Let $ \Bbb F_{q} $ be a finite field of characteristic $ q $ and $ S_n $ a symmetric group of order $ n! $. In this paper, group codes in the symmetric group algebras $ \Bbb F_{q}S_n $ with $ q > 3 $ and $ n = 3, 4 $ are proposed. We compute the unique (linear and nonlinear) idempotents of $ \Bbb F_q S_n $ corresponding to the characters of symmetric groups and use the results to characterize the minimum distances and dimensions of group codes. Furthermore, we construct MDS group codes and almost MDS group codes in $ \Bbb F_q S_3 $ and $ \Bbb F_q S_4 $.
Citation: Yanyan Gao, Yangjiang Wei. Group codes over symmetric groups[J]. AIMS Mathematics, 2023, 8(9): 19842-19856. doi: 10.3934/math.20231011
Let $ \Bbb F_{q} $ be a finite field of characteristic $ q $ and $ S_n $ a symmetric group of order $ n! $. In this paper, group codes in the symmetric group algebras $ \Bbb F_{q}S_n $ with $ q > 3 $ and $ n = 3, 4 $ are proposed. We compute the unique (linear and nonlinear) idempotents of $ \Bbb F_q S_n $ corresponding to the characters of symmetric groups and use the results to characterize the minimum distances and dimensions of group codes. Furthermore, we construct MDS group codes and almost MDS group codes in $ \Bbb F_q S_3 $ and $ \Bbb F_q S_4 $.
[1] | A. Boripan, S. Jitman, P. Udomkavanich, Characterization and enumeration of complementary dual abelian codes, J. Appl. Math. Comput., 58 (2018), 527–544. https://doi.org/10.1007/s12190-017-1155-7 doi: 10.1007/s12190-017-1155-7 |
[2] | F. E. B. Martínez, Structure of finite dihedral group algebra, Finite Fields Appl., 35 (2015), 204–214. https://doi.org/10.1016/j.ffa.2015.05.002 doi: 10.1016/j.ffa.2015.05.002 |
[3] | Y. Cao, Y. Cao, F. Fu, Concatenated structure of left dihedral codes, Finite Fields Appl., 38 (2016), 93–115. https://doi.org/10.1016/j.ffa.2016.01.001 doi: 10.1016/j.ffa.2016.01.001 |
[4] | Y. Cao, Y. Cao, F. Fu, S. Wang, Left dihedral codes over Galois ring $GR(p^{2}, m)$, Discrete Math., 341 (2018), 1816–1834. https://doi.org/10.13140/RG.2.2.34951.19365 doi: 10.13140/RG.2.2.34951.19365 |
[5] | P. Choosuwan, S. Jitman, P. Udomkavanich, Self-dual abelian codes in some nonprincipal ideal group algebras, Math. Probl. Eng., 2016 (2016), 9020173. https://doi.org/10.1155/2016/9020173 doi: 10.1155/2016/9020173 |
[6] | Y. Gao, Q. Yue, Idempotents of generalized quaternion group algebras and their applications, Discret. Math., 344 (2021), 112342. https://doi.org/10.1016/j.disc.2021.112342 doi: 10.1016/j.disc.2021.112342 |
[7] | Y. Gao, Q. Yue, Y. Wu, LCD codes and self-orthogonal codes in generalized dihedral group algebras, Des. Codes Cryptogr., 88 (2020), 2275–2287. https://doi.org/10.1007/s10623-020-00778-z doi: 10.1007/s10623-020-00778-z |
[8] | Z. Heng, C. Ding, The subfield codes of some $[q + 1, 2, q]$ MDS codes, IEEE Trans. Inf. Theory, 68 (2022), 3643–3656. https://doi.org/10.1109/TIT.2022.3163813 doi: 10.1109/TIT.2022.3163813 |
[9] | I. M. Isaacs, Algebra, a graduate course, Pacific Grove, California: Cole Publishing, 1992. http://dx.doi.org/10.1090/gsm/100 |
[10] | G. D. James, M. W. Liebeck, Representation and characters of groups, California: Cole Publishing, Pacific Grove, 1992. http://dx.doi.org/10.1063/1.2808641 |
[11] | S. Jitman, S. Ling, H. Liu, X. Xie, Abelian codes in principal ideal group algebras, IEEE Trans. Inf. Theory, 59 (2013), 3046–3057. https://doi.org/10.1109/TIT.2012.2236383 doi: 10.1109/TIT.2012.2236383 |
[12] | F. E. B. Martínez, C. R. G. Vergara, Explicit idempotents of finite group algebras, Finite Fields Appl., 28 (2014), 123–131. https://doi.org/10.1016/j.ffa.2015.05.002 doi: 10.1016/j.ffa.2015.05.002 |
[13] | C. P. Milies, F. D. de Melo, On cyclic and abelian codes, IEEE Trans. Inf. Theory, 59 (2013), 7314–7319. https://doi.org/10.1109/TIT.2013.2275111 doi: 10.1109/TIT.2013.2275111 |
[14] | C. P. Milies, S. K. Sehgal, An introduction to group rings, Pacific Grove, California: Cole Publishing, 1992. http://dx.doi.org/10.1007/978-94-010-0405-3_2 |
[15] | Y. Niu, Q. Yue, Y. Wu, L. Hu, Hermitian self-dual, MDS, and generalized Reed-Solomon codes, IEEE Commun. Lett., 23 (2019), 781–784. https://doi.org/10.1109/LCOMM.2019.2908640 doi: 10.1109/LCOMM.2019.2908640 |
[16] | D. S. Passman, The algebraic structure of group rings, New York, Wiley, 1977. |
[17] | J. Sui, Q. Yue, X. Li, D. Huang, MDS, near-MDS or 2-MDS self-dual codes via twisted generalized Reed-Solomon codes, IEEE Trans. Inf. Theory, 68 (2022), 7832–7841. https://doi.org/10.1109/TIT.2022.3190676 doi: 10.1109/TIT.2022.3190676 |
[18] | C. Tang, Q. Wang, C. Ding, The subfield codes and subfield subcodes of a family of MDS codes, IEEE Trans. Inf. Theory, 68 (2022), 5792–5801. https://doi.org/10.1109/TIT.2022.3163813 doi: 10.1109/TIT.2022.3163813 |
[19] | J. H. van Lint, Introduction to coding theory, New York Heidelberg, Berlin: Springer-Verlag, 1982. |
[20] | Y. Wu, J. Y. Hyun, Y. Lee, New LCD MDS codes of non-Reed-Solomon type, IEEE Trans. Inf. Theory, 67 (2021), 5069–5078. https://doi.org/10.1109/TIT.2021.3086818 doi: 10.1109/TIT.2021.3086818 |
[21] | G. Xu, X. Cao, L. Qu, Infinite families of 3-designs and 2-designs from almost MDS codes, IEEE Trans. Inf. Theory, 68 (2022), 4344–4353. https://doi.org/10.1109/TIT.2022.3157199 doi: 10.1109/TIT.2022.3157199 |