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Abstract: Let F, be a finite field of characteristic ¢ and S, a symmetric group of order n!. In this
paper, group codes in the symmetric group algebras F,S, with ¢ > 3 and n = 3,4 are proposed.
We compute the unique (linear and nonlinear) idempotents of IF,S,, corresponding to the characters of
symmetric groups and use the results to characterize the minimum distances and dimensions of group
codes. Furthermore, we construct MDS group codes and almost MDS group codes in F,S3 and F,S 4.
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1. Introduction

Group codes, a class of important linear codes, play a vital role in error correction coding. A linear
code C is called a group code if it is just a one-sided (left or right) ideal in a group algebra R[G], where
R 1s a commutative ring and G is a finite group. If G is abelian, then C is an abelian code.

A brief survey on group codes of some recent results is provided as follows. Polcino Milies
et al. [13] calculated the minimum distances and the dimensions of all cyclic codes of length p" over a
finite field F;, when p is an odd prime and F, is a finite field with g elements, assuming that g generates
the group of invertible elements of the residue ring module p”, denoted by Z .. Jitman et al. [11] gave
a characterization and an enumeration of Euclidean self-dual and Euclidean self-orthogonal abelian
codes in a principal ideal group algebra. Choosuwan et al. [S] gave the complete enumeration of self-
dual abelian codes in nonprincipal ideal group algebras Fy[A X Z, X Z,s] with respect to both the
Euclidean and Hermitian inner products, where k and s are positives and A is an abelian group of odd
order. In 2017, Boripan et al. [1] studied a family of abelian codes with complementary dual in a group
algebra F,/[G] in the two cases of Euclidean and Hermitian inner products, where p is a prime, v is a
positive integer, and G is an arbitrary finite abelian group. Cao et al. [3,4] proved that any left D,,-code
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(left ideal of the group algebra IF,[D»,]) is a direct sum of concatenated codes with inner codes A; and
outer codes C;, where A; is a minimal self-reciprocal cyclic code over FF, of length n and C; is a skew
cyclic code of length 2 over an extension field or principal ideal ring of F,,.

Determining the parameters of linear codes is important, but it is difficult to determine the
parameters of group codes in group algebras F,[G] through the structure of F,[G]. For instance,
Brochero Martines [2] showed explicitly all central irreducible idempotents and their Wedderburn
decomposition of the dihedral group algebra F,[D,,], in the case when every divisor of n divides g — 1.
Brochero Martinez et al. [12] determined an explicit expression for the primitive idempotents of IF,[G],
where F, is a finite field, G is a finite cyclic group of order p* and p is an odd prime with ged(g, p) = 1.
Based on the idea, Gao et al. [7] described and counted all linear complementary dual (LCD) codes
and self-orthogonal codes in F,[D,, ], where [D,,,] is a generalized dihedral group. Gao et al. [6]
obtained the precise descriptions and enumerations of linear complementary dual (LCD) codes and
self-orthogonal codes in the generalized quaternion group algebras F,[Qa,]. It is a pity that the authors
cannot give the parameters of group codes.

To address this issue, we can use the character label of corresponding groups to determine the
idempotents of group algebras. Let S, be a symmetric group of order n!. In this paper, we propose
group codes in symmetric group algebras F,S, with ¢ > 3 and n = 3,4. We compute the unique
(linear and nonlinear) idempotents of F,S, corresponding to the characters of symmetric groups and
use the results to characterize the minimum distances and dimensions of group codes. Furthermore,
we construct MDS group codes and almost MDS group codes in F,S 3 and F,S 4.

The paper is organized as follows: Section 2 provides a review of some properties of group algebras
and other preliminaries, while Section 3 investigates group codes in symmetric group algebras F,S,
with ¢ > 3 and n = 3,4, and obtains the parameters of all the above group codes.

2. Preliminaries
Let F,[G] be a group algebra, where I, is a finite field and G is a finite group. In fact, the group

algebra F,[G] is a vector space over IF, with basis G, and it has scalar, additive, and multiplicative
operator as follows: for c,a,,b, € F, and g € G,

() ag) = ) cag,

geG geG
Dlag+ Y bg = (g +bg.
geG geG geG
Qa2 bihy = > (" aubyg.
geG heG 8€G uv=g

Then F,[G] is an associative F -algebra with the identity 1 = 1, 1, where 1g, and 1 are the identity
elements of FF, and G, respectively. Readers are referred to [14, 16] for more details on group ring or
group algebra.

Lemma 2.1. (Maschke’s Theorem [14]) Let R be a ring and G be a group. Then the group ring R[G]
is semisimple if and only if the following conditions hold.
(i) R is a semisimple ring.
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(ii) G is finite.
(iii) |G| is invertible in R.

By Lemma 2.1, it is easy to verify that F,[G] is semisimple if and only if G is a finite group and
char(F,) 1 |G|. Let F,[G] be a semisimple group algebra. Then F,[G] can be decomposed into a direct
sum F,[G] = @ F,[G]le;, where F,[Gle; is the minimal ideal generated by the idempotent e;, i € Q and

Q

Q is the index set (see [9]). If  is any ideal of F,[G], then I can be expressed as a direct sum of some

minimal ideal F,[Gle; of F,[G], i.e., I = @ F,[Gle;. Let I be an ideal generated by a subset Q; and
i€QcQ
A=Q\Q;. Thenl =1, ={a € F,[G]: ae; =0, forall e; € A}.

Suppose that @ = ] a,g € F,[G]. Then wi(a) = [{a, : a, # 0} is called the Hamming weight
geG

of a ([19]). Let I, be a group code in F,[G]. Its length n is the order of G in group algebra F,[G].
Its dimension k is the dimension of I, as a subspace over F,. Its minimal distance d is defined as
d = min{wt(@) : ae; = 0 for nonzero element a and for all ¢; € A}. Thus the group code /, is called an
[n, k, d] code. Moreover, a linear [n, k, d] group code over F, withd = n — k + 1 is called a maximum
distance separable (MDS) group code. And, a linear [n,k,d] group code over F, withd = n — k
is called an almost MDS (AMDS) group code. MDS codes and AMDS codes are considered to be
an attractive solution for information storage as they operate at the optimal storage versus reliability
trade-off (see [8,15,17,18,20,21)).
Based on the following lemma, we can give the unique idempotents of F,[G].

Lemma 2.2. [10] If x is a character of F,G-module, then the idempotents corresponding to the
character y are given by

1
€= G D xe e

geG

3. Group codes in F,S,

3.1. Group codes in F,S 3
In the subsection, we will consider the group codes on S 3, where S 5 is a nonabelian group with the
smallest order. Let

Sy ={a,b:a’=b*=(ab)*=1)={1,a,d* b,ab,a’b).

It is well-known that S 5 is all the permutations on three elements 1,2,3. In this sense, set a = (123),b =
(12), S5 can be given by {(1), (123), (132), (12), (23), (13)}. For convenience, we denote g; (1 <i < 6)
as the i-th element of S5 in the above two sets.

In addition, S ; has three conjugacy classes as follows:

C, ={1},C, = {b,ab,a’b}, C5 = {a, a*}.

Since the commutator group of §3 is §% = {1, q, a’}, we have |S3/S 41 = 2. As a consequence of this,
the group S ; has two linear characters y, y» and one nonlinear character y3. The character table of S
is as follows (see Table 1).
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Table 1. The character table of S 3.
Characters 1 a b

)a 1T 1 1
X 1 -1 1
Y3 2 0 -1

By Lemma 2.2, the unique idempotents of F,S 5 are given in the following theorem.

Theorem 3.1. There are three idempotents in IF,S 3 as follows:
1 _
e = 6[1 + C, + (5],

1
e, = 6[1_C2+C3]’

1

h o= 6[2 - C3l,

where C; = > g i=23.
geC;

In order to construct the group codes of F,S 3, we need the product between idempotents ey, 3, fi

6

and an arbitrary element of FF,S3. For any element & = }’ a;g; € F,S3, where a; € F,,i = 1,2,...,6,
i=1

we have

aeq

6
O aner. 3.1)
i=1

3 6
ae, = (Z a; - Z a)e,. (3.2)
i=1 i=4

afi

1
8[(201 —ay—a3)g) + (—a) +2a; —az)gx + (—a; — ax + 2a3)g3 (3.3)

+(2a4 — as — ag)gs + (—as + 2as — ag)gs + (—as — as + 2ae)ge].

The following theorems give us the parameters of group codes in F,S 5.

Theorem 3.2. Let ey, e; and f be idempotents in F,S 3. Then
(1) I,y is a [6,5,2] group code;
(2) Iy, is a [6,5,2] group code;
(3) Iy is a [6,2,3] group code.
Proof. (1) Clearly, I;.,, = {a € F,S3|ae; = 0}. Firstly, we will give the dimension of group code /..
6 6
For any @ = }} a;g; € I.,;, we have ae; = 0. By (3.1), we obtain }; a; = 0. Then dim(/,;) = 5.
i=1 i=1

Secondly, we will compute the minimal distance of group code I.,;. For some @ = kg;,1 <i < 6, if
k # 0, then ae; # 0, 1.e., @ = kg; & I.,;. S0 d(Ii,,y) > 2. Set @ = g; — g». Since ae; = (g; — g2)e; = 0,
we get @ = g — g € I,,,. Hence, d({,,;) = 2.
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) Clearly, lea) = {a € FyS3|ae, = 0}. Firstly, we will give the d1mens10n of group code I.,;. For

any @ = Z a;gi € Ii.,), we have ae, = 0. By (3.2), we obtain Z a; — Z a; = 0. Then dim(/,;) = 5.
i=1 i=4
Secondly, We will compute the minimal distance of group code I.,;. For some a = kg;,1 < i < 6, 1f

k # 0, then ae; # 0, i.e., @ = kg; & Ii,)- S0 d(Ii,) = 2. Set @ = g; + g4. Since @e; = (g1 + ga)er =
we get @ = g; + g4 € I,,. Hence, d(I,,}) = 2

(3) Clearly, I, = {a € F,Sslafi = 0}. Firstly, we will give the dimension of group code I;;;. For
6

any @ = ; a;g; € Iy, we have af; = 0. By (3.3), we obtain
i=1

2a1—a2—a3:0
—a;+2a,—a3; =0
—al—a2+2a3:0
2a,—as —ag =0
—a4+2a5—a6:O
—ay —as+2ag =0

Since the rank of the coefficient matrix of the above equation is 4, we know that dim(/i5,) = 2.
Secondly, we will compute the minimal distance of group code /i5,. For some a = kig; + k;gj, 1 <

i,j< 6, if ki,kj # 0, then aﬁ #0,1e., a = k,'g,' + kjgj ¢ I{f1}' So d(I{fI}) > 3. Seta = g1+ &+ g3.
Since afi = (g1 + &2 +g3)fi =0, we geta = g, + g + g3 € I|). Hence, d(I;y,)) = 3.
This completes the proof. O

Theorem 3.3. Let ey, e; and f be idempotents in F,S 3. Then
(1) L, o) s a [6,4,2] group code;
(2) Iie, 1,y is a [6,1,6] group code;
(3) Lie,.1,y is a [6,1,6] group code.

Proof. (1) Clearly, I, .,; = {a € F;S3lae; = 0,ae, = 0}. Firstly, we will give the dimension of group
6
code [, .- Forany @ = ) a,g; € Ii;, .,;» we have @e; = 0 and ae, = 0. From (3.1) and (3.2), we obtain

i=1

ar+a+az+as+as+ag=0
ai+ay+taz—as—as—ag=0 -

Since the rank of the coeflicient matrix of the above equation is 2, we know that dim(Z, .,;) = 4.
Secondly, we will compute the minimal distance of group code I, .,;. For some a = kg;,1 <i <6, if
k #0,then e, # 0,1.e., @ = kg; & li¢, 0r}- SO d(Lie, ¢,}) = 2. Seta = g; —g3. Since ae; = (g1—g3)e; =0
and we; = (g1 — g3)e2 =0, we get @ = g1 — 83 € I, .,)- Hence, d(1i, 0,)) = 2

(2) Clearly, I, s,y = {a € F;S3lae; = 0,af) = 0}. Firstly, we will give the dimension of group code
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6
L, sy- Forany a = 3’ a;g; € I, 5,), we have ae; = 0 and af; = 0. From (3.1) and (3.3), we obtain

i=1

a+ay+az+as+as+ag=0
2611—612—61320
—a;+2a,—a3;=0
—a;—ar+2a3;=0
2a4—as —ag =0
—a4+2a5—a6:O

—ay —as+2ag =0

Since the rank of the coefficient matrix of the above equations is 5, we know that dim(/,, 5;) = 1.
Secondly, we will compute the minimal distance of group code I, ;. If we take @ = g + g» + g3, we
have af; = 0and ae; # 0,1.e.,@ = g1+82+83 & Lie,.51}- SOd(Lie, e,)) = 3. Seta = g1 +82+83—84—85—8e-
Since ae; = (g1 + 8 +83— 8+ — 8 —8s)e1 = 0and ae; = (g1 + g2+ 83 — 84— &5 — &) f1 = 0, we get
@ =g +8 +83— 8 —8& — 8 € lie,.51y- Hence, d(Iie, 1)) = 6

(3) The result can be obtained by a similar proof of (2).

This completes the proof. |

We can get the following results based on Theorems 3.2 and 3.3.

Remark 3.4. Let ey, e, and f, be idempotents in F,S .
(1) Iiey, Lie, 1y, 1 = 1,2 are MDS group codes;
(2) Lie, ¢y is an AMDS group codes.

3.2. Group codes in F,S 4

In the subsection, we will consider the group codes on S, where S is a nonabelian group of
order 24. Let

S, = {a,b:a*=b*= (ab)4 =1)={l,a,d* d’,b,ab,a’b,a’b, ba, aba, a*ba, a’ba,

ba*, aba®, a*ba®, a’ba®, ba’, aba’, a*ba’, a*ba’, ba*b, aba*b, a*ba*b, a*ba’b).

It is well-known that S, is all the permutations on four elements 1,2,3,4. In this sense, set a =
(1234),b = (12), S4 can be given by {(1), (1234), (13)(24), (1432), (12), (234), (1324), (143), (134),
(1243), (142), (23), (1423), (132), (34), (124), (243), (14), (123), (1342), (14)(23), (13), (12)(34),
(24)}. For convenience, we denote g; (1 < i < 24) as the i-th element of S, in the above two sets.

In addition, S 4 has five conjugacy classes as follows:

¢ = (D},

Gy = {(12),(13),(14),(23), (24), B4},

C; = {(12)34),(13)24), (1) (23)},

Cs = {(123),(132),(234),(243),(124), (142), (134), (143)},
Cs = {(1234),(1432),(1324), (1243), (1423), (1342)}.
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Since the commutator group of S4 is S, = A4, we have |S4/S| = 2. As a consequence of this, the
group S 4 has two linear characters y1, y» and three nonlinear characters ys, x4, 5. The character table
of S, is as follows (see Table 2).

Table 2. The character table of S 4.
Characters (1) (12) (12)(34) (123) (1234)

I 11 1 1 1
X2 1 -1 1 1 -1
s 2 0 2 1 0
X4 301 1 0 1
Xs 31 1 0 1

By Lemma 2.2, the unique idempotents of F,S4 are given in the following theorem.

Theorem 3.5. There are five idempotents in F,S 4 as follows:

1 — — — —
e = ﬂ[1+C2+C3+C4+C5],
1 — — — —
e = ﬂ[l—C2+C3+C4—C5],
1 — —
ho= ﬂ[2+2C3—C4],

1 _
Hh = ﬁ[3+C2—C3—C5],

1 _ o _
= =7B3-C-C3+Cs),

where C; = Y g,i=2,3,4,5.

geC;
In order to construct the group codes of F,S4, we need the product between idempotents

24
e1, e, fi, f», f3 and an arbitrary element of F,S4. For any element « = ), a,g; € F,S4, where

i=1
a€F,i=1,2,...,24, we have

24

ae; = (Z ae. (3.4
i=1

ae, = [(611 +asz+ag+ag+ag+a; +ayy+ay;+a7+ a9+ ary + 6123)

- (az +as+as+a;+agt+apntaizta;s+agt+ayt+an+ 6124)]62. (35)

1
afi = 5;[(2ar +2a3 +2ax +2ay— ag—ag —ag — aj — ajg — ajg— ar; — ap)(gr + g3+ 821+ 823) + (2ax +
2a4+2ax+2ar4—as—a;—ajp—ap—a;3—ais—aig—a) (g2 +8ga+gn+gu)+(2as+2a;+2a3+2a;5—a -

as—aj0—aip—ajg—ax —axn —au)(gs+ g7+ 813+ g15) +(2as +2az +2a14+2a16—a; —az—ag—ay; —ay; —
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a19—ay —ax)(gs+ 83+ 814 +816) + (2ao +2ay; +2a17+2a19—a; —az —as — ag — a4 — aje — o) — a3)(go +
g1+ 817+ 819)+Q2aig+2a1n+2a13+2a0—ar—as—as —ay — a3 —ajs —ax —ax)(go+ 12 + 818 + £20)-
af = 2—14[(301 tas+ap+aistaig+an+au—az—dy—ap—ay—as—a;—ajp—d;z—dp)g1 +(3ax+as+
Ag+a16+a19+ar +A3—As—Ax —Ax—a1 —aA3—Ag— a1 —A14—a17)g2+(3az+as+ajg+ai3+ax +axn +axy—
a1 —ay —ay—a—as—as—ap—aj;s—aig)g3+Bas+ag+ay +a+ay;+ax +axn—a,—ap—ay—a;—az—
ag—ayg—aj6—ap)gs+(3as+a+ay +atast+ag+tan—a;—aiz—a;s—ay—dg—ag—dy—dy7—adz)gs+
(Bas+aytap+aptais+ay+ay—ag—ay—as—az—as—a;—ajp—ag—an)get(3ar+aztagtaistaet+
aj7+ax —as—a;3—a;s—a;—dsg—ag—ap —aj9—axn)gr+(Bag+as+ajp+aiz+a;stag+an—as—as—ae—
ay—as—a;—ap—dy—axn)8s+Bastaytas+ajstag+axp+an—an—ap—ag—as—as—ap—ap—a;3—
ax)go+(Bajtaz+ag+aigtaytag+an—ap—ag—a—a;—asg—dy—ay —dis—dz)gio+(3an +as+
as+ap+a;g+ax+ay—ag—ay—apg—a—a;—ayp—ap—aj;s—an)g+Bap+a+as+tat+ay+apg+
a1 —a—ajg—ax—a3—dg—do—a|| —dig—ay3)gi+(a+az+as+ag+ay +ag+ay —as—a;—aj;s—a; -
ag—ap—aie—ayr;—ax3)gi3+Baytastas+ar+ap+taxt+an—as—ag—ajg—ay—aj—a;—a;s—dig—
ax)gs+Bais+a)+as+ag+agt+ai;tap—as—ar;—a;3—az—ay —aj—daig—ajg—dy)gs+Bas+ar+as+
a7+aj+aj;g+ass—ag—ag—ai4—as—aip—a13—a15—ax —a»)gi6+(3aiz +as+ar +ajp+app +as+ay—
ag—ay —ag—ay—as—a;3—ajg—ax—an)gi7+Bag+a;+ag+ag+ay +as+ax —ajp—ap—a—az—
as—ap—a;7—ap—aa)gist(Bapgtay+as+aptapntantan—ag—ay —ay—as—a;—a;s—a;g—dy—
ax)go+Bax+az+ag+ag+ay +ay+ap—ajn—apn—aig—a;—ag—aje—ay7—a19—az )8+ (3ay +a+
as+ar+ap+a;z+ag—a;—az—a3—as—ajg—as—dy—an—au)g +(3axn+a,+az+ag+ag+ajs+ag—
(y—A4—Q—0As—a11 —A16—A17— 021 —23)8202 +(Bass +ay +as+as+ay+as+ax—a;—a3—axy —ar;—a; —
a;3—ag—an—ax)gx»+Bayta taztagtay +asta;—ay—as—ap—ag—ag—ajs—a—a —a3)gul.
afs = lBai—az—as—an—ais—ais—ar —an —ar — s+ @y +as+azs+ap+ a3 +ax)gi + Gar —as -
as—0a9—d1g—A19—dy —dy — Aoz —Aytaj+az+ag+ay +a+ay)g+(Baz—a —a;—ajg—a;z—axy—ax —
an—ap—dayt+ay+aztas+aptais+aig)gz+Bas—ay—ag—ay —au—ay—ax —ap—a;—ay+a;+az+
as+ag+ajs+ag)gs+(3as—a—a;—a; —apz—au—a;s—ai—ajg—ap+a+as+ag+ag+ay+ax)gs+
(Bas—ay—ag—ap—a;3—ay—a;s—ajg—ax —an+ay+as+ar;+ajp+ag+an)ge+(3a;—az—as—ag—a;3—
ay—ais—ajg—ay —dy +atastag+ay +ap+ax)gr+Bag—as—ag—ap—ap—ai—a;s—ae—dig—
an+tay+as+ar+ap+ax+an)gst+Bas—ar—a;—ay —a;s—ay—ag—a—ax—ap+tas+tas+aptapn+
ai3+axn)go+(Bajg—az—ag—ap—aje—a;;—ajg—ajg—ax —a3+a; +ag+ag+ay +as+ax)gio+3ar -
a4—0as—ag—a3—ay7—a1g—a19—ax — Ay +ay+ay+ay+ap+ais+ax)gn +QBan—a —as—ap—ay—
ap—aig—dap—dy—dy +az+das+ag+an +aic+axs)gint+Baiz—az—as—as—a;—dg—an —a;s—d—da +
ay+agt+ataetar+an)giztBa—as—as—as—a;—ag—ap—ajg—ay—ap+a+aptapi+a;s+ag+
ax)guutBais—ai—as—ag—a;—ag—ag—a;3—ay —ax+az+aj +a+at+ag+a)gis+Gas—a; -
as—as—a7;—ag—aj—a—aig—aytdstaptaitais+an+an)gietBar—as—a;—ags—ajp—ay —apn—
ais—ay—ay+ax+as+ap+ag+ay+an)gir+(ag—ay—ag—do—ajp—aj —an—aje—dx —d +adz+
as+ap+a7+apg+ax)gis+(Bag—a—as—ag—ajg—ay —ap—api—a;;—an+as+a;+a;s+aig+axy+
ax)gio+Bax—az—as—ag—aj—ay —ap—ajs—aig—ap+a;+ag+agtay+ag+a)gn+Baxy —a; -
ay—a3—as—a;—ap—a;3—dig—dst+ds+apta;s+ax+ant+ay)g+Ban—a—a—a3—as—ag—ag—
ajy—ajg—axnt+as+an +aet+an+a +a3)gn+Gan—a—a—az—as—as—aj—ais—ax—ax ta;tap+
aiztag+an+axn)gn+Bay—a —ar—a3—ay—as—a; —ajg—a17—axn +ag+ag+a+ag+a +a)gul.
The following theorems give us the parameters of group codes in F,S 4.

Theorem 3.6. Lete;,i = 1,2 and fj, j = 1,2,3 be idempotents in F,S 4. Then
(1) Iy, is a [24,23,2] group code, fori=1,2;
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(2) Iy is a [24,20,2] group code;
(3) Iiyy is a [24,15,4] group code, for j = 2,3.
Proof. (1) Clearly, I, = {a € F,S4|ae; = 0}, for i = 1,2. Firstly, we will give the dimension of group
24
code I,,i = 1,2. For any a = Z a;gi € I, we have ae; = 0. By (3.4), we obtain the following

i=1
equation:

Z a; = 0. (3.6)

By (3.5), we obtain the following equation:

(a1+a3+a6+ag+a9+a11+a14+a17+a17+a19+a21+a23)

- (az +a4+as+a;+a19gt+ap+az3+a5+ag+ ay+dan+ (124) =0. (37)

Then, for i = 1,2, we have dim(/;,,;) = 5. Secondly, we will compute the minimal distance of group
code [,,. For some @ = kg;,1 <i<24,if k # 0, then ae; # 0, 1.., @ = kg; & Ii.,y. So d(I,;) > 2. Set
a =g — gs. Since ae; = (g — g3)e; = 0, we get @ = g1 — g3 € [,;. Hence, d(I,,;) = 2.
(2) Clearly, Iy, = {a € F,S4lafi = 0}. Firstly, we will give the dimension of group code I;,,. For
24
any « = )’ a;8; € I, we have af; = 0. Then, we obtain the following equations:
i=1

=

2aq + 2a3 + 2ay1 + 203 — ag —ag — dg — ayj; — 14 — A1 — A7 — dig9 = 0. (3.8)
207 + 2a4 + 2020 + 2004 —as — a7 — Ao — djp — A3 — A5 — dig — dyg = 0. 3.9
2as + 2a7 + 2a13 + 2a15 — ar — ay — Ay — A1p — A1z — Aoy — Ao — das = 0. (3.10)
2a6 + 2ag + 2a14 + 2016 — a1 —az — dg — ay; — A7 — A9 — do; — dpz = 0. (3.11)
2a9 + 2a11 + 2a17 + 2a19 — a1 — az — ag — ag — d14 — A1 — Ao — dpz = 0. (3.12)
2a10 + 2a17 + 2a13 + 2020 —ar —as — as — a7 — ajz — djs — dy — dyg = 0. (3.13)

Since the rank of the coefficient matrix of the above equations is 4, we know that dim(/;;) = 20.
Secondly, we will compute the minimal distance of group code /s,;. For some a = kg;,1 <i < 24, if
k # 0, then lel * O, i.e., a = kgz ¢ I{fl}' So d(I{fll) >2. Seta = 82 — £4. Since lel = (g2 - g4)f] = 0,
we get @ = g, — g4 € Ij). Hence, d(Ii5,)) = 2.
(3) Clearly, Iy, = {a € F,S4laf; = 0},i = 2,3. Firstly, we will give the dimension of group code
24

I,y Forany a = }) a;g; € I, we have af, = 0. Then, we obtain a corresponding system of equations:
i=1

361] +as+app+ais+aigt+ axpt+ay—az— da (314)

—Qy3 —ay — Ay — a7 — ayp — a3 — ayy = 0.
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3a2+a6+a9+a16+a19+a21+a23—a4—a22

—axy —ay—az—ag—ap —ay—ap =0.

3(13 +a;+ a0+ aizt+ax+ay+ay—a —dan

—ay3 —ay —ay —as —ap —ajs —ag = 0.

3a4+ag+a11 +ayt+ay;+ax +axy—a—ax

—ay, —a; —az —as —ag — ayg — ajg = 0.

3(15 +ay+ay +ant+aetagt+ays—a;—ags

—a15—ay — Ag —ag — dg — a7 — dy; = 0.

3616 +a,+apt+aizt+astaxyt+ay—ag—ang

—aj16— a3 —as —ay — ajp — ajg — axn = 0.

3a7+a3+a9+a14+a16+a17+a21—a5—a13

—a;5—a; —ag—ag —ay —aypg —axy; = 0.

3618 +a4+aygt+a;zt+ast+aigt+an—adg—dg

—Q16 — Ay — s — a7 — ajp — dyy — dpg = 0.

a9 —a, — a7 —ay — ajs — ay7 — ajg — a9 — day

—dy +a4+as+ajpgt+apnt+apit+ay= 0.

36110 +asz+ag+aegt+ay;+ag+axy—app—dag

—Qy) —a) — g — A9 — ay; — ajs — az; = 0.

3ay —as —as —ag —aj3 — ay7 — ajg — djg — dyo

—ayy +ay+a;+ajpgtant+as+ay= 0.

dai, —ay —aeg —aj —a —ap —aig —dyy — dy

—a21+a3+a8+a9+a11+a16+a23:O.

3a13+a3+a6+a8+a11+a19+a21—a5—a7

—Qj5 —a; — a9 — a4 — Q16 — a7 — a3 = 0.

3ai4+as+as+ay+apn +ayy+ an—as —as

—di6 — Ay — Ajp — a13 — 15 — ajg — dog = 0.

AIMS Mathematics

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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3a15+a1+a6+a8+a9+a17+a23—a5—a7

—aj;3—az —ay; — A —aje — ajg —dy = 0.

3a16+a2+a5+a7+a10+alg+a24—a6—ag

—d14— a4 — A;p — a13 — ays — dyy — dyp = 0.

3a17+a4+a7+a10+a12+a15 + ary —ag — apy

—Qj9 —ay —as — a;3 — ajg — dyo — dy = 0.

3a13+a1 +ag+ag+ap +ae+ ay —app— an

—Qy) — a3 — g — Q14 — A7 — dj9 — a3 = 0.

3a19+a2+a5 +aytaptaitay—a—an

—ay7 — a4 — a7 — a5 — ajg — dyo — dpg = 0.

36120-0-613 +de+ a9 +ay +ay+axy—app— an

—ajg —a) —dag — aje — aj7 — djg — ay = 0.

3a21+a2+a4+a7+a12+a13+a18—a1—a3

—Qy3 —as — ajo — Aj5 — dyo — dyp — dog = 0.

3a22+a1+a3+a8+a9+a14+a19—a2—a4

—Qy4 — A — Q1] — Q16 — A17 — A2 — a3 = 0.

3a23+a2+a4+a5+a10+a15+a20—a1—a3

—ay — a7 —ap —api —ajg—dy—day =0.

3a24+a1+a3+a6+a11+a16+a17—a2—a4

—Qyy — ag — A9 — 14 — Q19 — dp1 — a3 = 0.

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

Since the rank of the coefficient matrix of the above equations is 9, we know that dim(/;,;) = 15.
Secondly, we will compute the minimal distance of group code /. For some a = kg;,1 <i < 24, if
k # 0, then af;, # 0, i.e., a = kg; ¢ ;5. Though the coeflicients of f,, it is not difficult to find that
af, # 0forwr(a) < 3. Sod(ljy,)) >4. Seta = g1 +g+g3+g4. Since afi = (g1 + g +8g3+84)fi =0,
we geta = g; + g + g3 + 84 € I,). Hence, d(I;,;) = 4. We can compute the parameters of group code

I,y by the similarly method (for d(/;,)) = 4, take @ = —g| + g2 — g3 + &4).

This completes the proof.
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Theorem 3.7. Lete;,i = 1,2 and f;, j = 1,2, 3 be idempotents in F,S 4. Then
(1) Iig, ey s a [24,22,2] group code;
(2) Lo, sy is a [24,17,2] group code, fori=1,2;
(3) Lie, 5y is a [24,14,8] group code, fori=1,2,j=2,3;
(4) Liy, .y s a [24,11,8] group code, for j = 2,3;
(5) Iip,. 1y is a [24,6,8] group code.

Proof. (1) Clearly, I, ., = {a € F,Ssae; = 0 and aez = 0}. Firstly, we will give

the dimension of group code Iy, ., For any @ = Za,gl € I ey, we have aey =

O and ae;, = 0. From (3.4) and (3.5), we obtain the following system of equations:
iai =0

(Cl] +a3+agt+ag+ag+ap +a+ay;+ay;+ agt+ dn +Cl23)

—(a2 +a4+as+a;+ag+apt+ai+a;s+ag +a20+a22+a24) =0
Then, we have dim(/,, ,,;) = 22. Secondly, we will compute the minimal distance of group code I, ).
For some a = kg;,1 <i <24,if k # 0, then ae; # 0, i.e., @ = kg; & Lo, 0. SO d(Ije, 1) = 2. Set
a =g —gs Since ae; = (g1 —g3)e; =0,fori =1,2, we geta = g; — g3 € I, ¢, Hence, d(1i, 0,)) = 2

(2) Let I, 5y, = 1,2 be the set of elements of the form a = Z a;g; which the coefficients of «

satisfy Eqgs (3.6) and (3.8)—(3.13) for i = 1, while Egs (3.7)-(3. 13) for i = 2. Obviously, it does not
contain any element with weight 1 of I, ;,i = 1,2. Also, set@ = g; — g3, then @ € I, 4,0 = 1,2.
Hence, d(Ii., ) = 2,i = 1,2. Moreover, the dimension of Iy, 1,j,i = 1,2is 17. Therefore, I, 7,1 = 1,2
is a [2,17,24] group code.

(3) Let Iy, ), i = 1,2 be the set of elements of the form a = Z a;g; which the coefficients of « satisty

Eqgs (3.6) and (3.14)—(3.37) for i = 1, while Eqs (3.7) and (3. 14) (3 37) for i = 2. Obviously, it does not
contain any element with weight < 4 of I, 4,),i = 1,2. Also, seta@ = g1+ 8> +83+ 84— 85— 86 — 87— &3>
then a € I, 4y, i = 1,2. Hence, d(Ii,, ) = 8,i = 1,2. Moreover, the dimension of I, 5),i = 1,2
is 14. Therefore, I, f),i = 1,2 is a [8,14,24] group code. In addition, we can obtain the parameters of
Iy, £,y,1 = 1,2 by a similar proof.
24
(4) Let Iy, 5,y be the set of elements of the form @ = }] a;g; which the coefficients of « satisfy
i=1
Eqgs (3.8)=(3.37). Obviously, it does not contain any element with weight < 4 of I 4,. Also, set
@ =g +g +83+8i— g1 —8&»— &3 — &u, then a € Iy, . Hence, d(Iy, r,;) = 8. Moreover, the
dimension of Iy ) is 11. Therefore, Ii4 4, 1s a [24,11,8] group code. In addition, we can obtain the
parameters of Iy, 5, by a similar proof.
24
(5) Let I;4, 1, be the set of elements of the form @ = }} a;g; which the coefficients of « satisfy the
i=1
corresponding equations. Obviously, it does not contain any element with weight < 4 of I, 1. Also,
seta =g1+ 8 +83+ 84— 821 — &2 — 823 — &4, then a € I{fz,f}}' Hence, d(I{fz,f3}) = 8. Moreover, the
dimension of /4, 1, 1s 6. Therefore, I;4, ) is a [6,8,24] group code.
This completes the proof. O

We summarize the following results about the group codes of F,S4. In fact, these results can be
proved by using similar techniques with rigorous derivation that we have used in the previous results
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in this section.

Theorem 3.8. Lete;,i = 1,2 and fj, j = 1,2,3 be idempotents in F,S 4. Then
(1) Lig, e,.1,y is a [24,18,2] group code;
(2) Lie) o5y is a [24,13,8] group code, for j = 2,3;
(3) Lie..fi.r;y 15 a [24,10,8] group code, fori= 1,2, j=2,3;
(4) L, .1, 15 a [24,5,8] group code, for i =1,2;
(5) Lis, 5.5 15 a [24,2,8] group code, fori=1,2.

Theorem 3.9. Lete;,i = 1,2 and fj, j = 1,2,3 be idempotents in F,S 4. Then
(1) Lo, si.po.p5 18 a [24,1,8] group code, for i =1,2;
(2) Ly er.fi.13) IS @ [24,9,8] group code, for j = 2,3;
(3) L, 0,115y 1S a [24,4,8] group code.

We can obtain the following results based on Theorems 3.6-3.9.

Remark 3.10. Let e;,i = 1,2 and f;, j = 1,2, 3 be idempotents in F,S 4.
(1) Iy, i = 1,2, and I,, .,; are MDS group codes.
(2) There are no AMDS group codes in F,S 4.

4. Conclusions

The main contributions of this paper are the following:

e The unique (linear and nonlinear) idempotents of IF,S 3 and F,S4 were described (see Theorems
3.1 and 3.6).

e The minimum distances and dimensions of F,S3; and F,S4 were characterized (see Theorems
3.2-3.3 and 3.6-3.9).

e The MDS group codes and almost MDS group codes in F,S3 and F,S4 were constructed (see
Remarks 3.4 and 3.10).
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