Research article Special Issues

Exact solutions and superposition rules for Hamiltonian systems generalizing time-dependent SIS epidemic models with stochastic fluctuations

  • Received: 14 May 2023 Revised: 18 July 2023 Accepted: 24 July 2023 Published: 08 August 2023
  • MSC : 17B66, 34A26, 34C14, 92D25

  • Using the theory of Lie-Hamilton systems, formal generalized time-dependent Hamiltonian systems that extend a recently proposed SIS epidemic model with a variable infection rate are considered. It is shown that, independently on the particular interpretation of the time-dependent coefficients, these systems generally admit an exact solution, up to the case of the maximal extension within the classification of Lie-Hamilton systems, for which a superposition rule is constructed. The method provides the algebraic frame to which any SIS epidemic model that preserves the above-mentioned properties is subjected. In particular, we obtain exact solutions for generalized SIS Hamiltonian models based on the book and oscillator algebras, denoted by $ \mathfrak{b}_2 $ and $ \mathfrak{h}_4 $, respectively. The last generalization corresponds to an SIS system possessing the so-called two-photon algebra symmetry $ \mathfrak{h}_6 $, according to the embedding chain $ \mathfrak{b}_2\subset \mathfrak{h}_4\subset \mathfrak{h}_6 $, for which an exact solution cannot generally be found but a nonlinear superposition rule is explicitly given.

    Citation: Rutwig Campoamor-Stursberg, Eduardo Fernández-Saiz, Francisco J. Herranz. Exact solutions and superposition rules for Hamiltonian systems generalizing time-dependent SIS epidemic models with stochastic fluctuations[J]. AIMS Mathematics, 2023, 8(10): 24025-24052. doi: 10.3934/math.20231225

    Related Papers:

  • Using the theory of Lie-Hamilton systems, formal generalized time-dependent Hamiltonian systems that extend a recently proposed SIS epidemic model with a variable infection rate are considered. It is shown that, independently on the particular interpretation of the time-dependent coefficients, these systems generally admit an exact solution, up to the case of the maximal extension within the classification of Lie-Hamilton systems, for which a superposition rule is constructed. The method provides the algebraic frame to which any SIS epidemic model that preserves the above-mentioned properties is subjected. In particular, we obtain exact solutions for generalized SIS Hamiltonian models based on the book and oscillator algebras, denoted by $ \mathfrak{b}_2 $ and $ \mathfrak{h}_4 $, respectively. The last generalization corresponds to an SIS system possessing the so-called two-photon algebra symmetry $ \mathfrak{h}_6 $, according to the embedding chain $ \mathfrak{b}_2\subset \mathfrak{h}_4\subset \mathfrak{h}_6 $, for which an exact solution cannot generally be found but a nonlinear superposition rule is explicitly given.



    加载中


    [1] N. T. J. Bailey, The mathematical theory of infectious diseases and its applications, 2 Eds., London: Griffin, 1975.
    [2] H. W. Hethcote, Three basic epidemiological models, In: S. A. Levin, T. G. Hallam, L. J. Gross, Applied mathematical ecology, Biomathematics, Berlin: Springer, 18 (1989), 119–144. https://doi.org/10.1007/978-3-642-61317-3_5
    [3] F. Hoppensteadt, P. Waltman, A problem in the theory of epidemics, Math. Biosci., 9 (1970), 71–91. https://doi.org/10.1016/0025-5564(70)90094-5 doi: 10.1016/0025-5564(70)90094-5
    [4] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. Ser. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [5] H. Abbey, An examination of the Reed-Frost theory of epidemics, Hum. Biol., 24 (1952), 201–233.
    [6] J. C. Miller, Mathematical models of SIR disease spread with combined non-sexual and sexual transmission routes, Infect. Dis. Model., 2 (2017), 35–55. https://doi.org/10.1016/j.idm.2016.12.003 doi: 10.1016/j.idm.2016.12.003
    [7] G. M. Nakamura, A. S. Martinez, Hamiltonian dynamics of the SIS epidemic model with stochastic fluctuations, Sci. Rep., 9 (2019), 15841. https://doi.org/10.1038/s41598-019-52351-x doi: 10.1038/s41598-019-52351-x
    [8] M. S. Bartlett, Stochastic population models in ecology and epidemiology, London: Methuen, 1960.
    [9] H. Bunke, Gewöhnliche differentialgleichungen mit zufälligen parametern, Berlin: Akademie-Verlag, 1972.
    [10] J. A. Lázaro-Camí, J. P. Ortega, The stochastic Hamilton-Jacobi equation, J. Geom. Mech., 1 (2009), 295–315. https://doi.org/10.3934/jgm.2009.1.295 doi: 10.3934/jgm.2009.1.295
    [11] M. C. Nucci, P. G. L. Leach, An integrable SIS model, J. Math. Anal. Appl., 290 (2004), 506–518. https://doi.org/10.1016/j.jmaa.2003.10.044 doi: 10.1016/j.jmaa.2003.10.044
    [12] A. Ballesteros, A. Blasco, I. Gutierrez-Sagredo, Hamiltonian structure of compartmental epidemiological models, Phys. D, 413 (2020), 132656. https://doi.org/10.1016/j.physd.2020.132656 doi: 10.1016/j.physd.2020.132656
    [13] O. Esen, E. Fernández-Saiz, C. Sardón, M. Zajac, A generalization of a SIS epidemic model with fluctuations, Math. Meth. Appl. Sci., 45 (2022), 3718–3731. https://doi.org/10.1002/mma.8013 doi: 10.1002/mma.8013
    [14] M. Bohner, S. Streipert, D. F. M. Torres, Exact solution to a dynamic SIR model, Nonlinear Anal., 32 (2019), 228–238. https://doi.org/10.1016/j.nahs.2018.12.005 doi: 10.1016/j.nahs.2018.12.005
    [15] A. Ballesteros, A. Blasco, I. Gutierrez-Sagredo, Exact closed-form solution of a modified SIR model, arXiv, 2020. https://doi.org/10.48550/arXiv.2007.16069
    [16] Z. Chladná, J. Kopfová, D. Rachinskii, S. C. Rouf, Global dynamics of SIR model with switched transmission rate, J. Math. Biol., 80 (2020), 1209–1233. https://doi.org/10.1007/s00285-019-01460-2 doi: 10.1007/s00285-019-01460-2
    [17] Z. Chladná, J. Kopfová, D. Rachinskii, P. Štepánek, Effect of quarantine strategies in a compartmental model with asymptomatic groups, J. Dyn. Diff. Equat., 2021. https://doi.org/10.1007/s10884-021-10059-5 doi: 10.1007/s10884-021-10059-5
    [18] J. A. Lázaro-Camí, J. P. Ortega, Stochastic Hamiltonian dynamical systems, Rep. Math. Phys., 61 (2008), 65–122. https://doi.org/10.1016/S0034-4877(08)80003-1 doi: 10.1016/S0034-4877(08)80003-1
    [19] J. A. Lázaro-Camí, J. P. Ortega, Reduction, reconstruction, and skew-product decomposition of symmetric stochastic differential equations, Stoch. Dynam., 9 (2009), 1–46. https://doi.org/10.1142/S0219493709002531 doi: 10.1142/S0219493709002531
    [20] A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011), 876–902. https://doi.org/10.1137/10081856X doi: 10.1137/10081856X
    [21] O. M. Otunuga, Time-dependent probability distribution for number of infection in a stochastic SIS model: case study COVID-19, Chaos Soliton. Fract., 147 (2021), 110983. https://doi.org/10.1016/j.chaos.2021.110983 doi: 10.1016/j.chaos.2021.110983
    [22] J. Groh, A stochastic differential equation for a class of Feller's one-dimensional diffusion, Math. Nachr., 107 (1982), 267–271. https://doi.org/10.1002/mana.19821070122 doi: 10.1002/mana.19821070122
    [23] J. F. Cariñena, J. de Lucas, C. Sardón, Lie-Hamilton systems: theory and applications, Int. J. Geom. Methods Mod. Phys., 10 (2013), 1350047. https://doi.org/10.1142/S0219887813500473 doi: 10.1142/S0219887813500473
    [24] A. Ballesteros, J. F. Cariñena, F. J. Herranz, J. de Lucas, C. Sardón, From constants of motion to superposition rules for Lie–{H}amilton systems, J. Phys. A: Math. Theor., 46 (2013), 285203. https://doi.org/10.1088/1751-8113/46/28/285203 doi: 10.1088/1751-8113/46/28/285203
    [25] A. Ballesteros, A. Blasco, F. J. Herranz, J. de Lucas, C. Sardón, Lie-Hamilton systems on the plane: properties, classification and applications, J. Differ. Equ., 258 (2015), 2873–2907. https://doi.org/10.1016/j.jde.2014.12.031 doi: 10.1016/j.jde.2014.12.031
    [26] A. Blasco, F. J. Herranz, J. de Lucas, C. Sardón, Lie-Hamilton systems on the plane: applications and superposition rules, J. Phys. A: Math. Theor., 48 (2015), 345202. https://doi.org/10.1088/1751-8113/48/34/345202 doi: 10.1088/1751-8113/48/34/345202
    [27] J. de Lucas, C. Sardón, A guide to Lie systems with compatible geometric structures, Singapore: World Scientific, 2020. https://doi.org/10.1142/q0208
    [28] P. Winternitz, Lie groups and solutions of nonlinear differential equations, In: K. B. Wolf, Nonlinear phenomena, Lectures Notes in Physics, Springer, Berlin, Heidelberg, 189 (1983), 263–331. https://doi.org/10.1007/3-540-12730-5_12
    [29] J. F. Cariñena, J. Grabowski, G. Marmo, Superposition rules, Lie theorem and partial differential equations, Rep. Math. Phys., 60 (2007), 237–258. https://doi.org/10.1016/S0034-4877(07)80137-6 doi: 10.1016/S0034-4877(07)80137-6
    [30] J. A. Lázaro-Camí, J. P. Ortega, Superposition rules and stochastic Lie-Scheffers systems, Ann. Inst. H. Poincaré Probab. Statist., 45 (2009), 910–931. https://doi.org/10.1214/08-AIHP189 doi: 10.1214/08-AIHP189
    [31] V. I. Arnold, Mathematical methods of classical mechanics, New York: Springer, 1989. https://doi.org/10.1007/978-1-4757-2063-1
    [32] A. Ballesteros, A. Blasco, F. J. Herranz, F. Musso, O. Ragnisco, (Super)integrability from coalgebra symmetry: formalism and applications, J. Phys.: Conf. Ser., 175 (2009), 012004. https://doi.org/10.1088/1742-6596/175/1/012004 doi: 10.1088/1742-6596/175/1/012004
    [33] A. Ballesteros, R. Campoamor-Stursberg, E. Fernández-Saiz, F. J. Herranz, J. de Lucas, Poisson-Hopf deformations of Lie-Hamilton systems revisited: deformed superposition rules and applications to the oscillator algebra, J. Phys. A: Math. Theor., 54 (2021), 205202. https://doi.org/10.1088/1751-8121/abf1db doi: 10.1088/1751-8121/abf1db
    [34] W. M. Zhang, D. H. Feng, R. Gilmore, Coherent states: theory and some applications, Rev. Mod. Phys., 62 (1990), 867–927. https://doi.org/10.1103/RevModPhys.62.867 doi: 10.1103/RevModPhys.62.867
    [35] Á. Ballesteros, A. Blasco, F. J. Herranz, $N$-dimensional integrability from two-photon coalgebra symmetry, J. Phys. A: Math. Theor., 42 (2009), 265205. https://doi.org/10.1088/1751-8113/42/26/265205 doi: 10.1088/1751-8113/42/26/265205
    [36] L. A. Real, R. Biek, Spatial dynamics and genetics of infectious diseases on heterogeneous landscapes, J. R. Soc. Interface, 4 (2007), 935–948. https://doi.org/10.1098/rsif.2007.1041 doi: 10.1098/rsif.2007.1041
    [37] A. B. Duncan, A. Gonzalez, O. Kaltz, Stochastic environmental fluctuations drive epidemiology in experimental host-parasite metapopulations, Proc. R. Soc. B, 280 (2013), 20131747. https://doi.org/10.1098/rspb.2013.1747 doi: 10.1098/rspb.2013.1747
    [38] I. Z. Kiss, P. L. Simon, New moment closures based on a priori distributions with applications to epidemic dynamics, Bull. Math. Biol., 74 (2012), 1501–1515. https://doi.org/10.1007/s11538-012-9723-3 doi: 10.1007/s11538-012-9723-3
    [39] R. V. dos Santos, F. L. Ribeiro, A. S. Martinez, Models for Allee effect based on physical principles, J. Theor. Biol., 385 (2015), 143–152. https://doi.org/10.1016/j.jtbi.2015.08.018 doi: 10.1016/j.jtbi.2015.08.018
    [40] J. M. G. Vilar, J. M. Rubi, Determinants of population responses to environmental fluctuations, Sci. Rep., 8 (2018), 887. https://doi.org/10.1038/s41598-017-18976-6 doi: 10.1038/s41598-017-18976-6
    [41] J. A. Cui, X. Tao, H. Zhu, An SIS infection model incorporating media coverage, Rocky Mountain J. Math., 38 (2008), 1323–1334. https://doi.org/10.1216/RMJ-2008-38-5-1323 doi: 10.1216/RMJ-2008-38-5-1323
    [42] D. Gao, S. Ruan, An SIS patch model with variable transmission coefficients, Math. Biosci., 232 (2011), 110–115. https://doi.org/10.1016/j.mbs.2011.05.001 doi: 10.1016/j.mbs.2011.05.001
    [43] P. van den Driessche, Reproduction numbers of infectious disease models, Infect. Dis. Mod., 2 (2017), 288–303. https://doi.org/10.1016/j.idm.2017.06.002 doi: 10.1016/j.idm.2017.06.002
    [44] S. Lie, G. Scheffers, Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen, Leipzig: B. G. Teubner, 1883. https://doi.org/10.5962/bhl.title.18549
    [45] J. F. Cariñena, F. Falceto, J. Grabowski, Solvability of a Lie algebra of vector fields implies their integrability by quadratures, J. Phys. A: Math. Theor., 49 (2016), 425202. https://doi.org/10.1088/1751-8113/49/42/425202 doi: 10.1088/1751-8113/49/42/425202
    [46] J. F. Cariñena, J. de Lucas, Lie systems: theory, generalisations, and applications, Diss. Math., 479 (2011), 1–162. https://doi.org/10.4064/dm479-0-1 doi: 10.4064/dm479-0-1
    [47] J. F. Cariñena, F. Falceto, J. Grabowski, M. F. Rañada, Geometry of Lie integrability by quadratures, J. Phys. A: Math. Theor., 48 (2015), 215206. https://doi.org/10.1088/1751-8113/48/21/215206 doi: 10.1088/1751-8113/48/21/215206
    [48] J. F. Cariñena, M. F. Rañada, F. Falceto, J. Grabowski, Revisiting Lie integrability by quadratures from a geometric perspective, Banach Center Publ., 110 (2016), 24–40. https://doi.org/10.4064/bc110-0-2 doi: 10.4064/bc110-0-2
    [49] G. W. Bluman, J. D. Cole, Similarity methods for differential equations, New York: Springer, 1974. https://doi.org/10.1007/978-1-4612-6394-4
    [50] A. Ballesteros, F. J. Herranz, P. Parashar, (1+1) Schrödinger Lie bialgebras and their Poisson-Lie groups, J. Phys. A: Math. Gen., 33 (2000), 3445–3465. https://doi.org/10.1088/0305-4470/33/17/304 doi: 10.1088/0305-4470/33/17/304
    [51] B. Prasse, P. Van Mieghem, Time-dependent solution of the NIMFA equations around the epidemic threshold, J. Math. Bio., 81 (2020), 1299–1355. https://doi.org/10.1007/s00285-020-01542-6 doi: 10.1007/s00285-020-01542-6
    [52] S. Bonaccorsi, S. Ottaviano, A stochastic differential equation SIS model on network under Markovian switching, Stoch. Anal. Appl., 2022. https://doi.org/10.1080/07362994.2022.2146590 doi: 10.1080/07362994.2022.2146590
    [53] T. C. Bountis, V. Papageorgiou, P. Winternitz, On the integrability of systems of nonlinear ordinary differential equations with superposition principles, J. Math. Phys., 27 (1986), 1215–1224. https://doi.org/10.1063/1.527128 doi: 10.1063/1.527128
    [54] J. F. Cariñena, J. Grabowski, A. Ramos, Reduction of time-dependent systems admitting a superposition principle, Acta Appl. Math., 66 (2001), 67–87. https://doi.org/10.1023/A:1010743114995 doi: 10.1023/A:1010743114995
    [55] A. Ballesteros, R. Campoamor-Stursberg, E. Fernández-Saiz, F. J. Herranz, J. de Lucas, Poisson-Hopf algebra deformations of Lie-Hamilton systems, J. Phys. A: Math. Theor., 51 (2018), 065202. https://doi.org/10.1088/1751-8121/aaa090 doi: 10.1088/1751-8121/aaa090
    [56] A. Ballesteros, R. Campoamor-Stursberg, E. Fernández-Saiz, F. J. Herranz, J. de Lucas, A unified approach to Poisson-Hopf deformations of Lie-Hamilton systems based on ${\mathfrak sl}(2)$, In: V. Dobrev, Quantum theory and symmetries with Lie theory and its applications in physics, Springer Proceedings in Mathematics & Statistics, Singapore: Springer, 263 (2018), 347–366. https://doi.org/10.1007/978-981-13-2715-5_23
    [57] V. Chari, A. Pressley, A guide to quantum groups, Cambridge: Cambridge University Press, 1994.
    [58] A. Ballesteros, F. J. Herranz, Lie bialgebra quantizations of the oscillator algebra and their universal $R$-matrices, J. Phys. A: Math. Gen., 29 (1996), 4307–4320. https://doi.org/10.1088/0305-4470/29/15/006 doi: 10.1088/0305-4470/29/15/006
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1051) PDF downloads(95) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog