Research article Special Issues

Spectrum of prism graph and relation with network related quantities

  • Received: 16 August 2022 Revised: 20 October 2022 Accepted: 24 October 2022 Published: 08 November 2022
  • MSC : 05C10, 05C82, 68R10

  • Spectra of network related graphs have numerous applications in computer sciences, electrical networks and complex networks to explore structural characterization like stability and strength of these different real-world networks. In present article, our consideration is to compute spectrum based results of generalized prism graph which is well-known planar and polyhedral graph family belongs to the generalized Petersen graphs. Then obtained results are applied to compute some network related quantities like global mean-first passage time, average path length, number of spanning trees, graph energies and spectral radius.

    Citation: Ali Raza, Mobeen Munir, Tasawar Abbas, Sayed M Eldin, Ilyas Khan. Spectrum of prism graph and relation with network related quantities[J]. AIMS Mathematics, 2023, 8(2): 2634-2647. doi: 10.3934/math.2023137

    Related Papers:

  • Spectra of network related graphs have numerous applications in computer sciences, electrical networks and complex networks to explore structural characterization like stability and strength of these different real-world networks. In present article, our consideration is to compute spectrum based results of generalized prism graph which is well-known planar and polyhedral graph family belongs to the generalized Petersen graphs. Then obtained results are applied to compute some network related quantities like global mean-first passage time, average path length, number of spanning trees, graph energies and spectral radius.



    加载中


    [1] S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, Critical phenomena in complex networks, Rev. Mod. Phys., 80 (2008), 1275–1298. https://doi.org/10.1103/RevModPhys.80.1275 doi: 10.1103/RevModPhys.80.1275
    [2] Q. Y. Ding, W. G. Sun, F. Y. Chen, Applications of Laplacian spectra on a 3-prism graph, Mod. Phys. Lett., 28 (2014), 1450009. https://doi.org/10.1142/S0217984914500092 doi: 10.1142/S0217984914500092
    [3] J. G. Restrepo, E. Ott, B. R. Hunt, Approximating the largest eigenvalue of network adjacency matrices, Phys. Rev. E, 76 (2007), 056119. https://doi.org/10.1103/PhysRevE.76.056119 doi: 10.1103/PhysRevE.76.056119
    [4] S. K. Dwivedi, S. Jalan, Extreme-value statistics of networks with inhibitory and excitatory couplings, Phys. Rev. E, 87 (2013), 042714. https://doi.org/10.1103/PhysRevE.87.042714 doi: 10.1103/PhysRevE.87.042714
    [5] R. Merris, Laplacian matrices of graphs: A survey, Linear Algebra Appl., 97 (1994), 143–176. https://doi.org/10.1016/0024-3795(94)90486-3 doi: 10.1016/0024-3795(94)90486-3
    [6] R. Cohen, S. Havlin, Complex networks: Structure, robustness and function, Cambridge University Press, 2010. https://doi.org/10.1017/CBO9780511780356
    [7] M. E. Fisher, On hearing the shape of a drum, J. Comb. Theory, 1 (1996), 105–125. https://doi.org/10.1016/S0021-9800(66)80008-X doi: 10.1016/S0021-9800(66)80008-X
    [8] I. Gutman, D. Vidovic, D. Stevanovi, Chemical applications of the Laplacian spectrum, VI, On the largest Laplacian eigenvalue of alkanes, J. Serb. Chem. Soc., 67 (2002), 407–413. https://doi.org/10.2298/JSC0206407G doi: 10.2298/JSC0206407G
    [9] B. Mohar, The Laplacian spectrum of graphs in graph theory, Combin. Appl., 2 (1991), 871–898. https://doi.org/10.1016/j.camwa.2004.05.005 doi: 10.1016/j.camwa.2004.05.005
    [10] F. Ameer, M. K. Hanif, R. Talib, M. U. Sarwar, Z. Khan, K. Zulfiqa, et al., Techniques, tools and applications of graph analytic, Int. J. Adv. Comput. Sci. Appl., 10 (2019). https://dx.doi.org/10.14569/IJACSA.2019.0100443
    [11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to algorithms, MIT Press and McGraw-Hill, 12 (2001), 527–531. Available from: http://www.cs.cmu.edu/afs/cs/academic/class/15451-s04/www/Lectures/shortestPaths.pdf.
    [12] M. T. Goodrich, R. Tamassia, Algorithm design and applications, Wiley, 2015 (2015), 363.
    [13] A. E. Brouwer, W. H. Haemers, Spectra of graphs, Springer, New York, 2011. https://doi.org/10.1007/978-1-4614-1939-6
    [14] B. Y. Hou, H. J. Zhang, L. Liu, Applications of Laplacian spectra for extended Koch networks, Eur. Phys. J., 85 (2012), 30373. https://doi.org/10.1140/epjb/e2012-30373-x doi: 10.1140/epjb/e2012-30373-x
    [15] Z. Z. Zhang, H. X. Liu, B. Wu, T. Zou, Spanning trees in a fractal scale-free lattice, Phys. Rev. E, 2011 (2011), 016116. https://doi.org/10.1103/PhysRevE.83.016116 doi: 10.1103/PhysRevE.83.016116
    [16] J. R. Lee, A. Hussain, A. Fahad, A. Raza, On ev and ve-degree based topological indices of silicon carbides, CMES-Comp. Modell. Eng., 130 (2022), 871–885. https://doi.org/10.32604/cmes.2022.016836 doi: 10.32604/cmes.2022.016836
    [17] Z. Zhang, Y. Qi, S. Zhou, Y. Lin, J. Guan, Recursive solutions for Laplacian spectra and eigenvectors of a class of growing treelike networks, Phys. Rev. E, 80 (2009), 016104. https://doi.org/10.1103/PhysRevE.80.016104 doi: 10.1103/PhysRevE.80.016104
    [18] Z. Z. Zhang, Y. Qi, S. G. Zhou, S. Y. Gao, J. H. Guan, Explicit determination of mean first-passage time for random walks on deterministic uniform recursive trees, Phys. Rev. E, 81 (2010), 016114. https://doi.org/10.1103/PhysRevE.81.016114 doi: 10.1103/PhysRevE.81.016114
    [19] J. B. Liu, X. F. Pan, Asymptotic incidence energy of lattices, Phys. A, 422 (2015), 193–202. https://doi.org/10.1016/j.physa.2014.12.006 doi: 10.1016/j.physa.2014.12.006
    [20] D. Alghazzawi, A. Raza, U. Munir, S. Ali, Chemical applicability of newly introduced topological invariants and their relation with polycyclic compounds, J. Math., 2022 (2022). https://doi.org/10.1155/2022/5867040
    [21] Z. Cheng, J. Cao, T. Hayat, Cascade of failures in interdependent networks with different average degree, Int. J. Mod. Phys. C, 25 (2014), 1440006. https://doi.org/10.1142/S0129183114400063 doi: 10.1142/S0129183114400063
    [22] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D. U. Hwang, Complex networks: Structure and dynamics, Phys. Rep., 424 (2006), 175–308. https://doi.org/10.1016/j.physrep.2005.10.009 doi: 10.1016/j.physrep.2005.10.009
    [23] A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, C. S. Zhou, Synchronization in complex networks, Phys. Rep., 469 (2008), 93–153. https://doi.org/10.1016/j.physrep.2008.09.002 doi: 10.1016/j.physrep.2008.09.002
    [24] N. Abreu, D. M. Cardoso, I. Gutman, E. A. Martins, M. Robbiano, Bounds for the signless Laplacian energy, Linear Algebra Appl., 435 (2011), 2365–2374. https://doi.org/10.1155/2016/5906801 doi: 10.1155/2016/5906801
    [25] D. Cvetkovic, Signless Laplacians and line graphs, Sci. Math., 131 (2005), 85–92. https://doi.org/10.2298/BMAT0530085C doi: 10.2298/BMAT0530085C
    [26] D. Cvetkovic, S. K. Simić, Towards a spectral theory of graphs based on the signless Laplacian spectra, Publ. I. Math., 85 (2009), 19–33. https://doi.org/10.2298/PIM0999019C doi: 10.2298/PIM0999019C
    [27] D. Cvetkovic, S. K. Simić, Towards a spectral theory of graphs based on the signless Laplacian, Appl. Anal. Discr. Math., 4 (2010), 156–166. https://doi.org/10.2298/AADM1000001C doi: 10.2298/AADM1000001C
    [28] J. B. Liu, J. Cao, A. Alofi, A. A. Mazrooei, A. Elaiw, Applications of Laplacian spectra for n-prism networks, Neurocomputing, 198 (2016), 69–73. https://doi.org/10.3390/sym10060206 doi: 10.3390/sym10060206
    [29] R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985. https://doi.org/10.1017/CBO9780511810817
    [30] X. Gao, Y. Luo, W. Liu, Resistance distances and the Kirchhoff index in Cayley graphs, Discrete Appl. Math. 159 (2011), 2050–2057. https://doi.org/10.1016/j.dam.2011.06.027
    [31] O. Jones, Spectra of simple graphs, Whitman College, 2013. https://doi.org/10.1007/978-3-030-03574-7_1
    [32] D. J. Klein, M. Randić, Resistance distances, J. Math. Chem., 12 (1993), 81–95. https://doi.org/10.1007/BF01164627
    [33] M. Q. Owaidat, J. H. Asad, J. M. Khalifeh, Resistance calculation of the decorated centered cubic networks: Applications of the Green's function, Mod. Phys. Lett. B, 28 (2014), 1450252. https://doi.org/10.1142/S0217984914502522 doi: 10.1142/S0217984914502522
    [34] Z. Zhang, Some physical and chemical indices of clique-inserted lattices, J. Stat. Mech. Theory Exp., 10 (2013), P10004. https://doi.org/10.1088/1742-5468/2013/10/P10004 doi: 10.1088/1742-5468/2013/10/P10004
    [35] X. Zhang, A. Raza, A. Fahad, M. K. Jamil, M. A. Chaudhry, Z. Iqbal, On face index of silicon carbides, Discr. Dyn. Nature Soc., 2020 (2020). https://doi.org/10.1155/2020/6048438
    [36] A. Kamińska, T. Srokowski, Mean first passage time for a Markovian jumping process, Acta Phys. Pol. B, 38 (2007), 3119. https://doi.org/10.48550/arXiv.0710.2686 doi: 10.48550/arXiv.0710.2686
    [37] Z. Z. Zhang, H. X. Liu, B. Wu, S. G. Zhou, Eunmeration of spanning trees in a peseudofractal scale web, Europhys. Lett., 90 (2010), 68002. https://doi.org/10.1209/0295-5075/90/68002 doi: 10.1209/0295-5075/90/68002
    [38] I. Lukovits, S. Nikolić, N. Trinajstić, Resistance distance in regular graphs, Int. J. Quant. Chem, 71 (1999), 217–225. https://doi.org/10.1002/(SICI)1097-461X(1999)71 doi: 10.1002/(SICI)1097-461X(1999)71
    [39] G. J. Szabó, M. Alava, J. Kertész, Geometry of minimum spanning trees on scalefree networks, Phys. A, 330 (2003), 31–36. https://doi.org/10.48550/arXiv.cond-mat/0405688 doi: 10.48550/arXiv.cond-mat/0405688
    [40] Z. H. Wu, L. A. Braunstein, S. Havlin, H. E. Stanley, Transport in weighted networks: Partition into superhighways and roads, Phys. Rev. Lett., 96 (2006), 148702. https://doi.org/10.1103/PhysRevLett.96.148702 doi: 10.1103/PhysRevLett.96.148702
    [41] D. Dhar, Theoretical studies of self-organized criticality, Phys. A, 369 (2006), 29–70. https://doi.org/10.1016/j.physa.2006.04.004 doi: 10.1016/j.physa.2006.04.004
    [42] D. Dhar, A. Dhar, Distribution of sizes of erased loops for loop-erased random walks, Phys. Rev. E, 55 (1997), 2093. https://doi.org/10.1103/PhysRevE.55.R2093 doi: 10.1103/PhysRevE.55.R2093
    [43] T. Elmar, S. Wagner, Resistance scaling and the number of spanning trees in self-similar lattices, J. Stat. Phys., 142 (2011), 879–897. https://doi.org/10.1007/s10955-011-0140-z doi: 10.1007/s10955-011-0140-z
    [44] Z. Z. Zhang, B. Wu, F. Comellas, The number of spanning trees in Apollonian networks, Discrete Appl. Math., 169 (2014), 206–213. https://doi.org/10.1155/2019/4271783 doi: 10.1155/2019/4271783
    [45] C. Godsil, G. Royle, Algebraic graph theory, graduate texts in mathematics, Springer, New York, 2001. https://doi.org/10.1007/978-1-4613-0163-9
    [46] E. Huckel, The theory of unsaturated and aromatic compounds, Z. Elektrochem. Angew. Phys. Chem., 42 (1937). https://doi.org/10.1007/BF01341936
    [47] R. Pariser, R. G. Parr, A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules, J. Chem. Phys., 21 (1953), 466–471. https://doi.org/10.1063/1.1698929 doi: 10.1063/1.1698929
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1999) PDF downloads(142) Cited by(6)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog