Research article Special Issues

On the strong P-regular splitting iterative methods for non-Hermitian linear systems

  • Received: 03 July 2021 Accepted: 06 August 2021 Published: 16 August 2021
  • MSC : 65F10, 15A15, 15F10

  • The strong P-regular splitting is put forward and defined for iterative methods of non-Hermitian linear systems in the paper. The strong P-regular splitting combining SOR iterative methods and relaxed SOR iterative methods are established, and conditions guaranteeing the convergence are presented. Furthermore, two numerical experiments are done to illustrate the convergence and effectiveness of our iterative methods.

    Citation: Junxiang Lu, Chengyi Zhang. On the strong P-regular splitting iterative methods for non-Hermitian linear systems[J]. AIMS Mathematics, 2021, 6(11): 11879-11893. doi: 10.3934/math.2021689

    Related Papers:

  • The strong P-regular splitting is put forward and defined for iterative methods of non-Hermitian linear systems in the paper. The strong P-regular splitting combining SOR iterative methods and relaxed SOR iterative methods are established, and conditions guaranteeing the convergence are presented. Furthermore, two numerical experiments are done to illustrate the convergence and effectiveness of our iterative methods.



    加载中


    [1] Z. Z. Bai, G. H. Golub, Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems, IMA J. Numer. Anal., 27 (2007), 1–23. doi: 10.1093/imanum/drl017
    [2] Z. Z. Bai, G. H. Golub, L. Z. Lu, J. F. Yin, Block triangular and skew-Hermitian splitting methods for positive-definite linear systems, SIAM J. Sci. Comput., 26 (2005), 844–863. doi: 10.1137/S1064827503428114
    [3] Z. Z. Bai, G. H. Golub, M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003), 603–626. doi: 10.1137/S0895479801395458
    [4] Z. Z. Bai, G. H. Golub, M. K. Ng, On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations, Numer. Linear Algebra Appl., 17 (2007), 319–335.
    [5] Z. Z. Bai, G. H. Golub, M. K. Ng, On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, Linear Algebra Appl., 428 (2008), 413–440. doi: 10.1016/j.laa.2007.02.018
    [6] Z. Z. Bai, G. H. Golub, J. Y. Pan, Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98 (2004), 1–32. doi: 10.1007/s00211-004-0521-1
    [7] M. Benzi, A generalization of the Hermitian and skew-Hermitian splitting iteration, SIAM J. Matrix. Anal. Appl., 31 (2009), 360–374. doi: 10.1137/080723181
    [8] M. Benzi, Splittings of symmetric matrices and a question of Ortega, Linear Algebra Appl., 429 (2008), 2340–2343. doi: 10.1016/j.laa.2008.01.007
    [9] M. Benzi, D. Bertaccini, Block preconditioning of real-valued iterative algorithms for complex linear systems, IMA J. Numer. Anal., 28 (2008), 598–618.
    [10] M. Benzi, M. K. Ng, Preconditioned iterative methods for weighted Toeplitz least squares problems, SIAM J. Matrix Anal. Appl., 27 (2006), 1106–1124. doi: 10.1137/040616048
    [11] M. Benzi, G. H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numer., (2005), 1–137.
    [12] M. Benzi, G. H. Golub, A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl., 26 (2004), 20–41. doi: 10.1137/S0895479802417106
    [13] M. Benzi, M. Gander, G. H. Golub, Optimization of the Hermitian and skew-Hermitian splitting iteration for saddle-point problems, BIT Numer. Math., 43 (2003), 881–900. doi: 10.1023/B:BITN.0000014548.26616.65
    [14] M. Benzi, D. B. Szyld, Existence and uniqueness of splittings for stationary iterative methods with applications to alternating methods, Numer. Math., 76 (1997), 309–321. doi: 10.1007/s002110050265
    [15] A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Philadelphia: Society for Industrial and Applied Mathematics, 1994.
    [16] M. Masoudi, D. K. Salkuyeh, An extension of the positive-definite and skew-Hermitian splitting method for preconditioning of generalized saddle point problems, Comput. Math. Appl., 79 (2020), 2304–2321. doi: 10.1016/j.camwa.2019.10.030
    [17] M. Dehghan, A. Shirilord, A generalized modified Hermitian and skew-Hermitian splitting (GMHSS) method for solving complex Sylvester matrix equation, Appl. Math. Comput., 348 (2019), 632–651.
    [18] Z. Q. Wang, J. F. Yin, Q. Y. Dou, Preconditioned modified Hermitian and skew-Hermitian splitting iteration methods for fractional nonlinear Schrdinger equations, J. Comput. Appl. Math., 367 (2020), 112420. doi: 10.1016/j.cam.2019.112420
    [19] Z. H. Cao, A note on $P$-regular splitting of Hermitian matrix, SIAM J. Matrix Anal. Appl., 21 (2000), 1392–1393. doi: 10.1137/S089547989935469X
    [20] Z. H. Cao, Convegence of nested iterative methods for symmetric $P$-regular splitting, SIAM J. Matrix Anal. Appl., 22 (2000), 20–32. doi: 10.1137/S0895479897331229
    [21] J. Chen, W. Li, Equivalent conditions for convergence of splittings of non-Hermitian indefinite matrices, J. Sci. Comput., 30 (2006), 117–130.
    [22] H. Elman, D. Silvester, A. Wathen, Finite elements and fast iterative solvers: With applications in incompressible fluid dynamics, Oxford University Press, 2014.
    [23] A. Frommer, D. B. Szyld, Weighted max norms, splitting, and overlapping additive Schwarz iterations, Numer. Math., 83 (1999), 259–278. doi: 10.1007/s002110050449
    [24] A. George, Kh. D. Ikramov, On the properties of accretive-dissipative matrices, Math. Notes, 77 (2005), 767–776. doi: 10.1007/s11006-005-0077-0
    [25] G. H. Golub, C. F. Van Loan, Matrix computations, 3 Eds., Baltimore: Johns Hopkins University Press, 1996.
    [26] A. Hadjidimos, Accelerated overrelaxation method, Math. Compt., 32 (1978), 149–157. doi: 10.1090/S0025-5718-1978-0483340-6
    [27] N. J. Higham, Factorizing complex symmetric matrices with positive definite real and imaginary parts, Math. Compt., 67 (1998), 1591–1599. doi: 10.1090/S0025-5718-98-00978-8
    [28] Kh. D. Ikramov, On complex Benzi-Golub matrices, Doklady Math., 79 (2009), 342–344. doi: 10.1134/S1064562409030119
    [29] D. R. Kincaid, A. C. Elster, Iterative methods in scientific computation IV, IMACS, 1999.
    [30] L. Li, T. Z. Huang, X. P. Liu, Modified Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems, Numer. Linear Algebra Appl., 14 (2007), 217–235. doi: 10.1002/nla.528
    [31] R. Nabben, A note on comparison theormes for splittings and multisplittings of Hermitian positive definite matrices, Linear Algebra Appl., 233 (1996), 67–80. doi: 10.1016/0024-3795(94)00050-6
    [32] W. Niethammer, J. Schade, On a relaxed SOR-method applied to nonsymmetric linear systems, J. Comput. Appl. Math., 1 (1975), 133–136.
    [33] W. Niethammer, R. S. Varga, Relaxation methods for non-Hermitian linear systems, Results Math., 16 (1989), 308–320. doi: 10.1007/BF03322480
    [34] J. M. Ortega, Numerical analysis: A second course, Philadelphia: Society for Industrial and Applied Mathematics, 1990.
    [35] Y. Saad, Iterative methods for sparse linear systems, 2 Eds., Philadelphia: Society for Industrial and Applied Mathematics, 2003.
    [36] R. J. Vanderbei, Symmetric quasidefinite matrices, SIAM J. Optim., 5 (1995), 100–113. doi: 10.1137/0805005
    [37] R. S. Varga, Matrix iterative analysis, 2 Eds., Berlin/Heidelberg: Spriger-Verlag, 2000.
    [38] C. L. Wang, Z. Z. Bai, Sufficient conditions for the convergent splitting of non-Hermitian positive definite matrices, Linear Algebra Appl., 330 (2001), 215–218. doi: 10.1016/S0024-3795(01)00275-0
    [39] L. Wang, Z. Z. Bai, Convergence conditions for splitting iteration methods for non-Hermitian linear systems, Linear Algebra Appl., 428 (2008), 453–468. doi: 10.1016/j.laa.2007.03.001
    [40] F. B. Weissler, Some remarks concerning iterative methods for linear systems, SIAM J. Matrix Anal. Appl., 16 (1995), 448–461. doi: 10.1137/S0895479892230419
    [41] J. Weissinger, Verallgemainerungen des Seidelschen Iterationsverfahrens, Z. Angew. Math. Mech., 33 (1953), 155–162. doi: 10.1002/zamm.19530330410
    [42] D. M. Young, Iterative solution of large linear systems, New York: Academic Press, 1971.
    [43] C. Y. Zhang, M. Benzi, $P$-regular splitting iterative methods for non-Hermitian linear systems, Electron. Trans. Numer. Anal., 36 (2009), 39–53.
    [44] C. Y. Zhang, On convergence of double splitting methods for non-Hermitian positive semidefinite linear systems, Calcolo, 47 (2010), 103–112. doi: 10.1007/s10092-009-0015-8
    [45] S. L. Wu, Several variants of the Hermitian and skew-Hermitian splitting method for a class of complex symmetric linear systems, Numer. Linear Algebra Appl., 22 (2015), 338–356. doi: 10.1002/nla.1952
    [46] Z. Z. Bai, M. Rozložnĺk, On the numerical behavior of matrix splitting iteration methods for solving linear systems, SIAM J. Numer. Anal., 53 (2015), 1716–1737. doi: 10.1137/140987936
    [47] J. Y. Yuan, Applied iterative analysis, Science Press, 2014.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2175) PDF downloads(75) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog