In this paper, we determine the Jacobi-type vector fields on the hyperbolic 3-space $ \mathbb{H}^3 $ and the Euclidean 3-space $ \mathbb{R}^3 $, respectively. In terms of this, infinitely many non-trivial Jacobi-type vector fields are given.
Citation: Yaning Wang, Yingdong Zhang. Jacobi-type vector fields on $ \mathbb{H}^3 $ and $ \mathbb{R}^3 $[J]. AIMS Mathematics, 2021, 6(11): 11894-11903. doi: 10.3934/math.2021690
In this paper, we determine the Jacobi-type vector fields on the hyperbolic 3-space $ \mathbb{H}^3 $ and the Euclidean 3-space $ \mathbb{R}^3 $, respectively. In terms of this, infinitely many non-trivial Jacobi-type vector fields are given.
[1] | R. Al-Ghefari, Jacobi-type vector fields on Käehler manifold, Pure Math. Sci., 2 (2013), 127–132. doi: 10.12988/pms.2013.13016 |
[2] | B. Y. Chen, S. Deshmukh, A. A. Ishan, On Jacobi-type vector fields on Riemannian manifolds, Math., 7 (2019), 1139. doi: 10.3390/math7121139 |
[3] | A. M. Cherif, Some results on harmonic and bi-harmonic maps, Int. J. Geom. Methods Mod. Phys., 14 (2017), 1750098. doi: 10.1142/S0219887817500980 |
[4] | S. Deshmukh, Real hypersurfaces of a complex projective space, Proc. Indian Acad. Sci. Math. Sci., 121 (2011), 171–179. doi: 10.1007/s12044-011-0027-6 |
[5] | S. Deshmukh, Jacobi-type vector fields on Ricci solitons, Bull. Math. Soc. Sci. Math. Roumanie, 55 (2012), 41–50. |
[6] | S. Deshmukh, A. A. Ishan, A note on contact metric manifolds, Hacet. J. Math. Stat., 49 (2020), 2007–2016. |
[7] | C. J. G. Manchado, J. D. Perez, On the structure vector field of a real hypersurface in complex two-plane Grassmannians, Cent. Eur. J. Math., 10 (2012), 451–455. doi: 10.2478/s11533-012-0004-z |