Research article

Permutabitity of principal $ MS $-algebras

  • Received: 31 March 2023 Revised: 31 May 2023 Accepted: 05 June 2023 Published: 14 June 2023
  • MSC : 06D05, 06D30

  • In this paper, we continue to introduce new properties of principal $ MS $-algebras deal with congruence relations via $ MS $-congruence pairs. Necessary and sufficient conditions for a pair of congruences $ (\theta_{1}, \theta_{2})\in Con(L^{\circ\circ})\times Con_{lat}(D(L)) $ to become an $ MS $-congruence pair of a principal $ MS $-algebra (principal Stone algebra) $ L $ are obtained. We describe the lattice of all $ MS $-congruence pairs of a principal $ MS $-algebra $ L $ which induced by the Boolean elements of $ L $. We introduce certain special congruence $ \Psi $ on a principal $ MS $-algebra and its related properties which are useful for the topic of this paper. A characterization of $ 2 $-permutable congruences using $ MS $-congruence pairs of principal $ MS $-algebras is established. Finally, a characterization of $ n $-permutability of congruences of principal $ MS $-algebras is given, which is a generalization of the characterization of $ 2 $-permutability of congruences of such algebras.

    Citation: Abd El-Mohsen Badawy, Alaa Helmy. Permutabitity of principal $ MS $-algebras[J]. AIMS Mathematics, 2023, 8(9): 19857-19875. doi: 10.3934/math.20231012

    Related Papers:

  • In this paper, we continue to introduce new properties of principal $ MS $-algebras deal with congruence relations via $ MS $-congruence pairs. Necessary and sufficient conditions for a pair of congruences $ (\theta_{1}, \theta_{2})\in Con(L^{\circ\circ})\times Con_{lat}(D(L)) $ to become an $ MS $-congruence pair of a principal $ MS $-algebra (principal Stone algebra) $ L $ are obtained. We describe the lattice of all $ MS $-congruence pairs of a principal $ MS $-algebra $ L $ which induced by the Boolean elements of $ L $. We introduce certain special congruence $ \Psi $ on a principal $ MS $-algebra and its related properties which are useful for the topic of this paper. A characterization of $ 2 $-permutable congruences using $ MS $-congruence pairs of principal $ MS $-algebras is established. Finally, a characterization of $ n $-permutability of congruences of principal $ MS $-algebras is given, which is a generalization of the characterization of $ 2 $-permutability of congruences of such algebras.



    加载中


    [1] M. Ahmed, A. Badawy, E. El-Seidy, A. Gaber, On principal $GK_{2}$-algebras, Applied Mathematical Sciences, 17 (2023), 205–219. http://dx.doi.org/10.12988/ams.2023.917390 doi: 10.12988/ams.2023.917390
    [2] T. Alemayehu, Y. Wondifraw, $MS$-Fuzzy ideals of $MS$-algebras, J. Appl. Math. Inform., 39 (2021), 553–567. http://dx.doi.org/10.14317/jami.2021.553 doi: 10.14317/jami.2021.553
    [3] A. Badawy, $d_{L}$-Filters of principal $MS$-algebras, Journal of the Egyptian Mathematical Society, 23 (2015), 463–469. http://dx.doi.org/10.1016/j.joems.2014.12.008 doi: 10.1016/j.joems.2014.12.008
    [4] A. Badawy, Regular double $MS$-algebras, Appl. Math. Inf. Sci., 11 (2017), 115–122. http://dx.doi.org/10.18576/amis/110114 doi: 10.18576/amis/110114
    [5] A. Badawy, Construction of a core regular double $MS$-algebra, Filomat, 20 (2020), 35–50. http://dx.doi.org/10.2298/FIL.2001035B doi: 10.2298/FIL.2001035B
    [6] A. Badawy, Congruences and de Morgan filters of decomposable $MS$-algebras, SE Asian Bull. Math., 43 (2019), 13–25.
    [7] A. Badawy, M. Atallah, $MS$-intervals of an $MS$-algebra, Hacet. J. Math. Stat., 48 (2019), 1479–1487. http://dx.doi.org/10.15672/HJMS.2018.590 doi: 10.15672/HJMS.2018.590
    [8] A. Badawy, R. El-Fawal, Homomorphisms and subalgebras of decomposable $MS$-algebras, Journal of the Egyptian Mathematical Society, 25 (2017), 119–124. http://dx.doi.org/10.1016/j.joems.2016.10.001 doi: 10.1016/j.joems.2016.10.001
    [9] A. Badawy, R. El-Fawal, Closure filters of decomposable $MS$-algebras, SE Asian Bull. Math., 44 (2020), 177–194.
    [10] A. Badawy, D. Guffov$\acute{a}$, M. Haviar, Triple construction of decomposable $MS$-algebras, Acta Universitatis Palackianae Olomucensis, 51 (2012), 53–65.
    [11] A. Badawy, M. Haviar, M. Plo$\check{s}\check{c}$ica, Congruence pairs of principal $MS$-algebras and perfect extensions, Math. Slovaca, 70 (2020), 1275–1288. http://dx.doi.org/10.1515/ms-2017-0430 doi: 10.1515/ms-2017-0430
    [12] A. Badawy, S. Hussen, A. Gaber, Quadruple construction of decomposable double $MS$-algebras, Math. Solvaca, 70 (2020), 1041–1056. http://dx.doi.org/10.1515/ms-2017-0412 doi: 10.1515/ms-2017-0412
    [13] A. Badawy, M. Sambosiva Rao, Closure ideals of $MS$-algebras, Chamchuri Journal of Mathematics, 6 (2014), 31–46.
    [14] T. Blyth, Lattices and ordered algebraic structures, London: Springer Varlag, 2005. http://dx.doi.org/10.1007/b139095
    [15] T. Blyth, J. Varlet, On a common abstraction of de Morgan algebras and Stone algebras, Proc. Roy. Soc. Edinb. A, 94 (1983), 301–308. http://dx.doi.org/10.1017/S0308210500015663 doi: 10.1017/S0308210500015663
    [16] T. Blyth, J. Varlet, Subvarieties of the class of $MS$-algebras, Proc. Roy. Soc. Edinb. A, 95 (1983), 157–169. http://dx.doi.org/10.1017/s0308210500015869 doi: 10.1017/s0308210500015869
    [17] T. Blyth, J. Varlet, Ockham algebras, London: Oxford University Press, 1994.
    [18] S. El-Assar, A. Badawy, Homomorphisms and subalgebras of $MS$-algebras, Qatar Univ. Sci. J., 15 (1995), 279–285.
    [19] S. El-Assar, A. Badawy, Congrunce pairs of decomposable $MS$-algebras, Chin. Ann. Math. Ser. B, 42 (2021), 561–574. http://dx.doi.org/10.1007/s11401-021-0278-1 doi: 10.1007/s11401-021-0278-1
    [20] R. El-Fawal, A. Badawy, A. Hassanein, On congruences of certain modular generalized MS-algebras, NeuroQuantology, 20 (2022), 1448–1464. http://dx.doi.org/10.14704/NQ.2022.20.16.NQ880143 doi: 10.14704/NQ.2022.20.16.NQ880143
    [21] M. Gehrke, C. Walker, E. Walker, Stone algebra extensions with bounded dense sets, Algebra Univers., 37 (1997), 1–23. http://dx.doi.org/10.1007/PL00000326 doi: 10.1007/PL00000326
    [22] G. Gr$\ddot{a}$tzer, Lattice theory: first concepts and distributive lattices, San Francisco: Dover, 1971.
    [23] Y. Gubena, T. Alemayehu, Y. Wondifraw, Closure fuzzy filters of decomposable $MS$-algebras, Topological Algebra and its Applications, 10 (2022), 216–226. http://dx.doi.org/10.1515/taa-2022-0128 doi: 10.1515/taa-2022-0128
    [24] T. Katri$\check{n}\acute{a}$k, Construction of regular double $p$-algebras, Bull. Soc. Roy. Sci. Liege., 43 (1974), 283–290.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1081) PDF downloads(113) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog