Using the theory of Lie-Hamilton systems, formal generalized time-dependent Hamiltonian systems that extend a recently proposed SIS epidemic model with a variable infection rate are considered. It is shown that, independently on the particular interpretation of the time-dependent coefficients, these systems generally admit an exact solution, up to the case of the maximal extension within the classification of Lie-Hamilton systems, for which a superposition rule is constructed. The method provides the algebraic frame to which any SIS epidemic model that preserves the above-mentioned properties is subjected. In particular, we obtain exact solutions for generalized SIS Hamiltonian models based on the book and oscillator algebras, denoted by $ \mathfrak{b}_2 $ and $ \mathfrak{h}_4 $, respectively. The last generalization corresponds to an SIS system possessing the so-called two-photon algebra symmetry $ \mathfrak{h}_6 $, according to the embedding chain $ \mathfrak{b}_2\subset \mathfrak{h}_4\subset \mathfrak{h}_6 $, for which an exact solution cannot generally be found but a nonlinear superposition rule is explicitly given.
Citation: Rutwig Campoamor-Stursberg, Eduardo Fernández-Saiz, Francisco J. Herranz. Exact solutions and superposition rules for Hamiltonian systems generalizing time-dependent SIS epidemic models with stochastic fluctuations[J]. AIMS Mathematics, 2023, 8(10): 24025-24052. doi: 10.3934/math.20231225
Using the theory of Lie-Hamilton systems, formal generalized time-dependent Hamiltonian systems that extend a recently proposed SIS epidemic model with a variable infection rate are considered. It is shown that, independently on the particular interpretation of the time-dependent coefficients, these systems generally admit an exact solution, up to the case of the maximal extension within the classification of Lie-Hamilton systems, for which a superposition rule is constructed. The method provides the algebraic frame to which any SIS epidemic model that preserves the above-mentioned properties is subjected. In particular, we obtain exact solutions for generalized SIS Hamiltonian models based on the book and oscillator algebras, denoted by $ \mathfrak{b}_2 $ and $ \mathfrak{h}_4 $, respectively. The last generalization corresponds to an SIS system possessing the so-called two-photon algebra symmetry $ \mathfrak{h}_6 $, according to the embedding chain $ \mathfrak{b}_2\subset \mathfrak{h}_4\subset \mathfrak{h}_6 $, for which an exact solution cannot generally be found but a nonlinear superposition rule is explicitly given.
[1] | N. T. J. Bailey, The mathematical theory of infectious diseases and its applications, 2 Eds., London: Griffin, 1975. |
[2] | H. W. Hethcote, Three basic epidemiological models, In: S. A. Levin, T. G. Hallam, L. J. Gross, Applied mathematical ecology, Biomathematics, Berlin: Springer, 18 (1989), 119–144. https://doi.org/10.1007/978-3-642-61317-3_5 |
[3] | F. Hoppensteadt, P. Waltman, A problem in the theory of epidemics, Math. Biosci., 9 (1970), 71–91. https://doi.org/10.1016/0025-5564(70)90094-5 doi: 10.1016/0025-5564(70)90094-5 |
[4] | W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. Ser. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118 |
[5] | H. Abbey, An examination of the Reed-Frost theory of epidemics, Hum. Biol., 24 (1952), 201–233. |
[6] | J. C. Miller, Mathematical models of SIR disease spread with combined non-sexual and sexual transmission routes, Infect. Dis. Model., 2 (2017), 35–55. https://doi.org/10.1016/j.idm.2016.12.003 doi: 10.1016/j.idm.2016.12.003 |
[7] | G. M. Nakamura, A. S. Martinez, Hamiltonian dynamics of the SIS epidemic model with stochastic fluctuations, Sci. Rep., 9 (2019), 15841. https://doi.org/10.1038/s41598-019-52351-x doi: 10.1038/s41598-019-52351-x |
[8] | M. S. Bartlett, Stochastic population models in ecology and epidemiology, London: Methuen, 1960. |
[9] | H. Bunke, Gewöhnliche differentialgleichungen mit zufälligen parametern, Berlin: Akademie-Verlag, 1972. |
[10] | J. A. Lázaro-Camí, J. P. Ortega, The stochastic Hamilton-Jacobi equation, J. Geom. Mech., 1 (2009), 295–315. https://doi.org/10.3934/jgm.2009.1.295 doi: 10.3934/jgm.2009.1.295 |
[11] | M. C. Nucci, P. G. L. Leach, An integrable SIS model, J. Math. Anal. Appl., 290 (2004), 506–518. https://doi.org/10.1016/j.jmaa.2003.10.044 doi: 10.1016/j.jmaa.2003.10.044 |
[12] | A. Ballesteros, A. Blasco, I. Gutierrez-Sagredo, Hamiltonian structure of compartmental epidemiological models, Phys. D, 413 (2020), 132656. https://doi.org/10.1016/j.physd.2020.132656 doi: 10.1016/j.physd.2020.132656 |
[13] | O. Esen, E. Fernández-Saiz, C. Sardón, M. Zajac, A generalization of a SIS epidemic model with fluctuations, Math. Meth. Appl. Sci., 45 (2022), 3718–3731. https://doi.org/10.1002/mma.8013 doi: 10.1002/mma.8013 |
[14] | M. Bohner, S. Streipert, D. F. M. Torres, Exact solution to a dynamic SIR model, Nonlinear Anal., 32 (2019), 228–238. https://doi.org/10.1016/j.nahs.2018.12.005 doi: 10.1016/j.nahs.2018.12.005 |
[15] | A. Ballesteros, A. Blasco, I. Gutierrez-Sagredo, Exact closed-form solution of a modified SIR model, arXiv, 2020. https://doi.org/10.48550/arXiv.2007.16069 |
[16] | Z. Chladná, J. Kopfová, D. Rachinskii, S. C. Rouf, Global dynamics of SIR model with switched transmission rate, J. Math. Biol., 80 (2020), 1209–1233. https://doi.org/10.1007/s00285-019-01460-2 doi: 10.1007/s00285-019-01460-2 |
[17] | Z. Chladná, J. Kopfová, D. Rachinskii, P. Štepánek, Effect of quarantine strategies in a compartmental model with asymptomatic groups, J. Dyn. Diff. Equat., 2021. https://doi.org/10.1007/s10884-021-10059-5 doi: 10.1007/s10884-021-10059-5 |
[18] | J. A. Lázaro-Camí, J. P. Ortega, Stochastic Hamiltonian dynamical systems, Rep. Math. Phys., 61 (2008), 65–122. https://doi.org/10.1016/S0034-4877(08)80003-1 doi: 10.1016/S0034-4877(08)80003-1 |
[19] | J. A. Lázaro-Camí, J. P. Ortega, Reduction, reconstruction, and skew-product decomposition of symmetric stochastic differential equations, Stoch. Dynam., 9 (2009), 1–46. https://doi.org/10.1142/S0219493709002531 doi: 10.1142/S0219493709002531 |
[20] | A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011), 876–902. https://doi.org/10.1137/10081856X doi: 10.1137/10081856X |
[21] | O. M. Otunuga, Time-dependent probability distribution for number of infection in a stochastic SIS model: case study COVID-19, Chaos Soliton. Fract., 147 (2021), 110983. https://doi.org/10.1016/j.chaos.2021.110983 doi: 10.1016/j.chaos.2021.110983 |
[22] | J. Groh, A stochastic differential equation for a class of Feller's one-dimensional diffusion, Math. Nachr., 107 (1982), 267–271. https://doi.org/10.1002/mana.19821070122 doi: 10.1002/mana.19821070122 |
[23] | J. F. Cariñena, J. de Lucas, C. Sardón, Lie-Hamilton systems: theory and applications, Int. J. Geom. Methods Mod. Phys., 10 (2013), 1350047. https://doi.org/10.1142/S0219887813500473 doi: 10.1142/S0219887813500473 |
[24] | A. Ballesteros, J. F. Cariñena, F. J. Herranz, J. de Lucas, C. Sardón, From constants of motion to superposition rules for Lie–{H}amilton systems, J. Phys. A: Math. Theor., 46 (2013), 285203. https://doi.org/10.1088/1751-8113/46/28/285203 doi: 10.1088/1751-8113/46/28/285203 |
[25] | A. Ballesteros, A. Blasco, F. J. Herranz, J. de Lucas, C. Sardón, Lie-Hamilton systems on the plane: properties, classification and applications, J. Differ. Equ., 258 (2015), 2873–2907. https://doi.org/10.1016/j.jde.2014.12.031 doi: 10.1016/j.jde.2014.12.031 |
[26] | A. Blasco, F. J. Herranz, J. de Lucas, C. Sardón, Lie-Hamilton systems on the plane: applications and superposition rules, J. Phys. A: Math. Theor., 48 (2015), 345202. https://doi.org/10.1088/1751-8113/48/34/345202 doi: 10.1088/1751-8113/48/34/345202 |
[27] | J. de Lucas, C. Sardón, A guide to Lie systems with compatible geometric structures, Singapore: World Scientific, 2020. https://doi.org/10.1142/q0208 |
[28] | P. Winternitz, Lie groups and solutions of nonlinear differential equations, In: K. B. Wolf, Nonlinear phenomena, Lectures Notes in Physics, Springer, Berlin, Heidelberg, 189 (1983), 263–331. https://doi.org/10.1007/3-540-12730-5_12 |
[29] | J. F. Cariñena, J. Grabowski, G. Marmo, Superposition rules, Lie theorem and partial differential equations, Rep. Math. Phys., 60 (2007), 237–258. https://doi.org/10.1016/S0034-4877(07)80137-6 doi: 10.1016/S0034-4877(07)80137-6 |
[30] | J. A. Lázaro-Camí, J. P. Ortega, Superposition rules and stochastic Lie-Scheffers systems, Ann. Inst. H. Poincaré Probab. Statist., 45 (2009), 910–931. https://doi.org/10.1214/08-AIHP189 doi: 10.1214/08-AIHP189 |
[31] | V. I. Arnold, Mathematical methods of classical mechanics, New York: Springer, 1989. https://doi.org/10.1007/978-1-4757-2063-1 |
[32] | A. Ballesteros, A. Blasco, F. J. Herranz, F. Musso, O. Ragnisco, (Super)integrability from coalgebra symmetry: formalism and applications, J. Phys.: Conf. Ser., 175 (2009), 012004. https://doi.org/10.1088/1742-6596/175/1/012004 doi: 10.1088/1742-6596/175/1/012004 |
[33] | A. Ballesteros, R. Campoamor-Stursberg, E. Fernández-Saiz, F. J. Herranz, J. de Lucas, Poisson-Hopf deformations of Lie-Hamilton systems revisited: deformed superposition rules and applications to the oscillator algebra, J. Phys. A: Math. Theor., 54 (2021), 205202. https://doi.org/10.1088/1751-8121/abf1db doi: 10.1088/1751-8121/abf1db |
[34] | W. M. Zhang, D. H. Feng, R. Gilmore, Coherent states: theory and some applications, Rev. Mod. Phys., 62 (1990), 867–927. https://doi.org/10.1103/RevModPhys.62.867 doi: 10.1103/RevModPhys.62.867 |
[35] | Á. Ballesteros, A. Blasco, F. J. Herranz, $N$-dimensional integrability from two-photon coalgebra symmetry, J. Phys. A: Math. Theor., 42 (2009), 265205. https://doi.org/10.1088/1751-8113/42/26/265205 doi: 10.1088/1751-8113/42/26/265205 |
[36] | L. A. Real, R. Biek, Spatial dynamics and genetics of infectious diseases on heterogeneous landscapes, J. R. Soc. Interface, 4 (2007), 935–948. https://doi.org/10.1098/rsif.2007.1041 doi: 10.1098/rsif.2007.1041 |
[37] | A. B. Duncan, A. Gonzalez, O. Kaltz, Stochastic environmental fluctuations drive epidemiology in experimental host-parasite metapopulations, Proc. R. Soc. B, 280 (2013), 20131747. https://doi.org/10.1098/rspb.2013.1747 doi: 10.1098/rspb.2013.1747 |
[38] | I. Z. Kiss, P. L. Simon, New moment closures based on a priori distributions with applications to epidemic dynamics, Bull. Math. Biol., 74 (2012), 1501–1515. https://doi.org/10.1007/s11538-012-9723-3 doi: 10.1007/s11538-012-9723-3 |
[39] | R. V. dos Santos, F. L. Ribeiro, A. S. Martinez, Models for Allee effect based on physical principles, J. Theor. Biol., 385 (2015), 143–152. https://doi.org/10.1016/j.jtbi.2015.08.018 doi: 10.1016/j.jtbi.2015.08.018 |
[40] | J. M. G. Vilar, J. M. Rubi, Determinants of population responses to environmental fluctuations, Sci. Rep., 8 (2018), 887. https://doi.org/10.1038/s41598-017-18976-6 doi: 10.1038/s41598-017-18976-6 |
[41] | J. A. Cui, X. Tao, H. Zhu, An SIS infection model incorporating media coverage, Rocky Mountain J. Math., 38 (2008), 1323–1334. https://doi.org/10.1216/RMJ-2008-38-5-1323 doi: 10.1216/RMJ-2008-38-5-1323 |
[42] | D. Gao, S. Ruan, An SIS patch model with variable transmission coefficients, Math. Biosci., 232 (2011), 110–115. https://doi.org/10.1016/j.mbs.2011.05.001 doi: 10.1016/j.mbs.2011.05.001 |
[43] | P. van den Driessche, Reproduction numbers of infectious disease models, Infect. Dis. Mod., 2 (2017), 288–303. https://doi.org/10.1016/j.idm.2017.06.002 doi: 10.1016/j.idm.2017.06.002 |
[44] | S. Lie, G. Scheffers, Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen, Leipzig: B. G. Teubner, 1883. https://doi.org/10.5962/bhl.title.18549 |
[45] | J. F. Cariñena, F. Falceto, J. Grabowski, Solvability of a Lie algebra of vector fields implies their integrability by quadratures, J. Phys. A: Math. Theor., 49 (2016), 425202. https://doi.org/10.1088/1751-8113/49/42/425202 doi: 10.1088/1751-8113/49/42/425202 |
[46] | J. F. Cariñena, J. de Lucas, Lie systems: theory, generalisations, and applications, Diss. Math., 479 (2011), 1–162. https://doi.org/10.4064/dm479-0-1 doi: 10.4064/dm479-0-1 |
[47] | J. F. Cariñena, F. Falceto, J. Grabowski, M. F. Rañada, Geometry of Lie integrability by quadratures, J. Phys. A: Math. Theor., 48 (2015), 215206. https://doi.org/10.1088/1751-8113/48/21/215206 doi: 10.1088/1751-8113/48/21/215206 |
[48] | J. F. Cariñena, M. F. Rañada, F. Falceto, J. Grabowski, Revisiting Lie integrability by quadratures from a geometric perspective, Banach Center Publ., 110 (2016), 24–40. https://doi.org/10.4064/bc110-0-2 doi: 10.4064/bc110-0-2 |
[49] | G. W. Bluman, J. D. Cole, Similarity methods for differential equations, New York: Springer, 1974. https://doi.org/10.1007/978-1-4612-6394-4 |
[50] | A. Ballesteros, F. J. Herranz, P. Parashar, (1+1) Schrödinger Lie bialgebras and their Poisson-Lie groups, J. Phys. A: Math. Gen., 33 (2000), 3445–3465. https://doi.org/10.1088/0305-4470/33/17/304 doi: 10.1088/0305-4470/33/17/304 |
[51] | B. Prasse, P. Van Mieghem, Time-dependent solution of the NIMFA equations around the epidemic threshold, J. Math. Bio., 81 (2020), 1299–1355. https://doi.org/10.1007/s00285-020-01542-6 doi: 10.1007/s00285-020-01542-6 |
[52] | S. Bonaccorsi, S. Ottaviano, A stochastic differential equation SIS model on network under Markovian switching, Stoch. Anal. Appl., 2022. https://doi.org/10.1080/07362994.2022.2146590 doi: 10.1080/07362994.2022.2146590 |
[53] | T. C. Bountis, V. Papageorgiou, P. Winternitz, On the integrability of systems of nonlinear ordinary differential equations with superposition principles, J. Math. Phys., 27 (1986), 1215–1224. https://doi.org/10.1063/1.527128 doi: 10.1063/1.527128 |
[54] | J. F. Cariñena, J. Grabowski, A. Ramos, Reduction of time-dependent systems admitting a superposition principle, Acta Appl. Math., 66 (2001), 67–87. https://doi.org/10.1023/A:1010743114995 doi: 10.1023/A:1010743114995 |
[55] | A. Ballesteros, R. Campoamor-Stursberg, E. Fernández-Saiz, F. J. Herranz, J. de Lucas, Poisson-Hopf algebra deformations of Lie-Hamilton systems, J. Phys. A: Math. Theor., 51 (2018), 065202. https://doi.org/10.1088/1751-8121/aaa090 doi: 10.1088/1751-8121/aaa090 |
[56] | A. Ballesteros, R. Campoamor-Stursberg, E. Fernández-Saiz, F. J. Herranz, J. de Lucas, A unified approach to Poisson-Hopf deformations of Lie-Hamilton systems based on ${\mathfrak sl}(2)$, In: V. Dobrev, Quantum theory and symmetries with Lie theory and its applications in physics, Springer Proceedings in Mathematics & Statistics, Singapore: Springer, 263 (2018), 347–366. https://doi.org/10.1007/978-981-13-2715-5_23 |
[57] | V. Chari, A. Pressley, A guide to quantum groups, Cambridge: Cambridge University Press, 1994. |
[58] | A. Ballesteros, F. J. Herranz, Lie bialgebra quantizations of the oscillator algebra and their universal $R$-matrices, J. Phys. A: Math. Gen., 29 (1996), 4307–4320. https://doi.org/10.1088/0305-4470/29/15/006 doi: 10.1088/0305-4470/29/15/006 |