In this paper, we continue to introduce new properties of principal $ MS $-algebras deal with congruence relations via $ MS $-congruence pairs. Necessary and sufficient conditions for a pair of congruences $ (\theta_{1}, \theta_{2})\in Con(L^{\circ\circ})\times Con_{lat}(D(L)) $ to become an $ MS $-congruence pair of a principal $ MS $-algebra (principal Stone algebra) $ L $ are obtained. We describe the lattice of all $ MS $-congruence pairs of a principal $ MS $-algebra $ L $ which induced by the Boolean elements of $ L $. We introduce certain special congruence $ \Psi $ on a principal $ MS $-algebra and its related properties which are useful for the topic of this paper. A characterization of $ 2 $-permutable congruences using $ MS $-congruence pairs of principal $ MS $-algebras is established. Finally, a characterization of $ n $-permutability of congruences of principal $ MS $-algebras is given, which is a generalization of the characterization of $ 2 $-permutability of congruences of such algebras.
Citation: Abd El-Mohsen Badawy, Alaa Helmy. Permutabitity of principal $ MS $-algebras[J]. AIMS Mathematics, 2023, 8(9): 19857-19875. doi: 10.3934/math.20231012
In this paper, we continue to introduce new properties of principal $ MS $-algebras deal with congruence relations via $ MS $-congruence pairs. Necessary and sufficient conditions for a pair of congruences $ (\theta_{1}, \theta_{2})\in Con(L^{\circ\circ})\times Con_{lat}(D(L)) $ to become an $ MS $-congruence pair of a principal $ MS $-algebra (principal Stone algebra) $ L $ are obtained. We describe the lattice of all $ MS $-congruence pairs of a principal $ MS $-algebra $ L $ which induced by the Boolean elements of $ L $. We introduce certain special congruence $ \Psi $ on a principal $ MS $-algebra and its related properties which are useful for the topic of this paper. A characterization of $ 2 $-permutable congruences using $ MS $-congruence pairs of principal $ MS $-algebras is established. Finally, a characterization of $ n $-permutability of congruences of principal $ MS $-algebras is given, which is a generalization of the characterization of $ 2 $-permutability of congruences of such algebras.
[1] | M. Ahmed, A. Badawy, E. El-Seidy, A. Gaber, On principal $GK_{2}$-algebras, Applied Mathematical Sciences, 17 (2023), 205–219. http://dx.doi.org/10.12988/ams.2023.917390 doi: 10.12988/ams.2023.917390 |
[2] | T. Alemayehu, Y. Wondifraw, $MS$-Fuzzy ideals of $MS$-algebras, J. Appl. Math. Inform., 39 (2021), 553–567. http://dx.doi.org/10.14317/jami.2021.553 doi: 10.14317/jami.2021.553 |
[3] | A. Badawy, $d_{L}$-Filters of principal $MS$-algebras, Journal of the Egyptian Mathematical Society, 23 (2015), 463–469. http://dx.doi.org/10.1016/j.joems.2014.12.008 doi: 10.1016/j.joems.2014.12.008 |
[4] | A. Badawy, Regular double $MS$-algebras, Appl. Math. Inf. Sci., 11 (2017), 115–122. http://dx.doi.org/10.18576/amis/110114 doi: 10.18576/amis/110114 |
[5] | A. Badawy, Construction of a core regular double $MS$-algebra, Filomat, 20 (2020), 35–50. http://dx.doi.org/10.2298/FIL.2001035B doi: 10.2298/FIL.2001035B |
[6] | A. Badawy, Congruences and de Morgan filters of decomposable $MS$-algebras, SE Asian Bull. Math., 43 (2019), 13–25. |
[7] | A. Badawy, M. Atallah, $MS$-intervals of an $MS$-algebra, Hacet. J. Math. Stat., 48 (2019), 1479–1487. http://dx.doi.org/10.15672/HJMS.2018.590 doi: 10.15672/HJMS.2018.590 |
[8] | A. Badawy, R. El-Fawal, Homomorphisms and subalgebras of decomposable $MS$-algebras, Journal of the Egyptian Mathematical Society, 25 (2017), 119–124. http://dx.doi.org/10.1016/j.joems.2016.10.001 doi: 10.1016/j.joems.2016.10.001 |
[9] | A. Badawy, R. El-Fawal, Closure filters of decomposable $MS$-algebras, SE Asian Bull. Math., 44 (2020), 177–194. |
[10] | A. Badawy, D. Guffov$\acute{a}$, M. Haviar, Triple construction of decomposable $MS$-algebras, Acta Universitatis Palackianae Olomucensis, 51 (2012), 53–65. |
[11] | A. Badawy, M. Haviar, M. Plo$\check{s}\check{c}$ica, Congruence pairs of principal $MS$-algebras and perfect extensions, Math. Slovaca, 70 (2020), 1275–1288. http://dx.doi.org/10.1515/ms-2017-0430 doi: 10.1515/ms-2017-0430 |
[12] | A. Badawy, S. Hussen, A. Gaber, Quadruple construction of decomposable double $MS$-algebras, Math. Solvaca, 70 (2020), 1041–1056. http://dx.doi.org/10.1515/ms-2017-0412 doi: 10.1515/ms-2017-0412 |
[13] | A. Badawy, M. Sambosiva Rao, Closure ideals of $MS$-algebras, Chamchuri Journal of Mathematics, 6 (2014), 31–46. |
[14] | T. Blyth, Lattices and ordered algebraic structures, London: Springer Varlag, 2005. http://dx.doi.org/10.1007/b139095 |
[15] | T. Blyth, J. Varlet, On a common abstraction of de Morgan algebras and Stone algebras, Proc. Roy. Soc. Edinb. A, 94 (1983), 301–308. http://dx.doi.org/10.1017/S0308210500015663 doi: 10.1017/S0308210500015663 |
[16] | T. Blyth, J. Varlet, Subvarieties of the class of $MS$-algebras, Proc. Roy. Soc. Edinb. A, 95 (1983), 157–169. http://dx.doi.org/10.1017/s0308210500015869 doi: 10.1017/s0308210500015869 |
[17] | T. Blyth, J. Varlet, Ockham algebras, London: Oxford University Press, 1994. |
[18] | S. El-Assar, A. Badawy, Homomorphisms and subalgebras of $MS$-algebras, Qatar Univ. Sci. J., 15 (1995), 279–285. |
[19] | S. El-Assar, A. Badawy, Congrunce pairs of decomposable $MS$-algebras, Chin. Ann. Math. Ser. B, 42 (2021), 561–574. http://dx.doi.org/10.1007/s11401-021-0278-1 doi: 10.1007/s11401-021-0278-1 |
[20] | R. El-Fawal, A. Badawy, A. Hassanein, On congruences of certain modular generalized MS-algebras, NeuroQuantology, 20 (2022), 1448–1464. http://dx.doi.org/10.14704/NQ.2022.20.16.NQ880143 doi: 10.14704/NQ.2022.20.16.NQ880143 |
[21] | M. Gehrke, C. Walker, E. Walker, Stone algebra extensions with bounded dense sets, Algebra Univers., 37 (1997), 1–23. http://dx.doi.org/10.1007/PL00000326 doi: 10.1007/PL00000326 |
[22] | G. Gr$\ddot{a}$tzer, Lattice theory: first concepts and distributive lattices, San Francisco: Dover, 1971. |
[23] | Y. Gubena, T. Alemayehu, Y. Wondifraw, Closure fuzzy filters of decomposable $MS$-algebras, Topological Algebra and its Applications, 10 (2022), 216–226. http://dx.doi.org/10.1515/taa-2022-0128 doi: 10.1515/taa-2022-0128 |
[24] | T. Katri$\check{n}\acute{a}$k, Construction of regular double $p$-algebras, Bull. Soc. Roy. Sci. Liege., 43 (1974), 283–290. |