Processing math: 100%
Research article

SOR-based alternately linearized implicit iteration method for nonsymmetric algebraic Riccati equations

  • Received: 18 April 2023 Revised: 29 May 2023 Accepted: 06 June 2023 Published: 14 June 2023
  • MSC : 15A24, 15A57

  • In this paper, we propose a class of successive over relaxation-based alternately linearized implicit iteration method for computing the minimal nonnegative solution of nonsymmetric algebraic Riccati equations. Under certain conditions, we prove the convergence of the iterative method. Finally, numerical examples are given to show the iterative method is efficient.

    Citation: Chunjuan Du, Tongxin Yan. SOR-based alternately linearized implicit iteration method for nonsymmetric algebraic Riccati equations[J]. AIMS Mathematics, 2023, 8(9): 19876-19891. doi: 10.3934/math.20231013

    Related Papers:

    [1] Houssem Jerbi, Izzat Al-Darraji, Saleh Albadran, Sondess Ben Aoun, Theodore E. Simos, Spyridon D. Mourtas, Vasilios N. Katsikis . Solving quaternion nonsymmetric algebraic Riccati equations through zeroing neural networks. AIMS Mathematics, 2024, 9(3): 5794-5809. doi: 10.3934/math.2024281
    [2] Xiaofeng Wang, Ying Cao . A numerically stable high-order Chebyshev-Halley type multipoint iterative method for calculating matrix sign function. AIMS Mathematics, 2023, 8(5): 12456-12471. doi: 10.3934/math.2023625
    [3] Zhuo-Hong Huang . A generalized Shift-HSS splitting method for nonsingular saddle point problems. AIMS Mathematics, 2022, 7(7): 13508-13536. doi: 10.3934/math.2022747
    [4] Xin-Hui Shao, Wan-Chen Zhao . Relaxed modified Newton-based iteration method for generalized absolute value equations. AIMS Mathematics, 2023, 8(2): 4714-4725. doi: 10.3934/math.2023233
    [5] Xiaopeng Yi, Chongyang Liu, Huey Tyng Cheong, Kok Lay Teo, Song Wang . A third-order numerical method for solving fractional ordinary differential equations. AIMS Mathematics, 2024, 9(8): 21125-21143. doi: 10.3934/math.20241026
    [6] Mouhamad Al Sayed Ali, Miloud Sadkane . Acceleration of implicit schemes for large systems of nonlinear differential-algebraic equations. AIMS Mathematics, 2020, 5(1): 603-618. doi: 10.3934/math.2020040
    [7] Junxiang Lu, Chengyi Zhang . On the strong P-regular splitting iterative methods for non-Hermitian linear systems. AIMS Mathematics, 2021, 6(11): 11879-11893. doi: 10.3934/math.2021689
    [8] Romas Marcinkevicius, Inga Telksniene, Tadas Telksnys, Zenonas Navickas, Minvydas Ragulskis . The step-wise construction of solitary solutions to Riccati equations with diffusive coupling. AIMS Mathematics, 2023, 8(12): 30683-30703. doi: 10.3934/math.20231568
    [9] Pattrawut Chansangiam, Arnon Ploymukda . Riccati equation and metric geometric means of positive semidefinite matrices involving semi-tensor products. AIMS Mathematics, 2023, 8(10): 23519-23533. doi: 10.3934/math.20231195
    [10] Jiali Wu, Maoning Tang, Qingxin Meng . A stochastic linear-quadratic optimal control problem with jumps in an infinite horizon. AIMS Mathematics, 2023, 8(2): 4042-4078. doi: 10.3934/math.2023202
  • In this paper, we propose a class of successive over relaxation-based alternately linearized implicit iteration method for computing the minimal nonnegative solution of nonsymmetric algebraic Riccati equations. Under certain conditions, we prove the convergence of the iterative method. Finally, numerical examples are given to show the iterative method is efficient.



    A nonsymmetric algebraic Riccati equation (NARE) is the matrix equation

    R(X)=XCXXDAX+B=0, (1.1)

    for which A, B, C and D are known matrices whose sizes are m×m, m×n, n×m and n×n respectively, and XRm×n is an unknown matrix to be solved. Let

    K=(DCBA), (1.2)

    where K is a nonsingular or an irreducible singular M-matrix. This type of nonlinear matrix equation often appears in many fields of application. For instance, in Wiener-Hopf factorization of Markov chains [7,20] and stochastic processes[2]. In addition, in transport theory, changes in the usual set of neutron transport equations [3,5,6,14] are formulated as

    {(μ+α)x+1}φ(x,μ)=c211φ(x,ω)dω, (1.3)
    φ(0,μ)=f(μ),μ>α,|μ|1, (1.4)
    limxφ(x,μ)=0, (1.5)

    where φ is the neutron flux, α (0α<1) is an angular shift, and c is the mean of the number of new particles produced by a collision, which is assumed to be conservative, that is 0c1. Equation (1.3) is equivalent to Eq (1.1) by proper transformation. In [21], Peretz gave sufficient conditions for the existence of contractive solutions for the nonsymmetric algebraic Riccati equation and the sufficient conditions for the unique contractive solution. In [8], Guo introduced a new class of nonsymmetric algebraic Riccati equations, which was inspired by the study of linear quadratic differential games. In [4], Bai et al. established a class of alternately linearized implicit (ALI) iteration methods for computing the minimal nonnegative solution. In[11], Guan considered the numerical solution and proposed a modified alternately linearized implicit iteration method (MALI) for computing the minimal nonnegative solution of M-matrix algebraic Riccati equations. Because of the importance, the nonsymmetric algebraic Riccati equation has attracted considerable attention from many scholars, and many methods have been studied to solve them in recent years[9,10,11,12,13,15,16,17,19].

    In general, Eq (1.1) may have solutions, there may be no solutions, and there may be infinite solutions. In practical applications, we are interested in the minimum nonnegative solution of Eq (1.1). Mainly inspired by[11], in this paper, we propose a class of successive over relaxation (SOR)-based alternately linearized implicit (SORALI) iteration method for computing the minimal nonnegative solution of nonsymmetric algebraic Riccati equations (NARE). It is proved that the matrix sequences generated by the developed iterative algorithm monotonically converge to a minimal nonnegative solution of NARE under appropriate conditions.

    For convenience of description, we use the following notations and definitions throughout this paper. For any matrices A,BRm×n with A=(aij) and B=(bij), AB (or A<B) means aijbij (or aij<bij), i,j. Thus we can define A is a positive matrix if A>0, similarly we can define A is a nonnegative matrix if A0. A matrix ARn×n is called a Z-matrix if aij0, ij. Obviously, for any Z-matrix A, it can be written as A=sIB with B0 and I is the identity matrix. A Z-matrix A=sIB is a nonsingular M-matrix if s>ρ(B) and singular M-matrix if s=ρ(B), where ρ(B) is the spectral radius of B. denotes the -norm of a matrix.

    The remainder of this paper is organized as follows: In Section 2, we give some preliminary knowledge and some previous results. In Section 3, we propose a class of SORALI iteration method for computing the minimal nonnegative solution of NARE, and convergence analysis of this method. In Section 4, we report some numerical results. In Section 5, we conclude the result in this paper and the possible work in the future of this paper is highlighted.

    In this section, we restate some preliminary knowledge and some previous results. The theory of nonsingular M-matrices will play an important role in our analysis, so several important properties of nonsingular M-matrices are described in the following lemmas.

    Lemma 2.1. ([1]) Let ARn×n be a Z-matrix, then the following expressions are equivalent:

    (1) A is a nonsingular M-matrix.

    (2) A10.

    (3) Av>0 for some positive vector vRn.

    (4) All eigenvalues of A have positive real part.

    Lemma 2.2. ([18]) Let ARn×n be a nonsingular M-matrix. If a Z-matrix BRn×n satisfies BA, then B is also a nonsingular M-matrix.

    Remark 2.1. From Lemma 2.2, we can easily conclude that for any real number γ0, B=γI+A is a nonsingular M-matrix.

    Lemma 2.3. ([1]) Let ARn×n be a nonsingular M-matrix, then any principal sub-matrix of A is also a nonsingular M-matrix.

    Remark 2.2. ([11]) From Lemma 2.3, we can know that if A is a nonsingular M-matrix and is partitioned as

    A=(A11A12A21A22),

    where A11 and A22 are square matrices, then A11 and A22 are also nonsingular M-matrices.

    Lemma 2.4. ([4,9,11,15]) If K in (1.2) is a nonsingular M-matrix or an irreducible singular M-matrix, then Eq (1.1) has a unique minimal nonnegative solution S. If K is nonsingular, then A-SC and D-CS are also nonsingular M-matrices. If K is irreducible, then S>0 and A-SC and D-CS are also irreducible M-matrices.

    Many methods for finding the minimal nonnegative solution of NARE have been studied, such as Newton iteration, fixed-point iteration, structure-preserving doubling algorithm, nonlinear block Gauss-Seidel iterative, ALI iteration, MALI iterative and so on [4,7,11,12,13,15].

    In[11], the modified alternately linearized implicit iteration (MALI) can be written as follows:

    {Xk+12(αI+LD)=(αIA+XkC)Xk+XkUD+B,(βI+LA)Xk+1=Xk+12(βID+CXk+12)+UAXk+12+B. (2.1)

    In the above formula, D=LDUD, where LD is the lower triangular part of D and UD is the strictly upper triangular part of D. Similarly, A=LAUA, where LA is the lower triangular part of A and UA is the strictly upper triangular part of A. α>0 and β>0 are two known parameters, set X0=0Rm×n, computing Xk+1 from Xk by solving Eq (2.1), k=0,1,, until {Xk} converges.

    Because of the special structure of coefficient matrices in Eq (2.1), the method of MALI costs less CPU time than ALI for solving NARE.

    Considering the special structure of the coefficient matrices and motivated by [11], we use the idea of the SOR iteration to split the matrices A and D respectively. Let

    A=(1ωDALA)(1ωωDA+UA),

    where DA is the main diagonal part of A, LA is the strictly lower triangular part of A, UA is the strictly upper triangular part of A, and ω is the relaxation factor. Similarly, let

    D=(1ωDDLD)(1ωωDD+UD),

    where DD is the main diagonal part of D, LD is the strictly lower triangular part of D, UD is the strictly upper triangular part of D and ω is the relaxation factor. ω makes the diagonal entries of the matrices DA and DD inverted more dominant and thus the related matrices to be inverted have a smaller condition number, leading to more accurate inverses and eventually to a more accurate solution and to a better convergence rate.

    Then, we propose the method of SORALI iteration as follows:

    {Xk+12(αI+1ωDDLD)=(αIA+XkC)Xk+Xk(1ωωDD+UD)+B,(βI+1ωDALA)Xk+1=Xk+12(βID+CXk+12)+(1ωωDA+UA)Xk+12+B, (3.1)

    where α,β are two given positive parameters. Obviously, if ω=1, (3.1) will be reduced to (2.1).

    Next, we discuss the convergence of the SORALI iteration. As preparation, we first show several lemmas about the SORALI iteration method.

    Lemma 3.1. Let S be the minimal nonnegative solution of the NARE (1.1) and sequence {Xk} be generated by the method of the SORALI iteration. Then the following equalities hold for any integer k0:

    (1) (Xk+12S)(αI+1ωDDLD)=(αIA+SC)(XkS)+(XkS)(CXk+1ωωDD+UD).(2) (Xk+12Xk)(αI+1ωDDLD)=R(Xk).(3) R(Xk+12)=(αIA+Xk+12C)(Xk+12Xk)+(Xk+12Xk)(CXk+1ωωDD+UD).(4) (βI+1ωDALA)(Xk+1S)=(Xk+12S)(βID+CS)+(1ωωDA+UA+Xk+12C)(Xk+12S).(5) (βI+1ωDALA)(Xk+1Xk+12)=R(Xk+12).(6) R(Xk+1)=(Xk+1Xk+12)(βID+CXk+12)+(1ωωDA+UA+Xk+1C)(Xk+1Xk+12).

    Proof. We only need to prove (1)–(3), because (4)–(6) can be derived similarly.

    We first verify (1). As a matter of fact,

    R(S)=SCSSDAS+B=0.

    Similar to the first equation in (3.1), we have

    S(αI+1ωDDLD)=(αIA+SC)S+S(1ωωDD+UD)+B.

    Thus

    (Xk+12S)(αI+1ωDDLD)=Xk+12(αI+1ωDDLD)S(αI+1ωDDLD)=(αIA+XkC)Xk+Xk(1ωωDD+UD)+B((αIA+SC)S+S(1ωωDD+UD)+B)=(αIA)Xk+XkCXk+Xk(1ωωDD+UD)(αIA)SSCSS(1ωωDD+UD)=(αIA)(XkS)+Xk(CXk+1ωωDD+UD)SCSS(1ωωDD+UD)=(αIA+SC)(XkS)SCXk+SCS+Xk(CXk+1ωωDD+UD)SCSS(1ωωDD+UD)=(αIA+SC)(XkS)+Xk(CXk+1ωωDD+UD)S(CXk+1ωωDD+UD)=(αIA+SC)(XkS)+(XkS)(CXk+1ωωDD+UD).

    (2) Directly calculates the equation to the left

    (Xk+12Xk)(αI+1ωDDLD)=Xk+12(αI+1ωDDLD)Xk(αI+1ωDDLD).

    Substituting the first equation of (3.1) into the above equation, we get

    (Xk+12Xk)(αI+1ωDDLD)=(αIA+XkC)Xk+Xk(1ωωDD+UD)+BXk(αI+1ωDDLD)=αXkAXk+XkCXk+Xk(1ωωDD+UD)+BαXkXk(1ωDDLD)=XkCXkXk(1ωDDLD(1ωωDD+UD))AXk+B=XkCXkXkDAXk+B=R(Xk).

    (3) Subtracts Xk+12(1ωωDD+UD) from both sides of the first equation of (3.1), we obtain

    Xk+12(αI+1ωDDLD(1ωωDD+UD))=(αIA+XkC)Xk+Xk(1ωωDD+UD)+BXk+12(1ωωDD+UD),

    that is

    Xk+12D=(αIA+XkC)Xk+Xk(1ωωDD+UD)+BXk+12(αI+1ωωDD+UD).

    Thus,

    R(Xk+12)=Xk+12CXk+12Xk+12DAXk+12+B=Xk+12CXk+12(αIA+XkC)XkXk(1ωωDD+UD)B+Xk+12(αI+1ωωDD+UD)AXk+12+B=(αIA+Xk+12C)Xk+12(αIA+Xk+12C)Xk+Xk+12CXkXkCXkXk(1ωωDD+UD)+Xk+12(1ωωDD+UD)=(αIA+Xk+12C)(Xk+12Xk)+(Xk+12Xk)CXk+(Xk+12Xk)(1ωωDD+UD)=(αIA+Xk+12C)(Xk+12Xk)+(Xk+12Xk)(CXk+1ωωDD+UD).

    Similarly, we can get (4)–(6).

    Lemma 3.2. Assume that S is the minimal nonnegative solution of the NARE (1.1), K in (1.2) is a nonsingular M-matrix and the matrix sequence {Xk} is generated by the method of SORALI iteration. Let α,β and ω be the prescribed parameters of (3.1) such that

    αmax{aii},βmax{dii},0<ω1,

    where aii and dii are the ith diagonal elements of the matrices A and D, respectively. Then the following inequalities hold for any integer k0:

    0Xk+12S,0Xk+1S. (3.2)

    Proof. Because K is a nonsingular M-matrix, A and D are also nonsingular M-matrices by Remark 2.2 and B and C are nonnegative matrices by the definition of M-matrix. Therefore, it is known from the splitting of A and D that 1ωDDLD and 1ωDALA are both nonsingular M-matrices. We have αI+1ωDDLD and βI+1ωDALA are both nonsingular M-matrices by Remark 2.1, and

    (αI+1ωDDLD)10,(βI+1ωDALA)10

    by Lemma 2.1.

    Next, we prove the conclusion (3.2) according to the mathematical induction principle. When k=0, we get

    X12(αI+1ωDDLD)=B

    by Eq (3.1), so

    X12=B(αI+1ωDDLD)10. (3.3)

    On the other hand, from Lemma 3.1 (1), we obtain

    (X12S)(αI+1ωDDLD)=(αIA+SC)SS(1ωωDD+UD)0,

    thus

    X12S=((αIA+SC)S+S(1ωωDD+UD))(αI+1ωDDLD)10,

    that is

    X12S. (3.4)

    Analogously, from Eq (3.1), we have

    (βI+1ωDALA)X1=X12(βID+CX12)+(1ωωDA+UA)X12+B0,

    thus

    X1=(βI+1ωDALA)1(X12(βID+CX12)+(1ωωDA+UA)X12+B)0. (3.5)

    From Lemma 3.1 (4), we obtain

    (βI+1ωDALA)(X1S)=(X12S)(βID+CS)+(1ωωDA+UA+X12C)(X12S).

    From (3.4), we get

    X1S=(βI+1ωDALA)1((X12S)(βID+CS)+(1ωωDA+UA+X12C)(X12S))0,

    that is

    X1S. (3.6)

    So we have shown that

    0X12S,0X1S. (3.7)

    Assume that (3.2) holds for k=l1, that is to say

    0Xl12S,0XlS. (3.8)

    From Eq (3.1), when k=l, we obtain

    Xl+12(αI+1ωDDLD)=(αIA+XlC)Xl+Xl(1ωωDD+UD)+B0,

    then

    Xl+12=((αIA+XlC)Xl+Xl(1ωωDD+UD)+B)(αI+1ωDDLD)10. (3.9)

    In addition, from Lemma 3.1 (1), we get

    (Xl+12S)(αI+1ωDDLD)=(αIA+SC)(XlS)+(XlS)(CXl+1ωωDD+UD),

    then by (3.8)

    Xl+12S=((αIA+SC)(XlS)+(XlS)(CXl+1ωωDD+UD))(αI+1ωDDLD)10,

    that is

    Xl+12S. (3.10)

    Analogously, from Eq (3.1), we have

    (βI+1ωDALA)Xl+1=Xl+12(βID+CXl+12)+(1ωωDA+UA)Xl+12+B0,

    then

    Xl+1=(βI+1ωDALA)1(Xl+12(βID+CXl+12)+(1ωωDA+UA)Xl+12+B)0. (3.11)

    In addition, from Lemma 3.1 (4), we obtain

    (βI+1ωDALA)(Xl+1S)=(Xl+12S)(βID+CS)+(1ωωDA+UA+Xl+12C)(Xl+12S)0,

    thus

    Xl+1S=(βI+1ωDALA)1((Xl+12S)(βID+CS)+(1ωωDA+UA+Xl+12C)(Xl+12S))0,

    that is

    Xl+1S. (3.12)

    In summary, (3.2) holds for k=l. Thus, the proof is completed.

    Lemma 3.3. Suppose that the assumption is as in Lemma 3.2, and X0=0 is the initial matrix such that R(X0)0. Then for any integer k0, it holds that

    XkXk+12Xk+1,R(Xk+12)0,R(Xk+1)0. (3.13)

    Proof. We prove the Lemma 3.3 by the mathematical induction principle. In fact, for k=0, 0=X0X12 by (3.2). According to Lemma 3.1 (3), we get

    R(X12)=(αIA+X12C)X12+X12(1ωωDD+UD)0. (3.14)

    By making use of Lemma 3.1 (5), we get

    (βI+1ωDALA)(X1X12)=R(X12),

    then

    X1X12=(βI+1ωDALA)1R(X12)0,

    that is

    X12X1. (3.15)

    From Lemma 3.1 (6), we obtain

    R(X1)=(X1X12)(βID+CX12)+(1ωωDA+UA+X1C)(X1X12)0 (3.16)

    by (3.15). Therefore, we we have shown that

    X0X12X1,R(X12)0,R(X1)0. (3.17)

    Assume that (3.13) holds for k=l1, that is to say

    Xl1Xl12Xl,R(Xl12)0,R(Xl)0. (3.18)

    By making use of Lemma 3.1 (2), we get

    (Xl+12Xl)(αI+1ωDDLD)=R(Xl),

    thus

    Xl+12Xl=R(Xl)(αI+1ωDDLD)10,

    that is

    XlXl+12. (3.19)

    From Lemma 3.1 (3), we obtain

    R(Xl+12)=(αIA+Xl+12C)(Xl+12Xl)+(Xl+12Xl)(CXl+1ωωDD+UD)0 (3.20)

    by (3.19). By Lemma 3.1 (5), we get

    (βI+1ωDALA)(Xl+1Xl+12)=R(Xl+12),

    thus

    Xl+1Xl+12=(βI+1ωDALA)1R(Xl+12)0,

    that is

    Xl+12Xl+1. (3.21)

    From Lemma 3.1 (6), we obtain

    R(Xl+1)=(Xl+1Xl+12)(βID+CXl+12)+(1ωωDA+UA+Xl+1C)(Xl+1Xl+12)0. (3.22)

    In summary, (3.13) holds for k=l. Thus, the proof is completed.

    The convergence property of the SORALI can be given by Lemmas 3.2 and 3.3. We show this result by the following theorem.

    Theorem 3.1. Let K defined in (1.2) be an M-matrix. For the SORALI (3.1), if the parameters are chosen as

    αmax{aii},βmax{dii},0<ω1,

    then the sequence {Xk} generated by the SORALI (3.1) is well defined, monotonically increasing and converges to the unique minimum nonnegative solution S of NARE (1.1).

    Proof. According to Lemmas 3.2 and 3.3, we know that Xk0 and is monotonically increasing with upper bound. Suppose there is an S that satisfies limk=S. By making use of Lemma 3.2, we obtain SS. In addition, taking the limit in the SORALI (3.1), we have S is a solution of NARE (1.1). Because S is the minimum nonnegative solution of NARE (1.1), we get SS. Thus S=S, the proof is completed.

    Remark 3.1. Theorem 3.1 is only proved theoretically so that the SORALI (3.1) is convergent under 0<ω1. In fact, it might still be convergent even if ω is out of (0,1]. Therefore, further research is needed in the selection of the parameter ω. Unfortunately, we did not give an answer in this paper. This will be our future work.

    In this section, two examples are given to show the effectiveness of the SORALI (3.1). All the experiments are implemented under MATLAB R2016a running on a personal computer with an Intel Core i5 CPU (3.30 GHz) and 4 GB RAM. The numerical behaviours of the SORALI will be compared with the MALI in [11] with respect to the number of iterations (IT), CPU time and the relative residue (RES, see[11]) which is defined to be

    RES:=R(X)XCX+XD+AX+B.

    The iteration termination condition is RES<1012 or the number of iterations exceeds 2000. In both experiments, we all choose α=max{aii}, β=max{dii} and ω=0.25,0.5,0.75,1,1.25,1.5,1.75,2, respectively to observe the experimental results.

    Example 4.1. ([4]) Considering the SORALI (3.1), for which

    A=D=Tridiag(I,T,I)Rn×n

    are block tridiagonal matrices,

    C=150tridiag(1,2,1)Rn×n

    is a tridiagonal matrix, and

    B=AS+SDSCS,

    such that

    S=150eeTRn×n

    is the minimal nonnegative solution of the SORALI (3.1). Here,

    T=tridiag(1,4+200(m+1)2,1)Rm×m,e=(1,1,,1)TRn,

    and n=m2. For m=8, m=10, m=15 and m=30, the numerical results are listed in Tables 19.

    Table 1.  Numerical results of Example 4.1 (ω=0.25).
    m Methods IT CPU RES
    8 SORALI 71 0.0363 9.2220e-13
    10 SORALI 98 0.2050 7.6969e-13
    15 SORALI 247 3.7553 9.0748e-13
    30 SORALI 280 235.7742 9.4447e-13

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical results of Example 4.1 (ω=0.5).
    m Methods IT CPU RES
    8 SORALI 38 0.0243 7.4415e-13
    10 SORALI 53 0.1158 7.1117e-13
    15 SORALI 136 2.2079 9.9288e-13
    30 SORALI 161 135.0248 9.5215e-13

     | Show Table
    DownLoad: CSV
    Table 3.  Numerical results of Example 4.1 (ω=0.75).
    m Methods IT CPU RES
    8 SORALI 27 0.0166 5.4078e-13
    10 SORALI 38 0.0781 6.2481e-13
    15 SORALI 100 1.5827 8.2157e-13
    30 SORALI 121 100.4319 8.9631e-13

     | Show Table
    DownLoad: CSV
    Table 4.  Numerical results of Example 4.1 (ω=1).
    m Methods IT CPU RES
    8 SORALI 21 0.0136 6.9648e-13
    10 SORALI 30 0.0294 8.3184e-13
    15 SORALI 81 0.4496 9.5754e-13
    30 SORALI 100 39.3327 9.6586e-13

     | Show Table
    DownLoad: CSV
    Table 5.  Numerical results of Example 4.1 (ω=1.25).
    m Methods IT CPU RES
    8 SORALI 18 0.0148 3.1938e-13
    10 SORALI 26 0.0509 4.4744e-13
    15 SORALI 70 1.1274 9.4045e-13
    30 SORALI 88 73.1086 8.8938e-13

     | Show Table
    DownLoad: CSV
    Table 6.  Numerical results of Example 4.1 (ω=1.5).
    m Methods IT CPU RES
    8 SORALI 18 0.0130 6.3672e-13
    10 SORALI 23 0.0254 3.7593e-13
    15 SORALI 63 0.3004 8.0621e-13
    30 SORALI 80 32.2483 8.1755e-13

     | Show Table
    DownLoad: CSV
    Table 7.  Numerical results of Example 4.1 (ω=1.75).
    m Methods IT CPU RES
    8 SORALI 24 0.0145 8.8852e-13
    10 SORALI 30 0.0535 8.3134e-13
    15 SORALI 71 1.0175 8.0621e-13
    30 SORALI 82 62.6056 8.7195e-13

     | Show Table
    DownLoad: CSV
    Table 8.  Numerical results of Example 4.1 (ω=2).
    m Methods IT CPU RES
    8 SORALI 32 0.0256 9.0222e-13
    10 SORALI 42 0.0801 8.5909e-13
    15 SORALI 69 1.0933 8.0621e-13
    30 SORALI 150 129.5271 7.7757e-13

     | Show Table
    DownLoad: CSV
    Table 9.  Comparison of the numerical results of MALI and SORALI (ω=1.5) in Example 4.1.
    m Methods IT CPU RES
    8 MALI 21 0.0136 6.9648e-13
    SORALI 18 0.0130 6.3672e-13
    10 MALI 30 0.0294 8.3184e-13
    SORALI 23 0.0254 3.7593e-13
    15 MALI 81 0.4496 9.5754e-13
    SORALI 63 0.3004 8.0621e-13
    30 MALI 100 39.3327 9.6586e-13
    SORALI 80 32.2483 8.1755e-13

     | Show Table
    DownLoad: CSV

    Example 4.2. ([11]) Considering the SORALI (3.1), for which A, B, C and D are generated by the following rules. Set R=rand(2n,2n), then set W=diag(Re)R, where e=(1,1,,1)TR2n; and finally, define

    D=W(1:n,1:n)+I,    C=W(1:n,n+1:2n),B=W(n+1:2n,1:n),A=W(n+1:2n,n+1:2n)+I,

    where I is the identity matrix of size n. The matrices A,B,C and D generated by the above rules guarantee that K in (1.2) is a nonsingular M-matrix. For n=50, n=100, n=500 and n=1000, the numerical results are listed in Tables 1018.

    Table 10.  Numerical results of Example 4.2 (ω=0.25).
    n Methods IT CPU RES
    50 SORALI 203 0.0719 8.9290e-13
    100 SORALI 314 0.2249 7.6291e-13
    500 SORALI 521 38.2340 9.5280e-13
    1000 SORALI 836 412.2531 8.3215e-13

     | Show Table
    DownLoad: CSV
    Table 11.  Numerical results of Example 4.2 (ω=0.5).
    n Methods IT CPU RES
    50 SORALI 118 0.0513 7.6230e-13
    100 SORALI 227 0.1034 8.5367e-13
    500 SORALI 401 26.5261 7.9658e-13
    1000 SORALI 621 307.3852 6.3689e-13

     | Show Table
    DownLoad: CSV
    Table 12.  Numerical results of Example 4.2 (ω=0.75).
    n Methods IT CPU RES
    50 SORALI 98 0.0413 6.5895e-13
    100 SORALI 152 0.0963 8.3210e-13
    500 SORALI 341 19.3680 6.1283e-13
    1000 SORALI 428 215.0362 8.0698e-13

     | Show Table
    DownLoad: CSV
    Table 13.  Numerical results of Example 4.2 (ω=1).
    n Methods IT CPU RES
    50 SORALI 76 0.0239 7.9896e-13
    100 SORALI 107 0.0781 8.9683e-13
    500 SORALI 225 14.3587 9.4359e-13
    1000 SORALI 309 177.4588 9.3316e-13

     | Show Table
    DownLoad: CSV
    Table 14.  Numerical results of Example 4.2 (ω=1.25).
    n Methods IT CPU RES
    50 SORALI 87 0.0402 8.5630e-13
    100 SORALI 138 0.0885 9.7528e-13
    500 SORALI 236 13.2681 8.5374e-13
    1000 SORALI 287 160.3321 6.0289e-13

     | Show Table
    DownLoad: CSV
    Table 15.  Numerical results of Example 4.2 (ω=1.5).
    n Methods IT CPU RES
    50 SORALI 62 0.0203 6.7452e-13
    100 SORALI 86 0.0685 8.4461e-13
    500 SORALI 183 12.3760 8.9754e-13
    1000 SORALI 251 137.2604 9.5769e-13

     | Show Table
    DownLoad: CSV
    Table 16.  Numerical results of Example 4.2 (ω=1.75).
    n Methods IT CPU RES
    50 SORALI 92 0.0510 5.6480e-13
    100 SORALI 146 0.9230 9.6531e-13
    500 SORALI 271 15.0635 7.8793e-13
    1000 SORALI 298 171.5628 6.8261e-13

     | Show Table
    DownLoad: CSV
    Table 17.  Numerical results of Example 4.2 (ω=2).
    n Methods IT CPU RES
    50 SORALI 121 0.1021 6.8480e-13
    100 SORALI 167 2.012 8.3532e-13
    500 SORALI 323 21.8512 9.3653e-13
    1000 SORALI 532 325.5620 7.2980e-13

     | Show Table
    DownLoad: CSV
    Table 18.  Comparison of the numerical results of MALI and SORALI (ω=1.5) in Example 4.2.
    n Methods IT CPU RES
    50 MALI 76 0.0239 7.9896e-13
    SORALI 62 0.0203 6.7452e-13
    100 MALI 107 0.0781 8.9683e-13
    SORALI 86 0.0685 8.4461e-13
    500 MALI 225 14.3587 9.4359e-13
    SORALI 183 12.3760 8.9754e-13
    1000 MALI 309 177.4588 9.3316e-13
    SORALI 251 137.2604 9.5769e-13

     | Show Table
    DownLoad: CSV

    From the above two numerical examples, we can see that when the size of the matrices become larger, the SORALI has a slight advantage over the MALI in terms of iteration number and CPU time.

    In this paper, we propose a class of SORALI iteration method for computing the minimal nonnegative solution of NARE, and have proved the convergence of the method. Finally, two numerical examples illustrate the effectiveness of the proposed method. We hope to continue to study the better range of the parameter ω in theory in the future.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research is supported by Scientific Research Staring Foundation of Fujian University of Technology (No. GY-Z220203).

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Academic Press, 1994. https://doi.org/10.1137/1.9781611971262
    [2] N. G. Bean, M. M. O'Reilly, P. G. Taylor, Algorithms for return probabilities for stochastic fluid flows, Stoch. Models, 21 (2005), 149–184. https://doi.org/10.1081/STM-200046511 doi: 10.1081/STM-200046511
    [3] R. Bellman, G. M. Wing, An introduction to invariant iembedding, Academic Press, 1975. http://doi.org/10.1137/1.9781611971279
    [4] Z. Z. Bai, X. X. Guo, S. F. Xu, Alternately linearized implicit iteration methods for the minimal nonnegative solutions of the nonsymmetric algebraic Riccati equations, Numer. Linear Algebra Appl., 13 (2006), 655–674. https://doi.org/10.1002/nla.500 doi: 10.1002/nla.500
    [5] F. Coron, Computation of the asymptotic states for linear half space kinetic problem, Transp. Theory Stat. Phys., 19 (1990), 89–114. https://doi.org/10.1080/00411459008214506 doi: 10.1080/00411459008214506
    [6] B. D. Ganapol, An investigation of a simple transport model, Transp. Theory Stat. Phys., 21 (1991), 1–37. https://doi.org/10.1080/00411459208203520 doi: 10.1080/00411459208203520
    [7] C. H. Guo, Nonsymmetric algebraic Riccati equations and Wiener-Hopf factorization for M-matrices, SIAM J. Matrix Anal. Appl., 23 (2001), 225–242. https://doi.org/10.1137/S0895479800375680 doi: 10.1137/S0895479800375680
    [8] C. H. Guo, A new class of nonsymmetric algebraic Riccati equations, Linear Algebra Appl., 426 (2007), 636–649. https://doi.org/10.1016/j.laa.2007.05.044 doi: 10.1016/j.laa.2007.05.044
    [9] C. H. Guo, On algebraic Riccati equations associated with M-matrices, Linear Algebra Appl., 439 (2013), 2800–2814. https://doi.org/10.1016/j.laa.2013.08.018 doi: 10.1016/j.laa.2013.08.018
    [10] C. H. Guo, D. Lu, On algebraic Riccati equations associated with regular singular M-matrices, Linear Algebra Appl., 493 (2016), 108–119. https://doi.org/10.1016/j.laa.2015.11.024 doi: 10.1016/j.laa.2015.11.024
    [11] J. R. Guan, Modified alternately linearized implicit iteration method for M-matrix algebraic Riccati equations, Appl. Math. Comput., 347 (2019), 442–448. https://doi.org/10.1016/j.amc.2018.11.025 doi: 10.1016/j.amc.2018.11.025
    [12] P. C. Guo, X. X. Guo, A modified structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equations from transport theory, J. Comput. Appl. Math., 261 (2014), 213–220. https://doi.org/10.1016/j.cam.2013.09.058 doi: 10.1016/j.cam.2013.09.058
    [13] X. X. Guo, W. W. Lin, S. F. Xu, A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation, Numer. Math., 103 (2006), 393–412. https://doi.org/10.1007/s00211-005-0673-7 doi: 10.1007/s00211-005-0673-7
    [14] J. Juang, W. W. Lin, Nonsymmetric algebraic Riccati equations and Hamiltonian-like matrices, SIAM J. Matrix Anal. Appl., 20 (1998), 228–243. https://doi.org/10.1137/S0895479897318253 doi: 10.1137/S0895479897318253
    [15] H. Z. Lu, C. F. Ma, A new linearized implicit iteration method for nonsymmetric algebraic Riccati equations, J. Appl. Math. Comput., 50 (2016), 227–241. https://doi.org/10.1007/s12190-015-0867-9 doi: 10.1007/s12190-015-0867-9
    [16] L. Z. Lu, Solution form and simple iteration of a nonsymmetric algebraic Riccati equation arising in transport theory, SIAM J. Matrix Anal. Appl., 26 (2005), 679–685. https://doi.org/10.1137/S0895479801397275 doi: 10.1137/S0895479801397275
    [17] Y. Q. Lin, L. Bao, Convergence analysis of the Newton-Shamanskii method for a nonsymmetric algebraic Riccati equation, Numer Linear Algebra Appl., 15 (2008), 535–546. https://doi.org/10.1002/nla.582 doi: 10.1002/nla.582
    [18] J. A. Meijerink, H. A. van der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math. Comput., 31 (1977), 148–162. https://doi.org/10.1090/S0025-5718-1977-0438681-4 doi: 10.1090/S0025-5718-1977-0438681-4
    [19] S. Miyajima, Fast verified computation for solutions of algebraic Riccati equations arising in transport theory, Numer. Linear Algebra Appl., 24 (2017), e2098. https://doi.org/10.1002/nla.2098 doi: 10.1002/nla.2098
    [20] L. C. G. Rogers, Fluid models in queueing theory and Wiener-Hopf factorization of Markov chains, Ann. Appl. Probab., 4 (1994), 390–413.
    [21] Y. Peretz, On applications of Schauder's fixed-point theorem for the solution of the non-symmetric algebraic Riccati equation, Linear Algebra Appl., 445 (2014), 29–55. https://doi.org/10.1016/j.laa.2013.12.012 doi: 10.1016/j.laa.2013.12.012
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1460) PDF downloads(99) Cited by(0)

Figures and Tables

Tables(18)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog