 5 (2019), 101–111. https://doi.org/10.1007/s40747-018-0084-x doi: 10.1007/s40747-018-0084-x
    [31] X. Peng, H. Garg, Multiparametric similarity measures on Pythagorean fuzzy sets with applications to pattern recognition, Appl. Intell., 49 (2019), 4058–4096. https://doi.org/10.1007/s10489-019-01445-0 doi: 10.1007/s10489-019-01445-0
    [32] Y. Li, D. Olson, Z. Qin, Similarity measures between intuitionistic fuzzy (vague) sets: A comparative analysis, Pattern Recogn. Lett., 28 (2007), 278–285. https://doi.org/10.1016/j.patrec.2006.07.009 doi: 10.1016/j.patrec.2006.07.009
    [33] F. E. Boran, S. Genç, M. Kurt, D. Akay, A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method, Expert Syst. Appl., 36 (2009), 11363–11368. https://doi.org/10.1016/j.eswa.2009.03.039 doi: 10.1016/j.eswa.2009.03.039
    [34] M. J. Khan, W. Kumam, N. A. Alreshidi, Divergence measures for circular intuitionistic fuzzy sets and their applications. Eng. Appl. Artif. Intell., 116 (2022), 105455. https://doi.org/10.1016/j.engappai.2022.105455
    [35] M. Akram, W. A. Dudek, F. Ilyas, Group decision-making based on pythagorean fuzzy TOPSIS method, Int. J. Intell. Syst., 34 (2019), 1455–1475. https://doi.org/10.1002/int.22103 doi: 10.1002/int.22103
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1484) PDF downloads(129) Cited by(12)

Article outline

Figures and Tables

Figures(2)  /  Tables(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog