Using the theory of Lie-Hamilton systems, formal generalized time-dependent Hamiltonian systems that extend a recently proposed SIS epidemic model with a variable infection rate are considered. It is shown that, independently on the particular interpretation of the time-dependent coefficients, these systems generally admit an exact solution, up to the case of the maximal extension within the classification of Lie-Hamilton systems, for which a superposition rule is constructed. The method provides the algebraic frame to which any SIS epidemic model that preserves the above-mentioned properties is subjected. In particular, we obtain exact solutions for generalized SIS Hamiltonian models based on the book and oscillator algebras, denoted by b2 and h4, respectively. The last generalization corresponds to an SIS system possessing the so-called two-photon algebra symmetry h6, according to the embedding chain b2⊂h4⊂h6, for which an exact solution cannot generally be found but a nonlinear superposition rule is explicitly given.
Citation: Rutwig Campoamor-Stursberg, Eduardo Fernández-Saiz, Francisco J. Herranz. Exact solutions and superposition rules for Hamiltonian systems generalizing time-dependent SIS epidemic models with stochastic fluctuations[J]. AIMS Mathematics, 2023, 8(10): 24025-24052. doi: 10.3934/math.20231225
[1] | Raziuddin Siddiqui . Infinitesimal and tangent to polylogarithmic complexes for higher weight. AIMS Mathematics, 2019, 4(4): 1248-1257. doi: 10.3934/math.2019.4.1248 |
[2] | Rajesh Kumar, Sameh Shenawy, Lalnunenga Colney, Nasser Bin Turki . Certain results on tangent bundle endowed with generalized Tanaka Webster connection (GTWC) on Kenmotsu manifolds. AIMS Mathematics, 2024, 9(11): 30364-30383. doi: 10.3934/math.20241465 |
[3] | Yanlin Li, Aydin Gezer, Erkan Karakaş . Some notes on the tangent bundle with a Ricci quarter-symmetric metric connection. AIMS Mathematics, 2023, 8(8): 17335-17353. doi: 10.3934/math.2023886 |
[4] | Mohammad Nazrul Islam Khan, Uday Chand De . Liftings of metallic structures to tangent bundles of order r. AIMS Mathematics, 2022, 7(5): 7888-7897. doi: 10.3934/math.2022441 |
[5] | Hailin Liu, Longzhi Lu, Liping Zhong . On the proportion of elements of order a product of two primes in finite symmetric groups. AIMS Mathematics, 2024, 9(9): 24394-24400. doi: 10.3934/math.20241188 |
[6] | Ling Zhu . New inequalities of Wilker’s type for circular functions. AIMS Mathematics, 2020, 5(5): 4874-4888. doi: 10.3934/math.2020311 |
[7] | Yanyan Gao, Yangjiang Wei . Group codes over symmetric groups. AIMS Mathematics, 2023, 8(9): 19842-19856. doi: 10.3934/math.20231011 |
[8] | Tong Wu, Yong Wang . Gauss-Bonnet theorems in the generalized affine group and the generalized BCV spaces. AIMS Mathematics, 2021, 6(11): 11655-11685. doi: 10.3934/math.2021678 |
[9] | Yan Shi, Qunzhen Zheng, Jingben Yin . Effective outcome space branch-and-bound algorithm for solving the sum of affine ratios problem. AIMS Mathematics, 2024, 9(9): 23837-23858. doi: 10.3934/math.20241158 |
[10] | Rabha W. Ibrahim, Dumitru Baleanu . Fractional operators on the bounded symmetric domains of the Bergman spaces. AIMS Mathematics, 2024, 9(2): 3810-3835. doi: 10.3934/math.2024188 |
Using the theory of Lie-Hamilton systems, formal generalized time-dependent Hamiltonian systems that extend a recently proposed SIS epidemic model with a variable infection rate are considered. It is shown that, independently on the particular interpretation of the time-dependent coefficients, these systems generally admit an exact solution, up to the case of the maximal extension within the classification of Lie-Hamilton systems, for which a superposition rule is constructed. The method provides the algebraic frame to which any SIS epidemic model that preserves the above-mentioned properties is subjected. In particular, we obtain exact solutions for generalized SIS Hamiltonian models based on the book and oscillator algebras, denoted by b2 and h4, respectively. The last generalization corresponds to an SIS system possessing the so-called two-photon algebra symmetry h6, according to the embedding chain b2⊂h4⊂h6, for which an exact solution cannot generally be found but a nonlinear superposition rule is explicitly given.
Goncharov was the first to find relations between the Grassmannian complex of projective configurations and Bloch-Suslin complex for weight n=2, and to the Goncharov's motivic complex for weight n=3 (see [3]). This idea leads to the remarkable proof of Zagier's conjecture for weights n=2,3 (see [4]). On the other hand, Cathelineau introduced the tangent form of the Bloch-Suslin complex and provided some suggestions about the tangent form of Goncharov's complex (see [1]).
The main idea of this article is to view geometric features of tangent groups, TB2(F) and TB3(F), where TB2(F) is the tangent form of Bloch group B2(F) (see [1]), and TB3(F) is the tangent form of Goncharov's group B3(F) (see §3.2) for any field F. To accomplish this task, we define morphisms τ20,ε, τ21,ε, (between the Grassamannian complex of geometric configurations and tangent to the Bloch-Suslin complex) and τ30,ε, τ31,ε, τ32,ε (between the Grassamannian complex of geometric configurations and tangent to the Goncharov's complex) for weights n=2,3. Due to these morphisms, we get diagrams which are shown to be commutative (main result Theorem 3.7). The major techniques for showing our main result, are to invoke combinatorics in the symmetric group S6 and to rewrite triple ratios in the product of two projected cross-ratios. Here, we use permutations of symmetric group S6 in the alternation sums. The alternation sum Alt6 in our map τ32,ε has 6! terms, but due to inversion and cyclic symmetry, it reduces to 6!/(3!)=120 terms.
The cross ratio identity over a field F was first defined by Siegel (see [6]). To view the geometry of configurations in tangent groups, it is required to introduce an analogue to the Siegel cross-ratio identity for the determinants of matrices of order 2×2 (see Lemma 2.1) that can also be extended to 3×3 determinants of matrices. These analogues and Lemma 2.1 enabled us to produce the analogues of cross-ratios and triple ratios.
On the basis of these analogues, we find morphisms between the Grassmannian subcomplex C∗(AnF[ε]2,d) and tangent to the Bloch-Suslin and to Goncharov complexes (see §3.1 and §3.2). The proof of the main result requires projected five term relation in TB2(F). To serve this purpose, we prove the existence of the projected five term relation in TB2(F) (see Lemma 3.4). This relation is also an analogue of Goncharov's projected five term relation in B2(F).
In §3.2, we define the tangent group TB3(F) which was first hypothetically defined in §9 of [1]. On the basis of our definition, we mimic construction of TB3(F) with the F-vector space βD3(F) ([5]) and reproduce Cathelineau's 22-term functional equation for TB3(F).
Let F be a field of characteristic 0. For ν≥1, we denote the νth truncated polynomial ring over F by F[ε]ν:=F[ε]/εν. Further define Cm(AnF[ε]ν) as a free abelian group generated by m generic points in AnF[ε]ν (an n dimensional affine space over F[ε]ν). Here, we are not considering degenerate points and are also assuming that no two points coincide and no three points lie on a line. Now for n=2 and ν=2, any ηi=(aibi)∈A2F∖{(00)} and ηi,ε:=(ai,εbi,ε)∈A2F, we put η∗i=(ai+ai,εεbi+bi,εε)=(aibi)+(ai,εbi,ε)ε=ηi+ηi,εε and define a boundary map
d:Cm+1(A2F[ε]2)→Cm(A2F[ε]2) |
d:(η∗0,…,η∗m)↦m∑i=0(−1)i(η∗0,…,ˆη∗i,…,η∗m). |
Let ω∈V∗2 be a volume element formed in V2:=A2F and Δ(ηi,ηj)=⟨ω,ηi∧ηj⟩, where ηi,ηj∈A2F. Here we define
Δ(η∗i,η∗j)=Δ(η∗i,η∗j)ε0+Δ(η∗i,η∗j)ε1ε |
where
Δ(η∗i,η∗j)ε0=Δ(ηi,ηj) and Δ(η∗i,η∗j)ε1=Δ(ηi,ηj,ε)+Δ(ηi,ε,ηj). |
More generally for ν=n+1, we have
η∗i=ηi+ηi,εε+ηi,ε2ε2+⋯+ηi,εnεn and ηi,ε0=ηi |
and we get
Δ(η∗i,η∗j)=Δ(ηi,ηj)+Δ(η∗i,η∗j)εε+Δ(η∗i,η∗j)ε2ε2+⋯+Δ(η∗i,η∗j)εnεn, |
where
Δ(η∗i,η∗j)εn=Δ(ηi,ηj,εn)+Δ(ηi,ε,ηj,εn−1)+⋯+Δ(ηi,εn,ηj) |
Consider the Siegel cross-ratio identity for the 2×2 determinants of four vectors in C4(A2F) (see [3], [6])
Δ(η0,η1)Δ(η2,η3)=Δ(η0,η2)Δ(η1,η3)−Δ(η0,η3)Δ(η1,η2) | (2.1) |
With the above notation, an analogue to the Siegel cross-ratio identity turns out to be true for A2F[ε]n+1, and we can extract further results which are essential for the proof of our main results. Throughout this section we will assume that Δ(ηi,ηj)≠0 for i≠j.
Lemma 2.1. For (η∗0,η∗1,η∗2,η∗3)∈C4(A2F[ε]n+1), we have
Δ(η∗0,η∗1)Δ(η∗2,η∗3)=Δ(η∗0,η∗2)Δ(η∗1,η∗3)−Δ(η∗0,η∗3)Δ(η∗1,η∗2) | (2.2) |
where
η∗i=ηi+ηi,εε+ηi,ε2ε2+⋯+ηi,εnεnandηi,ε0=ηi |
Δ(η∗i,η∗j)=Δ(ηi,ηj)+Δ(η∗i,η∗j)εε+Δ(η∗i,η∗j)ε2ε2+⋯+Δ(η∗i,η∗j)εnεn |
for
Δ(η∗i,η∗j)εn=Δ(ηi,ηj,εn)+Δ(ηi,ε,ηj,εn−1)+⋯+Δ(ηi,εn,ηj) |
Proof. For r=0,…,n, we can write η∗=(∑r≥0ηrεr∑r≥0η′rεr) and m∗=(∑r≥0mrεr∑r≥0m′rεr).
Now we have
Δ(η∗,m∗)=|∑r≥0ηrεr∑r≥0mrεr∑r≥0η′rεr∑r≥0m′rεr|=∑r≥0(r∑k=0ηkm′r−k−r∑k=0η′kmr−k)εr=∑r≥0(r∑k=0Δ(ηk,mr−k))εr |
Hence
Δ(η∗0,η∗1)Δ(η∗2,η∗3)=∑r≥0(r∑k=0Δ(η0,k,η1,r−k))εr⋅∑s≥0(∑rj=0Δ(η0,j,η1,r−j))εs=∑t≥0εt(t∑r=0(r∑k=0Δ(η0,k,η1,r−k)t−r∑j=0Δ(η2,j,η3,t−r−j)))=∑t≥0εt(t∑r=0(r∑k=0t−r∑j=0Δ(η0,k,η1,r−k)Δ(η2,j,η3,t−r−j))), |
and similarly for Δ(η∗0,η∗2)Δ(η∗1,η∗3) and Δ(η∗0,η∗3)Δ(η∗1,η∗2). Hence we use the validity of (2.1) to deduce the analogue for Δ(η∗i,η∗j)'s in place of Δ(ηi,ηj) passing from the ring F[[ε]] of power series to a truncated polynomial ring, say to F[ε]n+1.
For the special cases; we find the identity (2.1) for n=0, while for n=1 we have the following identity which will be used extensively below:
Δ(η0,η1)Δ(η∗2,η∗3)ε+Δ(η2,η3)Δ(η∗0,η∗1)ε={Δ(η0,η2)Δ(η∗1,η∗3)ε+Δ(η1,η3)Δ(η∗0,η∗2)ε}−{Δ(η0,η3)Δ(η∗1,η∗2)ε+Δ(η1,η2)Δ(η∗0,η∗3)ε}. | (2.3) |
if we write
(ab)εn:=aεnbε0+aεn−1bε+⋯+aε0bεn |
then (2.3) can be more concisely written as
{Δ(η∗0,η∗1)Δ(η∗2,η∗3)}ε={Δ(η∗0,η∗2)Δ(η∗1,η∗3)}ε−{Δ(η∗0,η∗3)Δ(η∗1,η∗2)}ε. |
Now we have enough tools to find the cross-ratios of four points over the truncated polynomial ring F[ε]ν. The identity (2.2) of Lemma 2.1 enables us to compute this ratio in F[ε]ν for ν=n+1. First we define the cross-ratio of four points (η∗0,…,η∗3)∈C4(A2F[ε]n+1) as
r(η∗0,…,η∗3)=Δ(η∗0,η∗3)Δ(η∗1,η∗2)Δ(η∗0,η∗2)Δ(η∗1,η∗3) |
We also expand r(η∗0,…,η∗3) as a truncated polynomial over F[ε]n+1
r(η∗0,…,η∗3)=(rε0+rεε+rε2ε2+⋯+rεnεn)(η∗0,…,η∗3) | (2.4) |
After truncating this for n=0, one gets
r(η∗0,…,η∗3)=rε0(η∗0,…,η∗3)=r(η0,…,η3)=Δ(η0,η3)Δ(η1,η2)Δ(η0,η2)Δ(η1,η3) | (2.5) |
If we truncate (2.4) for n=1 then the coefficient of ε0 will remain the same as for n=0, thus we only need to compute the coefficient of ε in the following way:
After considering (η∗0,…,η∗3)∈C4(A2F[ε]2) in a generic position, we get
r(η∗0,…,η∗3)=Δ(η∗0,η∗3)Δ(η∗1,η∗2)Δ(η∗0,η∗2)Δ(η∗1,η∗3)={Δ(η0,η3)+Δ(η∗0,η∗3)εε}{Δ(η1,η2)+Δ(η∗1,η∗2)εε}{Δ(η0,η2)+Δ(η∗0,η∗2)εε}{Δ(η1,η3)+Δ(η∗1,η∗3)εε} |
If a≠0∈F then 1a+bε=1a−ba2ε∈F[ε]2 (this is the same as the inversion relation in TB2(F) discussed later in §3.3).
Let us simplify the above obtained result by multiplying the inverses of denominators and separate the coefficients of ε0 and ε. The coefficient of ε becomes
rε(η∗0,…,η∗3)={Δ(η∗0,η∗3)Δ(η∗1,η∗2)}εΔ(η0,η2)Δ(η1,η3)−r(η0,…,η3){Δ(η∗0,η∗2)Δ(η∗1,η∗3)}εΔ(η0,η2)Δ(η1,η3) | (2.6) |
Let us trancate it for n=2, i.e., (η∗0,…,η∗3)∈C4(A2F[ε]3). To make computations easy, we write (ηi,ηj) instead of Δ(ηi,ηj)
r(η∗0,…,η∗3)={(η0,η3)+(η∗0,η∗3)εε+(η∗0,η∗3)ε2ε2}{(η1,η2)+(η∗1,η∗2)εε+(η∗1,η∗2)ε2ε2}{(η0,η2)+(η∗0,η∗2)εε+(η∗0,η∗3)ε2ε2}{(η1,η3)+(η∗1,η∗3)εε+(η∗1,η∗3)ε2ε2} |
simplify and then separate the coefficients of ε0, ε1 and ε2. The coefficients of ε0 and ε1 are the same as we computed in (2.5) and (2.6) respectively, and the coefficient of ε2 is
rε2(η∗0,…,η∗3)={(η∗0,η∗3)(l∗1,l∗2)}ε2(η0,η2)(η1,η3)−rε(η∗0,…,η∗3){(η∗0,η∗2)(η∗1,η∗3)}ε(η0,η2)(η1,η3)−r(η0,…,η3){(η∗0,l∗2)(η∗1,η∗3)}ε2(η0,η2)(η1,η3) | (2.7) |
Remark 2.2. The computation of coefficient of εn, which is rεn(η∗0,…,η∗3), in the truncated polynomial (2.4) will give us the following:
n∑k=0({Δ(η∗0,η∗2)Δ(η∗1,η∗3)}εkrεn−k(η∗0,…,η∗3))={Δ(η∗0,η∗3)Δ(η∗1,η∗2)}εn, |
where Δ(ηi,ηj)≠0 for i≠j and (η∗0,…,η∗3)∈C4(A2F[ε]n+1).
First, we define a triple-ratio r3:C6(A3F)→F as (see [4])
r3(η0,…,η5)=Alt6Δ(η0,η1,η3)Δ(η1,η2,η4)Δ(η2,η0,η5)Δ(η0,η1,η4)Δ(η1,η2,η5)Δ(η2,η0,η3) |
where C6(A3F) is a free abelian group generated by the configurations of six points in A3F and A3F is a three dimensional affine space over a field F. Here, we will discuss triple-ratio (generalized cross-ratio) of 6 points, i.e., (η∗0,…,η∗5)∈C6(A3F[ε]ν) for ν=n+1. The calculations in triple-ratio are similar to the cross-ratio of 4 points (η∗0,…,η∗3)∈C4(A2F[ε]ν). Let's consider ν=2 since the other cases are not required.
We take (η∗0,…,η∗5)∈C6(A3F[ε]2), for any η∗i∈(η∗0,…,η∗5)
l∗i=(ai+ai,εεbi+bi,εεci+ci,εε)=(aibici)+(ai,εbi,εci,ε)ε=ηi+ηi,εε |
Δ(η∗i,η∗j,η∗k)=Δ(ηi,ηj,ηk)+Δ(η∗i,η∗j,η∗k)εε |
where Δ(ηi,ηj,ηk) is a 3×3-determinant,
Δ(η∗i,η∗j,η∗k)ε=Δ(ηi,ε,ηj,ηk)+Δ(ηi,ηj,ε,ηk)+Δ(ηi,ηj,ηk,ε) |
and
Δ(η∗i,η∗j,η∗k)ε0=Δ(ηi,ηj,ηk) |
As we can expand, we also get the equalities.
r3(η∗0,…,η∗5)=r3(η0,…,η5)+r3,ε(η∗0,…,η∗5)ε |
for Δ(ηi,ηj,ηj)≠0, the multiplicative inverse of Δ(η∗i,η∗j,η∗k) is −1Δ(ηi,ηj,ηj)−Δ(η∗i,η∗j,η∗k)εΔ(ηi,ηj,ηj)2ε and from now on, If simplify the previous equalities, we may use (η∗iη∗jη∗k) instead of Δ(η∗i,η∗j,η∗k) unless specified.
r(η∗0,…,η∗5)=Alt6(η∗0η∗1η∗3)(η∗1η∗2η∗4)(η∗2η∗0η∗5)(η∗0η∗1η∗4)(η∗1η∗2η∗5)(η∗2η∗0η∗3)=Alt6{{(η0η1η3)+(η∗0η∗1η∗3)εε}{(η1η2η4)+(η∗1η∗2η∗4)εε}{(η2η0η5)+(η∗2η∗0η∗5)εε}{(η0η1η4)+(η∗0η∗1η∗4)εε}{(η1η2η5)+(η∗1η∗2η∗5)εε}{(η2η0η3)+(η∗2η∗0η∗3)εε}} |
Simplifying the above and separating the coefficients of ε0 and ε1, we see that the coefficient of ε0 is the triple-ratio of six points (η0,…,η5)∈C6(A3F) and the coefficient of ε is the following:
r3,ε(η∗0,…,η∗5)=Alt6{{(η∗0η∗1η∗3)(η∗1η∗2η∗4)(η∗2η∗0η∗5)}ε(η0η1η4)(η1η2η5)(η2η0η3)−(η0η1η3)(η1η2η4)(η2η0η5)(η0η1η4)(η1η2η5)(η2η0η3){(η∗0η∗1η∗4)(η∗1η∗2η∗5)(η∗2η∗0η∗3)}ε(η0η1η4)(η1η2η5)(η2η0η3)} | (2.8) |
Let F be an algebraically closed field of characteristic 0. Let F[ε]2=F[ε]/ε2 be the truncated polynomial ring (or a ring of dual numbers) for an arbitrary field F. We can define an F×-action in F[ε]2 as follows. For λ∈F×,
λ:F[ε]2→F[ε]2,ϕ+ϕ′ε↦ϕ+λϕ′ε |
we denote this action by ⋆, so we use λ⋆(ϕ+ϕ′ε)=ϕ+λϕ′ε.
The tangent group TB2(F) is defined as a Z-module generated by the combinations [ϕ+ϕ′ε]−[ϕ]∈Z[F[ε]2],(ϕ,ϕ′∈F): For which we put shorthand ⟨ϕ;ϕ′]:=[ϕ+ϕ′ε]−[ϕ] and quotient by the subetaoup generated by the following relation
⟨ϕ;ϕ′]−⟨ψ;ψ′]+⟨ψϕ;(ψϕ)′]−⟨1−ψ1−ϕ;(1−ψ1−ϕ)′]+⟨ϕ(1−ψ)ψ(1−ϕ);(ϕ(1−ψ)ψ(1−ϕ))′],ϕ,ψ≠0,1,ϕ≠ψ | (2.9) |
where
(ψa)′=ϕψ′−ϕ′ψϕ2, |
(1−ψ1−ϕ)′=(1−ψ)ϕ′−(1−ϕ)ψ′(1−ϕ)2 |
and
(ϕ(1−ψ)ψ(1−ϕ))′=ψ(1−ψ)ϕ′−ϕ(1−ϕ)ψ′(ψ(1−ϕ))2 |
Remark 2.3. See [1] for a discussion of TB2(F), where the definition of TB2(F) was justified using Lemma 3.1 of [1]
We give a list of relations in TB2(F) from [1].
(1) The two-term relation:
⟨ϕ;ψ]2=−⟨1−ϕ;−ψ]2 |
(2) The inversion relation:
⟨ϕ;ψ]2=⟨1ϕ;−ψϕ2]2 |
(3) Four-term relation:
If we use ϕ′=ϕ(1−ϕ) and ψ′=ψ(1−ψ) then (2.9) becomes four-term relation (see [1]).
⟨ϕ;ϕ(1−ϕ)]2−⟨ψ;ψ(1−ψ)]2+ϕ⋆⟨ψϕ;ψϕ(1−ψϕ)]2+(1−ϕ)⋆⟨1−ψ1−ϕ;1−ψ1−ϕ(1−1−ψ1−ϕ)]2=0, |
where ϕ,ψ≠0,1,ϕ≠ψ.
The following map is an infinitesimal analogue of δ (defined in [4]) and ∂ (defined in [1] and [5]), Cathelineau called it the tangential map.
TB2(F)∂ε→(F⊗F×)⊕(⋀2F) |
with
∂ε(⟨ϕ;ψ]2)=(ψϕ⊗(1−ϕ)+ψ1−ϕ⊗ϕ)+(ψ1−ϕ∧ψϕ) |
First term of the complex is in degree one and ∂ε has a degree +1.
Note that we get the direct sum of two spaces on the right side.
In this section, we will connect the Grassmannian bicomplex to the tangent to the Bloch-Suslin complex.
We will use the following notations throughout this section
Δ(η∗i,η∗j)ε=Δ(ηi,ε,ηj)+Δ(ηi,ηj,ε)andΔ(η∗i,η∗j)ε0=Δ(ηi,ηj) |
and we will assume that Δ(ηi,ηj)≠0 (as we often want to divide by such determinants).
Let Cm(A2F[ε]2) be the free abelian group generated by the configuration of m points in A2F[ε]2, where A2F[ε]2 is defined as an affine space over F[ε]2. The configurations of m points in A2F[ε]2 are 2-tuples of vectors over F[ε]2 modulo GL2(F[ε]2). In this case, one can write the Grassmannian complex as follows:
⋯d→C5(A2F[ε]2)d→C4(A2F[ε]2)d→C3(A2F[ε]2) |
d:(η∗0,…,η∗m−1)↦m∑i=0(−1)i(η∗0,…,^η∗i,…,η∗m−1) |
where η∗i=(ϕi+ϕi,εεψi+ψi,εε)=(ϕiψi)+(ϕi,εψi,ε)ε=ηi+ηi,εε and ϕi,ψi,ϕi,ε,ψi,ε∈F, (ϕiψi)≠(00).
The diagram below gives the relation between Grassmannian complex and tangent to the Bloch-Suslin complex.
![]() |
(4.2a) |
where
∂ε:⟨ϕ;ψ]2↦(ψϕ⊗(1−ϕ)+ψ1−ϕ⊗ϕ)+(ψ1−ϕ∧ψϕ) |
τ20,ε can be written as a sum of two morphisms
τ(1):C3(A2F[ε]2)→F⊗F× |
and
τ(2):C3(A2F[ε]2)→⋀2F |
where
τ(1)(η∗0,η∗1,η∗2)=Δ(η∗1,η∗2)εΔ(η1,η2)⊗Δ(η0,η2)Δ(η0,η1)−Δ(η∗0,η∗2)εΔ(η0,η2)⊗Δ(η1,η2)Δ(η1,η0)+Δ(η∗0,η∗1)εΔ(η0,η1)⊗Δ(η2,η1)Δ(η2,η0) |
and
τ(2)(η∗0,η∗1,η∗2)=Δ(η∗0,η∗1)εΔ(η0,η1)∧Δ(η∗1,η∗2)εΔ(η1,η2)−Δ(η∗0,η∗1)εΔ(η0,η1)∧Δ(η∗0,η∗2)εΔ(η0,η2)+Δ(η∗1,η∗2)εΔ(η1,η2)∧Δ(η∗0,η∗2)εΔ(η0,η2) |
Furthermore, we put
τ21,ε(η∗0,…,η∗3)=⟨r(η0,…,η3);rε(η∗0,…,η∗3)] |
where r(η0,…,η3) and rε(η∗0,…,η∗3) are the coefficients of ε0 and ε1 respectively.
Our maps τ20,ε and τ21,ε are based on ratios of determinants and cross-ratios respectively, so there is enough evidence that they are well-defined. This independence can be seen directly through the definition of maps.
We will also use shorthand (ηiηj) instead of Δ(ηi,ηj) wherever we find less space to accommodate long expressions.
Now we calculate,
1−r(η∗0,…,η∗3)=Δ(η∗0,η∗1)Δ(η∗2,η∗3)Δ(η∗0,η∗2)Δ(η∗1,η∗3)=(η0η1)(η2η3)(η0η2)(η1η3)+y(η0η2)2(η1η3)2ε | (3.1) |
where
y=+(η0η2)(η1η3)(η0η1)(η2η3,ε)+(η0η2)(η1η3)(η0η1)(η2,εη3)+(η0η2)(η1η3)(η2η3)(η0η1,ε)+(η0η2)(η1η3)(η2η3)(η0,εη1)−(η0η1)(η2η3)(η0η2)(η1η3,ε)−(η0η1)(η2η3)(η0η2)(η1,εη3)−(η0η1)(η2η3)(η1η3)(η0η2,ε)−(η0η1)(η2η3)(η1η3)(η0,εη2) |
Remark 3.1. The F×-action of TB2(F) lifts to an F×-action on C4(A2F[ε]2) in the obvious way:
The F×-action is defined above for F[ε]2 induces an F×-action in A2F[ε]2 diagonally as
λ⋆(a+aεεb+bεε)=(a+λaεεb+λbεε)∈A2F[ε]2,λ∈F× |
Lemma 3.2. The diagram (4.2a) is commutative.
Proof. The proof follows directly from calculation.
In the remainder of this section we prove that the following diagram is a bicomplex.
![]() |
(4.2b) |
To prove that the above diagram is bicomplex, we will give the next results.
Proposition 3.3. The map C4(A3F[ε]2)d′→C3(A2F[ε]2)τ20,ε→(F⊗F×)⊕(⋀2F) is zero.
Proof. Let ω∈detV∗3 be the volume form in three-dimensional vector space V3, i.e., Δ(ηi,ηj,ηk)=⟨ω,ηi∧ηj∧ηk⟩. Then Δ(ηi,⋅,⋅) is a volume form in V3/⟨ηi⟩. Use
Δ(η∗i,η∗j,η∗k)=Δ(ηi,ηj,ηk)+{Δ(η∗i,η∗j,η∗k)ε}ε |
where
Δ(η∗i,η∗j,η∗k)ε=Δ(ηi,ε,ηj,ηk)+Δ(ηi,ηj,ε,ηk)+Δ(ηi,ηj,ηk,ε) |
We can directly compute τ20,ε∘d′ which gives zero.
The following result is very important for proving Theorem 3.7. Through this result we are able to see the projected-five term relation for TB2(F).
Lemma 3.4. Let x∗0,…,x∗4∈P2F[ε]2 be 5 points in generic position. Then
4∑i=0(−1)i⟨r(xi|x0,…,ˆxi,…,x4);rε(x∗i|x∗0,…,ˆx∗i,…,x∗4)]=0∈TB2(F), | (3.2) |
where x∗i=xi+x′iε and xi,x′i∈P2F
r(x∗i|x∗0,…,ˆx∗i,…,x∗4)=r(xi|x0,…,ˆxi,…,x4)+rε(x∗i|x∗0,…,ˆx∗i,…,x∗4)ε, |
Proof. Consider five points y0,…,y4∈P1F in generic position. We can write the five-term relation in terms of cross-ratios in B2(F) as (see Proposition 4.5 (2)b in [2]):
4∑i=0(−1)i[r(y0,…,ˆyi,…,y4)]2=0 |
These five points depend on 2 parameters modulo the action of PGL2(F), whose action on P1F is 3-fold transitive. So we can express these five points with two variables modulo this action as, we can put
(y0,…,y4)=((10),(01),(11),(1ϕ1),(1ψ1)). |
Then we can get the five-term relation in two variables (by using inversion relation in the last two terms).
[ϕ]2−[ψ]2+[ψϕ]2+[1−ϕ1−ψ]2−[1−1ϕ1−1b]2=0. |
Now we consider five points y∗0,…,y∗4∈P1F[ε]2, in generic position, where y∗i=yi+y′iε for yi,y′i∈P1F. A generic 2×2 matrix in PGL2(F[ε]2) depends on 6=2(2×2)−2(1) parameters, while each point in P1F[ε]2 depends on 2 parameters, so these five points in P1F[ε]2 modulo the action of PGL2(F[ε]2) have 4 parameters. Now we can express them by using four variables we choose:
(y∗0,…,y∗4)=((10),(01),(11),(1ϕ−ϕ′ϕ2ε1),(1ψ−ψ′ψ2ε1)). |
We calculate all possible determinants which are the following:
Δ(y0,y1)=Δ(y0,y2)=Δ(y0,y3)=Δ(y0,y4)=1,Δ(y1,y2)=−1,Δ(y1,y3)=−1ϕ,Δ(y1,y4)=−1ψ,Δ(y2,y3)=1−1ϕ,Δ(y2,y4)=1−1ψΔ(y∗0,y∗1)ε=Δ(y∗0,y∗2)ε=Δ(y∗0,y∗3)ε=Δ(y∗0,y∗4)ε=Δ(y∗1,y∗2)ε=0Δ(y∗1,y∗3)ε=Δ(y∗2,y∗3)ε=ϕ′ϕ2,Δ(y∗1,y∗4)ε=Δ(y∗2,y∗4)ε=ψ′ψ2 |
For y∗0,…,y∗4∈P1F[ε]2, we can write the following expression in TB2(F)
4∑i=0(−1)i⟨r(y0,…,ˆyi,…,y4);rε(y∗0,…,ˆy∗i,…,y∗4)]2 |
If we expand the above expression and substitute all the determinants in it, we will get the following expression in two variables.
⟨ϕ;ϕ′]2−⟨ψ;ψ′]2+⟨ψϕ;ϕψ′−ϕ′ψϕ2]2−⟨1−ψ1−ϕ;(1−ψ)ϕ′−(1−ϕ)ψ′(1−ϕ)2]2+⟨ϕ(1−ψ)ψ(1−ϕ);ψ(1−ψ)ϕ′−ϕ(1−ϕ)ψ′(ψ(1−ϕ))2]2 |
From (3.2) it is clear that the above is the LHS of the five-term relation in TB2(F). We first show underneath, that this claim is valid, then later we reduce it to the five-term relation.
Consider x0,…,x4∈P2F in generic position. These five points also depend on 2 parameters modulo the action of PGL2(F), so we can express these five points in terms of two variables by the following choice:
(x0,…,x4)=((100),(010),(001),(111),(1ψ1ϕ1)) |
We compute all possible 3×3 determinants of the above and put them in the expansion of the following:
4∑i=0(−1)i[r(xi|x0,…,ˆxi,…,x4)]2∈B2(F), |
we get the following expression in two variables
[ϕ]2−ψ]2+[ψϕ]2+[1−ϕ1−ψ]2−[1−1ϕ1−1ψ]2, |
clearly the above is the LHS of one version of five-term relation in B2(F).
Since by assumption x∗0,…,x∗4∈P2F[ε]2 are 5 points in generic position, we can express them as modulo the action of PGL3(F[ε]2) into 4 parameters, then we can choose these points in terms of four variables in the following way:
(x∗0,…,x∗4)=((100),(010),(001),(111),(1b−b′b2ε1ϕ−ϕ′ϕ2ε1)) |
We compute all possible 3×3 determinants and substitute them in an expansion of the following:
4∑i=0(−1)i⟨r(xi|x0,…,ˆxi,…,x4);rε(x∗i|x∗0,…,ˆx∗i,…,x∗4)]2∈TB2(F), |
we get
⟨ϕ;ϕ′]2−⟨ψ;ψ′]2+⟨ψϕ;ϕψ′−ϕ′ψϕ2]2−⟨1−ψ1−ϕ;(1−ψ)ϕ′−(1−ϕ)ψ′(1−ϕ)2]2+⟨ϕ(1−ψ)ψ(1−ϕ);ψ(1−ψ)ϕ′−ϕ(1−ϕ)ψ′(ψ(1−ϕ))2]2 |
which is the five-term expression in TB2(F) up to invoking the inversion relation for the last two terms, which also holds in TB2(F).
Lemma 3.4 indicates that we now have the projected five-term relation for TB2(F) and this relation will help us to prove the commutative diagram for weight n=3 in the tangential case.
Proposition 3.5. The map C5(A3F[ε]2)d′→C4(A2F[ε]2)τ21,ε→TB2(F) is zero.
Proof. We can directly calculate τ21ε∘d′.
τ21,ε∘d′(η∗0,…,η∗4)=τ21,ε(4∑i=0(−1)i(η∗i|η∗0,…,ˆη∗i,…,η∗4))=4∑i=0(−1)i⟨r(ηi|η0,…,ˆηi…,η4);rε(η∗i|η∗0,…,ˆη∗i,…,η∗4)]2 | (3.3) |
The above is the projected five term relation in TB2(F) by Lemma 3.4.
Theorem 3.2 shows that the diagram (4.2a) is commutative and Propositions 3.3 and 3.5 shows that we have formed a bicomplex between the Grassmannian complex and Cathelineau's tangent complex.
We have already discussed the tangent group (or Z-module) TB2(F) over F[ε]2 in §3.1. In this section we will discuss group TB3(F) and its functional equations and will connect Grassmannian complex and tangential complex to Goncharov complex.
The Z-module TB3(F) over F[ε]2 is defined as the group generated by:
⟨a;b]=[a+bε]−[a]∈Z[F[ε]2],a,b∈F,a≠0,1 |
and quotient by the kernel of the following map
∂ε,3:Z[F[ε]2]→TB2(F)⊗F×⊕F⊗B2(F),⟨a;b]↦⟨a;b]2⊗a+ba⊗[a]2 |
Now we say that ⟨a;b]3∈TB3(F)⊂Z[F[ε]2]/ker∂ε,3.
We have the following relations which are satisfied in TB3(F).
(1) The three-term relation.
⟨1−a;(1−a)ε]3−⟨a;aε]3−⟨1−1a;(1−1a)ε]3=0∈TB3(F) |
(2) The inversion relation
⟨a;aε]3=⟨1a;(1a)ε]3 |
(3) The Cathelineau 22-term relation ([2])
This relation J(a,b,c) for the indeterminates a,b,c can be written in this way:
J(a,b,c)=[[a,c]]−[[b,c]]+a[[ba,c]]+(1−a)[[1−b1−a,c]], | (3.4) |
where
[[a,b]]=(b−a)τ(a,b)+1−b1−aσ(a)+1−a1−bσ(b), |
while τ(a,b) is defined via five term relation and ⋆-action. We take ⟨xi;xi,ε]3 with coefficient 11−xi which is handled by ⋆-action.
τ(a,b)=⟨a;aε⋅11−a]3−⟨b;bε⋅11−b]3+⟨ba;(ba)ε⋅1a−b]3−⟨1−b1−a;(1−b1−a)ε⋅1b−a]3−⟨a(1−b)b(1−a);(a(1−b)b(1−a))ε⋅1b−a]3 |
and
σ(a)=⟨a;aε⋅a]3+⟨1−a;(1−a)ε⋅(1−a)]3. |
Then we can calculate Cathelineau's 22-term expression by substituting all values in (3.4).
J(a,b,c)=⟨a;aεc]3−⟨b;bεc]3+⟨c;cε(a−b+1)]3+⟨1−a;(1−a)ε(1−c)]3−⟨1−b;(1−b)ε(1−c)]3+⟨1−c;(1−c)ε(b−a)]3−⟨ca;(ca)ε]3+⟨cb;(cb)ε]3+⟨ba;(ba)εc]3−⟨1−c1−a;(1−c1−a)ε]3+⟨1−c1−b;(1−c1−b)ε]3+⟨1−b1−a;(1−b1−a)εc]3+⟨a(1−c)c(1−a);(a(1−c)c(1−a))ε]3−⟨cab;(cab)ε]3−⟨b(1−c)c(1−b);(b(1−c)c(1−b))ε]3+⟨a−ba;(a−ba)ε(1−c)]3+⟨b−a1−a;(b−a1−a)ε(1−c)]3+⟨c(1−a)1−b;(c(1−a)1−b)ε]3−⟨(1−c)aa−b;((1−c)aa−b)ε]3−⟨(1−c)(1−a)b−a;((1−c)(1−a)b−a)ε]3+⟨(1−c)bc(a−b);((1−c)bc(a−b))ε]3+⟨(1−c)(1−b)c(b−a);((1−c)(1−b)c(b−a))ε]3 | (3.5) |
For the special condition aε=a(1−a), bε=b(1−b) and cε=c(1−c), this 22-term expression becomes zero in TB3(F).
One can write the following complex for TB3(F).
TB3(F)∂ε→TB2(F)⊗F×⊕F⊗B2(F)∂ε→(F⊗⋀2F×)⊕(⋀3F) |
In this section, we will introduce morphisms between the Grassmannian complex and the tangent to Goncharov's complex for weight n=3. Consider the following diagram
![]() |
(4.3a) |
Here we define the projected cross-ratio
r(η∗0|η∗1,η∗2,η∗3,η∗4)=Δ(η∗0,η∗1,η∗4)Δ(η∗0,η∗2,η∗3)Δ(η∗0,η∗1,η∗3)Δ(η∗0,η∗2,η∗4) |
which can be further simplifed to
r(η∗0|η∗1,η∗2,η∗3,η∗4)=r(η0|η1,η2,η3,η4)+rε(η∗0|η∗1,η∗2,η∗3,η∗4)ε |
where
r(η0|η1,η2,η3,η4)=Δ(η0,η1,η4)Δ(η0,η2,η3)Δ(η0,η1,η3)Δ(η0,η2,η4) |
rε(η∗0|η∗1,η∗2,η∗3,η∗4)=uΔ(η0,η1,η3)2Δ(η0,η2,η4)2 |
u=−Δ(η0,η1,η4)Δ(η0,η2,η3){Δ(η0,η1,η3)Δ(η∗0,η∗2,η∗4)ε+Δ(η0,η2,η4)Δ(η∗0,η∗1,η∗3)ε}+Δ(η0,η1,η3)Δ(η0,η2,η4){Δ(η0,η1,η4)Δ(η∗0,η∗2,η∗3)ε+Δ(η0,η2,η3)Δ(η∗0,η∗1,η∗4)ε} |
where the morphisms between the two complexes are defined as follows:
τ30,ε(η∗0,…,η∗3)=3∑i=0(−1)i(Δ(η∗0,…,ˆη∗i,…,η∗3)εΔ(η0,…,ˆηi,…,η3)⊗Δ(η0,…,ˆηi+1,…,η3)Δ(η0,…,ˆηi+2,…,η3)∧Δ(η0,…,ˆηi+3,…,η3)Δ(η0,…,ˆηi+2,…,η3)+3⋀j=0j≠iΔ(η∗0,…,ˆη∗j,…,η∗3)εΔ(η0,…,ˆηj,…,η3)),imod4, |
τ31,ε(η∗0,…,η∗4)=−134∑i=0(−1)i(⟨r(ηi|η0,…,ˆηi,…,η4);rε(η∗i|η∗0,…,^η∗i,…,η∗4)]2⊗∏i≠jΔ(ˆηi,ˆηj)+4∑j=0j≠i(Δ(η∗0,…,ˆη∗i,…,ˆη∗j,…,η∗4)εΔ(η0,…,ˆηi,…,ˆηj,…,η4))⊗[r(ηi|η0,…,ˆηi,…,η4)]2) |
and
τ32ε(η∗0,…,η∗5)=245Alt6⟨r3(η0,…,η5);r3,ε(η∗0,…,η∗5)]3 |
where
r3(η0,…,η5)=(η0η1η3)(η1η2η4)(η2η0η5)(η0η1η4)(η1η2η5)(η2η0η3) |
and
r3,ε(η∗0,…,η∗5)={(η∗0η∗1η∗3)(η∗1η∗2η∗4)(η∗2η∗0η∗5)}ε(η0η1η4)(η1η2η5)(η2η0η3)−(η0η1η3)(η1η2η4)(η2η0η5)(η0η1η4)(η1η2η5)(η2η0η3){(η∗0η∗1η∗4)(η∗1η∗2η∗5)(η∗2η∗0η∗3)}ε(η0η1η4)(η1η2η5)(η2η0η3) | (3.6) |
the map ∂ε is defined as
∂ε(⟨a;b]2⊗c+x⊗[y]2)=(−b1−a⊗a∧c−ba⊗(1−a)∧c+x⊗(1−y)∧y)+(b1−a∧ba∧x) |
and
∂ε(⟨a;b]3)=⟨a;b]2⊗a+ba⊗[a]2 |
Theorem 3.6. Diagram (4.3a), i.e.,
![]() |
is commutative, i.e., τ30,ε∘d=∂ε∘τ31,ε
Proof. First we divide the map τ30,ε=τ(1)+τ(2) then calculate τ(1)∘d(η∗0,…,η∗4)
τ(1)∘d(η∗0,…,η∗4)=τ30,ε(4∑i=0(−1)i(η∗0,…,ˆη∗i,…,η∗4)) |
=~Alt(01234)(3∑i=0(−1)i(Δ(η∗0,…,ˆη∗i,…,η∗3)εΔ(η0,…,ˆηi,…,η3)⊗Δ(η0,…,ˆηi+1,…,η3)Δ(η0,…,ˆηi+2,…,η3)∧Δ(η0,…,ˆηi+3,…,η3)Δ(η0,…,ˆηi+2,…,η3)),imod4) | (3.7) |
Now, we expand the inner sum that contains 12 terms and pass them through the this alternation to the inner sum, gives us 60 different terms overall. We collect terms involving the same Δ(η∗i,η∗j,η∗k)Δ(ηi,ηj,ηk)⊗⋯ together for calculation purposes. On the other hand the second part of the map is:
τ(1)∘d(η∗0,…,η∗4)=~Alt(01234)(3∑i=0(−1)i3⋀j=0j≠iΔ(η∗0,…,ˆη∗j,…,η∗3)εΔ(η0,…,ˆηj,…,η3)) | (3.8) |
The other side of the proof requires tedious computations. For the calculation of ∂ε∘τ31,ε we will use the short hand (η∗iη∗jη∗k)ε for Δ(η∗i,η∗j,η∗k)ε and (ηiηjηk) for Δ((ηi,ηj,ηk). First we write ∂ε∘τ31,ε(η∗0,…,η∗4) by using the definitions above.
∂ε∘τ31,ε(η∗0,…,η∗4)=∂ε(−134∑i=0(−1)i(⟨r(ηi|η0,…,ˆηi,…,η4);rε(η∗i|η∗0,…,^η∗i,…,η∗4)]2⊗∏i≠jΔ(ˆηi,ˆηj)+4∑j=0j≠i(Δ(η∗0,…,ˆη∗i,…,ˆη∗j,…,η∗4)εΔ(η0,…,ˆηi,…,ˆηj,…,η4))⊗[r(ηi|η0,…,ˆηi,…,η4)]2)) |
then we divide ∂ε=∂(1)+∂(2). The first part ∂(1)∘τ31,ε(η∗0,…,η∗4) is
=−134∑i=0(−1)i(−rε(η∗i|η∗0,…,ˆη∗i,…,η∗4)1−r(ηi|η0,…,ˆηi,…,η4)⊗r(ηi|η0,…,ˆηi,…,η4)∧∏i≠j(ˆηi,ˆηj)−rε(η∗i|η∗0,…,ˆη∗i,…,η∗4)r(ηi|η0,…,ˆηi,…,η4)⊗(1−r(ηi|η0,…,ˆηi,…,η4))∧∏i≠j(ˆηi,ˆηj)+4∑j=0j≠i(Δ(η∗0,…,ˆη∗i,…,ˆη∗j,…,η∗4)εΔ(η0,…,ˆηi,…,ˆηj,…,η4))⊗(1−r(ηi|η0,…,ˆηi,…,η4))∧r(ηi|η0,…,ˆηi,…,η4)) | (3.9) |
The second part ∂(2)∘τ31,ε(η∗0,…,η∗4) is
=−134∑i=0(−1)i(−rε(η∗i|η∗0,…,ˆη∗i,…,η∗4)r(ηi|η0,…,ˆηi,…,η4)∧rε(η∗i|η∗0,…,ˆη∗i,…,η∗4)1−r(ηi|η0,…,ˆηi,…,η4)∧4∑j=0j≠i(Δ(η∗0,…,ˆη∗i,…,ˆη∗j,…,η∗4)εΔ(η0,…,ˆηi,…,ˆηj,…,η4))) | (3.10) |
then we calculate bεa and bε1−a. i.e., all the values of the form rε(η∗0|η∗1,η∗2,η∗3,η∗4)r(η0|η1,η2,η3,η4) and rε(η∗0|η∗1,η∗2,η∗3,η∗4)1−r(η0|η1,η2,η3,η4). By using formula (2.6) we get
rε(η∗0|η∗1,η∗2,η∗3,η∗4)r(η0|η1,η2,η3,η4)=(η∗0η∗1η∗4)ε(η0η1η4)+(η∗0η∗2η∗3)ε(η0η2η3)−(η∗0η∗2η∗4)ε(η0η2η4)−(η∗0η∗1η∗3)ε(η0η1η3) |
Similarly, we can find this ratio for each value of i=0,…,4. Now use formula (2.6) with the identities (2.1) and (2.3);
rε(η∗0|η∗1,η∗2,η∗3,η∗4)1−r(η0|η1,η2,η3,η4)=(η∗0η∗2η∗4)ε(η0η2η4)+(η∗0η∗1η∗3)ε(η0η1η3)−(η∗0η∗3η∗4)ε(η0η3η4)−(η∗0η∗1η∗2)ε(η0η1η2) |
After calculating all these values, expand the sums (3.9) and (3.10) and put all values that we have calculated above. For instance, let us calculate (3.9). In this sum we have a large number of terms, so we group them in a suitable way. First collect all the terms involving (η∗0η∗1η∗2)ε(η0η1η2)⊗⋯, we find that there are 6 different terms with coefficient -3 involving (η∗0η∗1η∗2)ε(η0η1η2)⊗⋯
−3(η∗0η∗1η∗2)ε(η0η1η2)⊗((η0η1η3)∧(η1η2η3)+(η0η2η4)∧(η1η2η3)+(η0η1η4)∧(η0η2η4)−(η0η1η3)∧(η0η2η3)−(η0η1η4)∧(η1η2η4)−(η0η2η3)∧(η1η2η3)) |
There are exactly 10 possible terms of (η∗iη∗jη∗k)ε(ηiηjηk). Compute all of them individually. We will see that each will have the coefficient −3 that will be cancelled by −13 in (3.9) and then combine 60 different terms with 6 in a group of the same (η∗iη∗jη∗k)ε(ηiηjηk), write in the sum form then we will note that it will be the same as (3.7).
Computation for the second part is relatively easy and direct. We need to put all values of the form rε(η∗0|η∗1,η∗2,η∗3,η∗4)r(η0|η1,η2,η3,η4) and rε(η∗0|η∗1,η∗2,η∗3,η∗4)1−r(η0|η1,η2,η3,η4) in (3.10), expand the sums, use a∧a=0 modulo 2 torsion. Here we will have simplified result which can be recombined in the sum notation which will be the same as (3.8).
Theorem 3.7. The following diagram (4.3a), i.e.,
![]() |
is commutative i.e., τ32,ε∘∂ε=d∘τ31,ε
Proof. The map τ32,ε gives 720 terms and due to symmetry (cyclic and inverse) we find 120 different ones (up to the inverse). By definition, we have
τ32,ε(η∗0,…,η∗5)=245Alt6⟨r3(η0,…,η5);r3,ε(η∗0,…,η∗5)]3 |
For convenience, and similar to our previous conventions, we will abbreviate our notation by dropping Δ and commas.
∂ε∘τ32ε(η∗0…η∗5)=245Alt6{⟨r3(η0…η5);r3,ε(η∗0…η∗5)]2⊗r3(η0…η5)+r3,ε(η∗0…η∗5)r3(η0…η5)⊗[r3(η0…η5)]2} | (3.11) |
We need to compute the value of r3,ε(η∗0…η∗5)r3(η0…η5) which is
=(η∗0η∗1η∗3)ε(η0η1η3)+(η∗1η∗2η∗4)ε(η1η2η4)+(η∗2η∗0η∗5)ε(η2η0η5)−(η∗0η∗1η∗4)ε(η0η1η4)−(η∗1η∗2η∗5)ε(η1η2η5)−(η∗2η∗0η∗3)ε(η2η0η3) |
Formula (3.11) can also be written as
=245Alt6{⟨r3(η0…η5);r3,ε(η∗0…η∗5)]2⊗(η0η1η3)(η1η2η4)(η2η0η5)(η0η1η4)(η1η2η5)(η2η0η3)+((η∗0η∗1η∗3)ε(η0η1η3)+(η∗1η∗2η∗4)ε(η1η2η4)+(η∗2η∗0η∗5)ε(η2η0η5)−(η∗0η∗1η∗4)ε(η0η1η4)−(η∗1η∗2η∗5)ε(η1η2η5)−(η∗2η∗0η∗3)ε(η2η0η3))⊗[r3(η0…η5)]2} |
We will consider here only the first part of the above relation.
245Alt6{⟨r3(η0…η5);r3,ε(η∗0…η∗5)]2⊗(η0η1η3)(η1η2η4)(η2η0η5)(η0η1η4)(η1η2η5)(η2η0η3) |
Further,
=Alt6{⟨r3(η0…η5);r3,ε(η∗0…η∗5)]2⊗(η0η1η3)}+Alt6{⟨r3(η0…η5);r3,ε(η∗0…η∗5)]2⊗(η1η2η4)}+Alt6{⟨r3(η0…η5);r3,ε(η∗0…η∗5)]2⊗(η2η0η5)}−Alt6{⟨r3(η0…η5);r3,ε(η∗0…η∗5)]2⊗(η0η1η4)}−Alt6{⟨r3(η0…η5);r3,ε(η∗0…η∗5)]2⊗(η1η2η5)}−Alt6{⟨r3(η0…η5);r3,ε(η∗0…η∗5)]2⊗(η2η0η3)} | (3.12) |
We use the even cycle (η0η1η2)(η3η4η5) (or (η∗0η∗1η∗2)(η∗3η∗4η∗5)) to obtain
Alt6{⟨r3(η0η1η2η3η4η5);r3,ε(η∗0η∗1η∗2η∗3η∗4η∗5)]2⊗(η0η1η3)}=Alt6{⟨r3(η1η2η0η4η5η3);r3,ε(η∗1η∗2η∗0η∗4η∗5η∗3)]2⊗(η1η2η4)} |
We can also use here the symmetry
⟨r3(η0η1η2η3η4η5);r3,ε(η∗0η∗1η∗2η∗3η∗4η∗5)]2=⟨r3(η1η2η0η4η5η3);r3,ε(η∗1η∗2η∗0η∗4η∗5η∗3)]2 |
since
r3,ε(η∗0η∗1η∗2η∗3η∗4η∗5)=r3,ε(η∗1η∗2η∗0η∗4η∗5η∗3)precisely both have the same factors |
and similar for the others as well so that (3.12) will be
=215Alt6{⟨r3(η0η1η2η3η4η5);r3,ε(η∗0η∗1η∗2η∗3η∗4η∗5)]2⊗(η0η1η3)−⟨r3(η0η1η2η3η4η5);r3,ε(η∗0η∗1η∗2η∗3η∗4η∗5)]2⊗(η0η1η4)} |
If we apply the odd permutation (η3η4) (or (η∗3η∗4)), then we have
=215⋅2Alt6{⟨r3(η0η1η2η3η4η5);r3,ε(η∗0η∗1η∗2η∗3η∗4η∗5)]2⊗(η0η1η3)} |
Again apply the odd permutation (η0η3) (or (η∗0η∗3))
=215Alt6{⟨r3(η0η1η2η3η4η5);r3,ε(η∗0η∗1η∗2η∗3η∗4η∗5)]2⊗(η0η1η3)−⟨r3(η3η1η2η0η4η5);r3,ε(η∗3η∗1η∗2η∗0η∗4η∗5)]2⊗(η3η1η0)} |
but up to 2-torsion, which we ignore here, we have (η0η1η3)=(η3η1η0) and then the above will become
=215Alt6{(⟨r3(η0η1η2η3η4η5);r3,ε(η∗0η∗1η∗2η∗3η∗4η∗5)]2−⟨r3(η3η1η2η0η4η5);r3,ε(η∗3η∗1η∗2η∗0η∗4η∗5)]2)⊗(η0η1η3)} | (3.13) |
Recall from the triple-ratio
r3(η0η1η2η3η4η5)=(η0η1η3)(η1η2η4)(η2η0η5)(η0η1η4)(η1η2η5)(η2η0η3) |
can be expressed as the ratio of two projected cross-ratios.
We will see here that r3,ε(η∗0η∗1η∗2η∗3η∗4η∗5) can also be converted into the ratio of two first order cross-ratios.
Let a and b be two projected cross-ratios whose ratio is the triple-ratio
r3(η0η1η2η3η4η5)=(η0η1η3)(η1η2η4)(η2η0η5)(η0η1η4)(η1η2η5)(η2η0η3) |
then r3,ε(η∗0η∗1η∗2η∗3η∗4η∗5) will be written as (a∗b∗)ε. Since we can also write as
r3(η∗0η∗1η∗2η∗3η∗4η∗5)=r3(η0η1η2η3η4η5)+r3,ε(η∗0η∗1η∗2η∗3η∗4η∗5)ε |
or
r3(η∗0η∗1η∗2η∗3η∗4η∗5)=r3(η0η1η2η3η4η5)+(r3(η∗0η∗1η∗2η∗3η∗4η∗5))εε |
we get
r3,ε(η∗0η∗1η∗2η∗3η∗4η∗5)=((η∗0η∗1η∗3)(η∗1η∗2η∗4)(η∗2η∗0η∗5)(η∗0η∗1η∗4)(η∗1η∗2η∗5)(η∗2η∗0η∗3))ε |
Now it is clear that r3,ε(η∗0η∗1η∗2η∗3η∗4η∗5) can also be written as the ratio or product of two projected cross-ratios. There are exactly three ways to write it (projected by (η∗0 and η∗1), (η∗1 and η∗2) and (η∗0 and η∗2)) but we will use here η∗1 and η∗2. The last expression can be written as
r3,ε(η∗0η∗1η∗2η∗3η∗4η∗5)=(r(η∗2|η∗1η∗0η∗5η∗3)r(η∗1|η∗0η∗2η∗3η∗4))ε |
and (3.13) can be written as
=215Alt6{⟨r(η2|η1η0η5η3)r(η1|η0η2η3η4);(r(η∗2|η∗1η∗0η∗5η∗3)r(η∗1|η∗0η∗2η∗3η∗4))ε]2⊗(η0η1η3)−⟨r(η2|η1η3η5η0)r(η1|η3η2η0η4);(r(η∗2|η∗1η∗3η∗5η∗0)r(η∗1|η∗3η∗2η∗0η∗4))ε]2⊗(η0η1η3)} |
Applying five-term relations in TB2(F) which are analogous to the one in (2.9).
=215Alt6{(⟨r(η2|η1η0η5η3);rε(η∗2|η∗1η∗0η∗5η∗3)]2−⟨r(η1|η0η2η3η4);rε(η∗1|η∗0η∗2η∗3η∗4)]2−⟨r(η2|η1η5η3η0)r(η1|η0η3η4η2);(r(η∗2|η∗1η∗5η∗3η∗0)r(η∗1|η∗0η∗3η∗4η∗2))ε]2)⊗(η0η1η3)} | (3.14) |
For each individual determinant, e.g., (η0η1η3) will have three terms. First consider the third term of (3.14)
215Alt6{⟨r(η2|η1η5η3η0)r(η1|η0η3η4η2);(r(η∗2|η∗1η∗5η∗3η∗0)r(η∗1|η∗0η∗3η∗4η∗2))ε]2⊗(η0η1η3)}=215Alt6{136Alt(η0η1η3)(η2η4η5)(⟨r(η2|η1η5η3η0)r(η1|η0η3η4η2);(r(η∗2|η∗1η∗5η∗3η∗0)r(η∗1|η∗0η∗3η∗4η∗2))ε]2⊗(η0η1η3))} |
We need a subetaoup in S6 which fixes (η0η1η3) as a determinant i.e., (η0η1η3)∼(η3η1η0)∼(η3η0η1)⋯
Here in this case S3 permuting {η0,η1,η3} and another one permuting {η2,η4,η5} i.e., S3×S3. Now consider
Alt(η0η1η3)(η2η4η5){⟨r(η2|η1η5η3η0)r(η1|η0η3η4η2);(r(η∗2|η∗1η∗5η∗3η∗0)r(η∗1|η∗0η∗3η∗4η∗2))ε]2⊗(η0η1η3)}=Alt(η0η1η3)(η2η4η5){⟨(η2η5η3)(η1η0η4)(η2η5η0)(η1η3η4);((η∗2η∗5η∗3)(η∗1η∗0η∗4)(η∗2η∗5η∗0)(η∗1η∗3η∗4))ε]2⊗(η0η1η3)} |
By using the odd permutation (η2η5) the above becomes zero.
then (3.14) becomes
=215Alt6{(⟨r(η2|η1η0η5η3);rε(η∗2|η∗1η∗0η∗5η∗3)]2−⟨r(η1|η0η2η3η4);rε(η∗1|η∗0η∗2η∗3η∗4)]2)⊗(η0η1η3)} | (3.15) |
Consider the first term now,
215Alt6{⟨r(η2|η1η0η5η3);rε(η∗2|η∗1η∗0η∗5η∗3)]2⊗(η0η1η3)} |
=215Alt6{136Alt(η0η1η3)(η2η4η5){⟨r(η2|η1η0η5η3);rε(η∗2|η∗1η∗0η∗5η∗3)]2⊗(η0η1η3)}} |
The permutation (η0η2η3) does not have any role because the ratio is projected by 2. So, it will be reduced to S3.
=215Alt6{16Alt(η2η4η5){⟨r(η2|η1η0η5η3);rε(η∗2|η∗1η∗0η∗5η∗3)]2⊗(η0η1η3)}} |
Write all possible inner alternation, then
=145Alt6{(⟨r(η4|η1η0η2η3);rε(η∗4|η∗1η∗0η∗2η∗3)]2−⟨r(η2|η1η0η4η3);rε(η∗2|η∗1η∗0η∗4η∗3)]2+⟨r(η5|η1η0η4η3);rε(η∗5|η∗1η∗0η∗4η∗3)]2−⟨r(η4|η1η0η5η3);rε(η∗4|η∗1η∗0η∗5η∗3)]2+⟨r(η2|η1η0η5η3);rε(η∗2|η∗1η∗0η∗5η∗3)]2−⟨r(η5|η1η0η2η3);rε(η∗5|η∗1η∗0η∗2η∗3)]2)⊗(η0η1η3)} |
Now we can use projected five-term relation in TB2(F) here,
=145Alt6{(⟨r(η0|η1η2η3η4);rε(η∗0|η∗1η∗2η∗3η∗4)]2−⟨r(η1|η0η2η3η4);rε(η∗1|η∗0η∗2η∗3η∗4)]2−⟨r(η3|η0η1η2η4);rε(η∗3|η∗0η∗1η∗2η∗4)]2+⟨r(η0|η1η4η3η5);rε(η∗0|η∗1η∗4η∗3η∗5)]2−⟨r(η1|η0η4η3η5);rε(η∗1|η∗0η∗4η∗3η∗5)]2−⟨r(η3|η0η1η4η5);rε(η∗3|η∗0η∗1η∗4η∗5)]2+⟨r(η0|η1η5η3η2);rε(η∗0|η∗1η∗5η∗3η∗2)]2−⟨r(η1|η0η5η3η2);rε(η∗1|η∗0η∗5η∗3η∗2)]2−⟨r(η3|η0η1η5η2);rε(η∗3|η∗0η∗1η∗5η∗2)]2)⊗(η0η1η3)}Use the cycle (η0η1η3)(η2η4η5) then we get=145⋅9Alt6{⟨r(η0|η1η2η3η4);rε(η∗0|η∗1η∗2η∗3η∗4)]2⊗(η0η1η3)} | (3.16) |
The second term of the relation (3.15) can also be written as
145⋅−6Alt6{⟨r(η1|η0η2η3η4);rε(η∗1|η∗0η∗2η∗3η∗4)]2⊗(η0η1η3)} |
(3.16) can be combined with the above so we get
=145Alt6{(9⟨r(η0|η1η2η3η4);rε(η∗0|η∗1η∗2η∗3η∗4)]2−6⟨r(η1|η0η2η3η4);rε(η∗1|η∗0η∗2η∗3η∗4)]2)⊗(η0η1η3)} | (3.17) |
Use the permutation (η0η1η3)(η2η4η5) to get
=13Alt6{⟨r(η0|η1η2η3η4);rε(η∗0|η∗1η∗2η∗3η∗4)]2⊗(η0η1η3)} |
The Bloch group B2(F) also holds the five-term relation, thus we write the following:
=13Alt6{⟨r(η0|η1η2η3η4);rε(η∗0|η∗1η∗2η∗3η∗4)]2⊗(η0η1η3)+(η∗0η∗1η∗3)ε(η0η1η3)⊗[r(η0|η1η2η3η4)]2} | (3.18) |
Now go to the other side. Map τ31,ε can also be written in the alternation sum form
τ31,ε(η∗0…η∗4)=13Alt{⟨r(η0|η1η2η3η4);rε(η∗0|η∗1η∗2η∗3η∗4)]2⊗(η0η1η2)+(η∗0η∗1η∗2)ε(η0η1η2)⊗[r(η0|η1η2η3η4)]2} |
Compute τ31,ε∘d(η∗0…η∗5) and apply cycle (η0η1η2η3η4η5) for d and then expand Alt5 from the definition of τ31,ε;
τ31ε∘d(η∗0…η∗5)=13Alt6{⟨r(η0|η1η2η3η4);rε(η∗0|η∗1η∗2η∗3η∗4)]2⊗(η0η1η2)+(η∗0η∗1η∗2)ε(η0η1η2)⊗[r(η0|η1η2η3η4)]2} |
Use the odd permutation (η2η3), then
=−13Alt6{⟨r(η0|η1η3η2η4);rε(η∗0|η∗1η∗3η∗2η∗4)]2⊗(η0η1η3)+(η∗0η∗1η∗3)ε(η0η1η3)⊗[r(η0|η1η3η2η4)]2} |
Finally use the two-term relation in TB2(F) and the Bloch group B2(F) to get the required sign. The final answer will be the same as (3.18)
There are some more related results.
Proposition 3.18. The map C5(A4F[ε]2)d′→C4(A3F[ε]2)τ30,ε→(F⊗⋀2F×)⊕(⋀3F) is zero.
Proof. The proof of this is obtained directly by calculation. Let (η∗0,…,η∗4)∈C5(A4F[ε]2) where
η∗i=(a+aεεb+bεεc+cεεd+dεε)=(abcd)+(aεbεcεdεε)=ηi+ηiεε |
Let ω be the volume formed in four-dimensional vector space, and Δ(ηi,⋅,⋅,⋅) be the volume form in V4/⟨ηi⟩.
τ30,ε∘d′(η∗0,…,η∗4)=τ30,ε(4∑i=0(−1)i(η∗i|η∗0,…,ˆη∗i,…,η∗4))Consider the first coordinate of the map first=~Alt(01234)(3∑i=0(−1)i(Δ(η∗0,…,ˆη∗i,…,η∗3,η∗4)εΔ(η0,…,ˆηi,…,η3,η4)⊗Δ(η0,…,ˆηi+1,…,η3,η4)Δ(η0,…,ˆηi+2,…,η3,η4)∧Δ(η0,…,ˆηi+3,…,η3,η4)Δ(η0,…,ˆηi+2,…,η3,η4))imod4) | (3.19) |
First, we expand inner sum that gives us 12 different terms after simplification. By applying alternation sum, we get 60 terms and there is direct cancellation which leads to zero. Now consider the second coordinate, which gives us
~Alt(01234)(3∑i=0(−1)i3⋀j=0j≠iΔ(η∗0,…,ˆη∗j,…,η∗3,η∗4)εΔ(η0,…,ˆηj,…,η3,η4)) |
Again if we expand the inner sum, then we get only four different terms, but after the application of alternation we get zero.
As an analogy of Proposition 3.8 in higher weight, we present the following result.
Proposition 3.9. The map Cn+2(An+1F[ε]2)d′→Cn+1(AnF[ε]2)τn0,ε→(F⊗⋀n−1F×)⊕(⋀nF) is zero, where
τn0,ε(η∗0,…,η∗n)=n∑i=0(−1)i(Δ(η∗0,…,ˆη∗i,…,η∗n)εΔ(η0,…,ˆηi,…,ηn)⊗Δ(η0,…,ˆηi+1,…,ηn)Δ(η0,…,ˆηi+2,…,ηn)∧⋯∧Δ(η0,…,ˆηi+(n−1),…,ηn)Δ(η0,…,ˆηi+n,…,ηn))+(n⋀j=0j≠iΔ(η∗0,…,ˆη∗j,…,η∗n)εΔ(η0,…,ˆηj,…,ηn)),imod(n+1) |
Proof. Let (η∗0,…,η∗n+1)∈Cn+2(An+1F[ε]2). We have
τn0,ε∘d′(η∗0,…,η∗n+1)=τn0,ε(n∑i=0(−1)i(η∗i|η∗0,…,ˆη∗i,…,η∗n+1)) |
Now use the definition of alternation to represent this sum then we have
τn0,ε∘d′(η∗0,…,η∗n+1)=~Alt(0⋯n+1){n∑i=0(−1)i((Δ(η∗0,…,ˆη∗i,…,η∗n,η∗n+1)εΔ(η0,…,ˆηi,…,ηn,ηn+1)⊗Δ(η0,…,ˆηi+1,…,ηn,ηn+1)Δ(η0,…,ˆηi+2,…,ηn,ηn+1)∧⋯∧Δ(η0,…,ˆηi+(n−1),…,ηn,ηn+1)Δ(η0,…,ˆηi+n,…,ηn,ηn+1))+(n⋀j=0j≠iΔ(η∗0,…,ˆη∗j,…,η∗n,η∗n+1)εΔ(η0,…,ˆηj,…,ηn,ηn+1))),imodn+1} | (3.20) |
Expanding the inner sum gives us n+1 number of terms. Expand again by using the properties of wedge that gives n(n+1) terms. Applying the alternation sum on that, gives us n(n+1)(n+2) terms, so there are n+2 sets each consisting n(n+1) terms and each term in n(n+1) term has n+1 sets of n terms which cancel off set by set.
Now expand the inner sum in the second term of (3.20) that gives n+1 terms and then apply the alternation sum which gives n+2 sets of n+1 terms, we now find cancellation in the expansion of sum accordingly, which gives a zero as well.
Many studies have been done on Scissor's congruence and Bloch's groups. Bringing geometry of configurations in Bloch's and Goncharov's groups plays a vital role in proving Zagier's conjucutre for weights n=2,3. In this article, we introduced the tangent to Goncharov's complex and view them by means of geometric configurations. This leads to the idea at the higher orders of tangent groups.
Theorem 3.6 proves the commutativity of the right hand side square of the diagram (4.3a) and Theorem 3.7 shows the commutativity of the left hand square of the diagram (4.3a).
This article consists on major part of the author's Doctoral thesis completed at University of Durham, UK. The author would like to thank to his advisor Dr. Herbert Gangl. The author would also like to thank to Spencer Bloch for his valuable suggestions.
The author declares no conflict of interest in this paper.
[1] | N. T. J. Bailey, The mathematical theory of infectious diseases and its applications, 2 Eds., London: Griffin, 1975. |
[2] | H. W. Hethcote, Three basic epidemiological models, In: S. A. Levin, T. G. Hallam, L. J. Gross, Applied mathematical ecology, Biomathematics, Berlin: Springer, 18 (1989), 119–144. https://doi.org/10.1007/978-3-642-61317-3_5 |
[3] |
F. Hoppensteadt, P. Waltman, A problem in the theory of epidemics, Math. Biosci., 9 (1970), 71–91. https://doi.org/10.1016/0025-5564(70)90094-5 doi: 10.1016/0025-5564(70)90094-5
![]() |
[4] |
W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. Ser. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
![]() |
[5] | H. Abbey, An examination of the Reed-Frost theory of epidemics, Hum. Biol., 24 (1952), 201–233. |
[6] |
J. C. Miller, Mathematical models of SIR disease spread with combined non-sexual and sexual transmission routes, Infect. Dis. Model., 2 (2017), 35–55. https://doi.org/10.1016/j.idm.2016.12.003 doi: 10.1016/j.idm.2016.12.003
![]() |
[7] |
G. M. Nakamura, A. S. Martinez, Hamiltonian dynamics of the SIS epidemic model with stochastic fluctuations, Sci. Rep., 9 (2019), 15841. https://doi.org/10.1038/s41598-019-52351-x doi: 10.1038/s41598-019-52351-x
![]() |
[8] | M. S. Bartlett, Stochastic population models in ecology and epidemiology, London: Methuen, 1960. |
[9] | H. Bunke, Gewöhnliche differentialgleichungen mit zufälligen parametern, Berlin: Akademie-Verlag, 1972. |
[10] |
J. A. Lázaro-Camí, J. P. Ortega, The stochastic Hamilton-Jacobi equation, J. Geom. Mech., 1 (2009), 295–315. https://doi.org/10.3934/jgm.2009.1.295 doi: 10.3934/jgm.2009.1.295
![]() |
[11] |
M. C. Nucci, P. G. L. Leach, An integrable SIS model, J. Math. Anal. Appl., 290 (2004), 506–518. https://doi.org/10.1016/j.jmaa.2003.10.044 doi: 10.1016/j.jmaa.2003.10.044
![]() |
[12] |
A. Ballesteros, A. Blasco, I. Gutierrez-Sagredo, Hamiltonian structure of compartmental epidemiological models, Phys. D, 413 (2020), 132656. https://doi.org/10.1016/j.physd.2020.132656 doi: 10.1016/j.physd.2020.132656
![]() |
[13] |
O. Esen, E. Fernández-Saiz, C. Sardón, M. Zajac, A generalization of a SIS epidemic model with fluctuations, Math. Meth. Appl. Sci., 45 (2022), 3718–3731. https://doi.org/10.1002/mma.8013 doi: 10.1002/mma.8013
![]() |
[14] |
M. Bohner, S. Streipert, D. F. M. Torres, Exact solution to a dynamic SIR model, Nonlinear Anal., 32 (2019), 228–238. https://doi.org/10.1016/j.nahs.2018.12.005 doi: 10.1016/j.nahs.2018.12.005
![]() |
[15] | A. Ballesteros, A. Blasco, I. Gutierrez-Sagredo, Exact closed-form solution of a modified SIR model, arXiv, 2020. https://doi.org/10.48550/arXiv.2007.16069 |
[16] |
Z. Chladná, J. Kopfová, D. Rachinskii, S. C. Rouf, Global dynamics of SIR model with switched transmission rate, J. Math. Biol., 80 (2020), 1209–1233. https://doi.org/10.1007/s00285-019-01460-2 doi: 10.1007/s00285-019-01460-2
![]() |
[17] |
Z. Chladná, J. Kopfová, D. Rachinskii, P. Štepánek, Effect of quarantine strategies in a compartmental model with asymptomatic groups, J. Dyn. Diff. Equat., 2021. https://doi.org/10.1007/s10884-021-10059-5 doi: 10.1007/s10884-021-10059-5
![]() |
[18] |
J. A. Lázaro-Camí, J. P. Ortega, Stochastic Hamiltonian dynamical systems, Rep. Math. Phys., 61 (2008), 65–122. https://doi.org/10.1016/S0034-4877(08)80003-1 doi: 10.1016/S0034-4877(08)80003-1
![]() |
[19] |
J. A. Lázaro-Camí, J. P. Ortega, Reduction, reconstruction, and skew-product decomposition of symmetric stochastic differential equations, Stoch. Dynam., 9 (2009), 1–46. https://doi.org/10.1142/S0219493709002531 doi: 10.1142/S0219493709002531
![]() |
[20] |
A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011), 876–902. https://doi.org/10.1137/10081856X doi: 10.1137/10081856X
![]() |
[21] |
O. M. Otunuga, Time-dependent probability distribution for number of infection in a stochastic SIS model: case study COVID-19, Chaos Soliton. Fract., 147 (2021), 110983. https://doi.org/10.1016/j.chaos.2021.110983 doi: 10.1016/j.chaos.2021.110983
![]() |
[22] |
J. Groh, A stochastic differential equation for a class of Feller's one-dimensional diffusion, Math. Nachr., 107 (1982), 267–271. https://doi.org/10.1002/mana.19821070122 doi: 10.1002/mana.19821070122
![]() |
[23] |
J. F. Cariñena, J. de Lucas, C. Sardón, Lie-Hamilton systems: theory and applications, Int. J. Geom. Methods Mod. Phys., 10 (2013), 1350047. https://doi.org/10.1142/S0219887813500473 doi: 10.1142/S0219887813500473
![]() |
[24] |
A. Ballesteros, J. F. Cariñena, F. J. Herranz, J. de Lucas, C. Sardón, From constants of motion to superposition rules for Lie–{H}amilton systems, J. Phys. A: Math. Theor., 46 (2013), 285203. https://doi.org/10.1088/1751-8113/46/28/285203 doi: 10.1088/1751-8113/46/28/285203
![]() |
[25] |
A. Ballesteros, A. Blasco, F. J. Herranz, J. de Lucas, C. Sardón, Lie-Hamilton systems on the plane: properties, classification and applications, J. Differ. Equ., 258 (2015), 2873–2907. https://doi.org/10.1016/j.jde.2014.12.031 doi: 10.1016/j.jde.2014.12.031
![]() |
[26] |
A. Blasco, F. J. Herranz, J. de Lucas, C. Sardón, Lie-Hamilton systems on the plane: applications and superposition rules, J. Phys. A: Math. Theor., 48 (2015), 345202. https://doi.org/10.1088/1751-8113/48/34/345202 doi: 10.1088/1751-8113/48/34/345202
![]() |
[27] | J. de Lucas, C. Sardón, A guide to Lie systems with compatible geometric structures, Singapore: World Scientific, 2020. https://doi.org/10.1142/q0208 |
[28] | P. Winternitz, Lie groups and solutions of nonlinear differential equations, In: K. B. Wolf, Nonlinear phenomena, Lectures Notes in Physics, Springer, Berlin, Heidelberg, 189 (1983), 263–331. https://doi.org/10.1007/3-540-12730-5_12 |
[29] |
J. F. Cariñena, J. Grabowski, G. Marmo, Superposition rules, Lie theorem and partial differential equations, Rep. Math. Phys., 60 (2007), 237–258. https://doi.org/10.1016/S0034-4877(07)80137-6 doi: 10.1016/S0034-4877(07)80137-6
![]() |
[30] |
J. A. Lázaro-Camí, J. P. Ortega, Superposition rules and stochastic Lie-Scheffers systems, Ann. Inst. H. Poincaré Probab. Statist., 45 (2009), 910–931. https://doi.org/10.1214/08-AIHP189 doi: 10.1214/08-AIHP189
![]() |
[31] | V. I. Arnold, Mathematical methods of classical mechanics, New York: Springer, 1989. https://doi.org/10.1007/978-1-4757-2063-1 |
[32] |
A. Ballesteros, A. Blasco, F. J. Herranz, F. Musso, O. Ragnisco, (Super)integrability from coalgebra symmetry: formalism and applications, J. Phys.: Conf. Ser., 175 (2009), 012004. https://doi.org/10.1088/1742-6596/175/1/012004 doi: 10.1088/1742-6596/175/1/012004
![]() |
[33] |
A. Ballesteros, R. Campoamor-Stursberg, E. Fernández-Saiz, F. J. Herranz, J. de Lucas, Poisson-Hopf deformations of Lie-Hamilton systems revisited: deformed superposition rules and applications to the oscillator algebra, J. Phys. A: Math. Theor., 54 (2021), 205202. https://doi.org/10.1088/1751-8121/abf1db doi: 10.1088/1751-8121/abf1db
![]() |
[34] |
W. M. Zhang, D. H. Feng, R. Gilmore, Coherent states: theory and some applications, Rev. Mod. Phys., 62 (1990), 867–927. https://doi.org/10.1103/RevModPhys.62.867 doi: 10.1103/RevModPhys.62.867
![]() |
[35] |
Á. Ballesteros, A. Blasco, F. J. Herranz, N-dimensional integrability from two-photon coalgebra symmetry, J. Phys. A: Math. Theor., 42 (2009), 265205. https://doi.org/10.1088/1751-8113/42/26/265205 doi: 10.1088/1751-8113/42/26/265205
![]() |
[36] |
L. A. Real, R. Biek, Spatial dynamics and genetics of infectious diseases on heterogeneous landscapes, J. R. Soc. Interface, 4 (2007), 935–948. https://doi.org/10.1098/rsif.2007.1041 doi: 10.1098/rsif.2007.1041
![]() |
[37] |
A. B. Duncan, A. Gonzalez, O. Kaltz, Stochastic environmental fluctuations drive epidemiology in experimental host-parasite metapopulations, Proc. R. Soc. B, 280 (2013), 20131747. https://doi.org/10.1098/rspb.2013.1747 doi: 10.1098/rspb.2013.1747
![]() |
[38] |
I. Z. Kiss, P. L. Simon, New moment closures based on a priori distributions with applications to epidemic dynamics, Bull. Math. Biol., 74 (2012), 1501–1515. https://doi.org/10.1007/s11538-012-9723-3 doi: 10.1007/s11538-012-9723-3
![]() |
[39] |
R. V. dos Santos, F. L. Ribeiro, A. S. Martinez, Models for Allee effect based on physical principles, J. Theor. Biol., 385 (2015), 143–152. https://doi.org/10.1016/j.jtbi.2015.08.018 doi: 10.1016/j.jtbi.2015.08.018
![]() |
[40] |
J. M. G. Vilar, J. M. Rubi, Determinants of population responses to environmental fluctuations, Sci. Rep., 8 (2018), 887. https://doi.org/10.1038/s41598-017-18976-6 doi: 10.1038/s41598-017-18976-6
![]() |
[41] |
J. A. Cui, X. Tao, H. Zhu, An SIS infection model incorporating media coverage, Rocky Mountain J. Math., 38 (2008), 1323–1334. https://doi.org/10.1216/RMJ-2008-38-5-1323 doi: 10.1216/RMJ-2008-38-5-1323
![]() |
[42] |
D. Gao, S. Ruan, An SIS patch model with variable transmission coefficients, Math. Biosci., 232 (2011), 110–115. https://doi.org/10.1016/j.mbs.2011.05.001 doi: 10.1016/j.mbs.2011.05.001
![]() |
[43] |
P. van den Driessche, Reproduction numbers of infectious disease models, Infect. Dis. Mod., 2 (2017), 288–303. https://doi.org/10.1016/j.idm.2017.06.002 doi: 10.1016/j.idm.2017.06.002
![]() |
[44] | S. Lie, G. Scheffers, Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen, Leipzig: B. G. Teubner, 1883. https://doi.org/10.5962/bhl.title.18549 |
[45] |
J. F. Cariñena, F. Falceto, J. Grabowski, Solvability of a Lie algebra of vector fields implies their integrability by quadratures, J. Phys. A: Math. Theor., 49 (2016), 425202. https://doi.org/10.1088/1751-8113/49/42/425202 doi: 10.1088/1751-8113/49/42/425202
![]() |
[46] |
J. F. Cariñena, J. de Lucas, Lie systems: theory, generalisations, and applications, Diss. Math., 479 (2011), 1–162. https://doi.org/10.4064/dm479-0-1 doi: 10.4064/dm479-0-1
![]() |
[47] |
J. F. Cariñena, F. Falceto, J. Grabowski, M. F. Rañada, Geometry of Lie integrability by quadratures, J. Phys. A: Math. Theor., 48 (2015), 215206. https://doi.org/10.1088/1751-8113/48/21/215206 doi: 10.1088/1751-8113/48/21/215206
![]() |
[48] |
J. F. Cariñena, M. F. Rañada, F. Falceto, J. Grabowski, Revisiting Lie integrability by quadratures from a geometric perspective, Banach Center Publ., 110 (2016), 24–40. https://doi.org/10.4064/bc110-0-2 doi: 10.4064/bc110-0-2
![]() |
[49] | G. W. Bluman, J. D. Cole, Similarity methods for differential equations, New York: Springer, 1974. https://doi.org/10.1007/978-1-4612-6394-4 |
[50] |
A. Ballesteros, F. J. Herranz, P. Parashar, (1+1) Schrödinger Lie bialgebras and their Poisson-Lie groups, J. Phys. A: Math. Gen., 33 (2000), 3445–3465. https://doi.org/10.1088/0305-4470/33/17/304 doi: 10.1088/0305-4470/33/17/304
![]() |
[51] |
B. Prasse, P. Van Mieghem, Time-dependent solution of the NIMFA equations around the epidemic threshold, J. Math. Bio., 81 (2020), 1299–1355. https://doi.org/10.1007/s00285-020-01542-6 doi: 10.1007/s00285-020-01542-6
![]() |
[52] |
S. Bonaccorsi, S. Ottaviano, A stochastic differential equation SIS model on network under Markovian switching, Stoch. Anal. Appl., 2022. https://doi.org/10.1080/07362994.2022.2146590 doi: 10.1080/07362994.2022.2146590
![]() |
[53] |
T. C. Bountis, V. Papageorgiou, P. Winternitz, On the integrability of systems of nonlinear ordinary differential equations with superposition principles, J. Math. Phys., 27 (1986), 1215–1224. https://doi.org/10.1063/1.527128 doi: 10.1063/1.527128
![]() |
[54] |
J. F. Cariñena, J. Grabowski, A. Ramos, Reduction of time-dependent systems admitting a superposition principle, Acta Appl. Math., 66 (2001), 67–87. https://doi.org/10.1023/A:1010743114995 doi: 10.1023/A:1010743114995
![]() |
[55] |
A. Ballesteros, R. Campoamor-Stursberg, E. Fernández-Saiz, F. J. Herranz, J. de Lucas, Poisson-Hopf algebra deformations of Lie-Hamilton systems, J. Phys. A: Math. Theor., 51 (2018), 065202. https://doi.org/10.1088/1751-8121/aaa090 doi: 10.1088/1751-8121/aaa090
![]() |
[56] | A. Ballesteros, R. Campoamor-Stursberg, E. Fernández-Saiz, F. J. Herranz, J. de Lucas, A unified approach to Poisson-Hopf deformations of Lie-Hamilton systems based on sl(2), In: V. Dobrev, Quantum theory and symmetries with Lie theory and its applications in physics, Springer Proceedings in Mathematics & Statistics, Singapore: Springer, 263 (2018), 347–366. https://doi.org/10.1007/978-981-13-2715-5_23 |
[57] | V. Chari, A. Pressley, A guide to quantum groups, Cambridge: Cambridge University Press, 1994. |
[58] |
A. Ballesteros, F. J. Herranz, Lie bialgebra quantizations of the oscillator algebra and their universal R-matrices, J. Phys. A: Math. Gen., 29 (1996), 4307–4320. https://doi.org/10.1088/0305-4470/29/15/006 doi: 10.1088/0305-4470/29/15/006
![]() |