Research article

Jacobi-type vector fields on $ \mathbb{H}^3 $ and $ \mathbb{R}^3 $

  • Received: 31 May 2021 Accepted: 03 August 2021 Published: 16 August 2021
  • MSC : 53C15, 53C25, 53B21

  • In this paper, we determine the Jacobi-type vector fields on the hyperbolic 3-space $ \mathbb{H}^3 $ and the Euclidean 3-space $ \mathbb{R}^3 $, respectively. In terms of this, infinitely many non-trivial Jacobi-type vector fields are given.

    Citation: Yaning Wang, Yingdong Zhang. Jacobi-type vector fields on $ \mathbb{H}^3 $ and $ \mathbb{R}^3 $[J]. AIMS Mathematics, 2021, 6(11): 11894-11903. doi: 10.3934/math.2021690

    Related Papers:

  • In this paper, we determine the Jacobi-type vector fields on the hyperbolic 3-space $ \mathbb{H}^3 $ and the Euclidean 3-space $ \mathbb{R}^3 $, respectively. In terms of this, infinitely many non-trivial Jacobi-type vector fields are given.



    加载中


    [1] R. Al-Ghefari, Jacobi-type vector fields on Käehler manifold, Pure Math. Sci., 2 (2013), 127–132. doi: 10.12988/pms.2013.13016
    [2] B. Y. Chen, S. Deshmukh, A. A. Ishan, On Jacobi-type vector fields on Riemannian manifolds, Math., 7 (2019), 1139. doi: 10.3390/math7121139
    [3] A. M. Cherif, Some results on harmonic and bi-harmonic maps, Int. J. Geom. Methods Mod. Phys., 14 (2017), 1750098. doi: 10.1142/S0219887817500980
    [4] S. Deshmukh, Real hypersurfaces of a complex projective space, Proc. Indian Acad. Sci. Math. Sci., 121 (2011), 171–179. doi: 10.1007/s12044-011-0027-6
    [5] S. Deshmukh, Jacobi-type vector fields on Ricci solitons, Bull. Math. Soc. Sci. Math. Roumanie, 55 (2012), 41–50.
    [6] S. Deshmukh, A. A. Ishan, A note on contact metric manifolds, Hacet. J. Math. Stat., 49 (2020), 2007–2016.
    [7] C. J. G. Manchado, J. D. Perez, On the structure vector field of a real hypersurface in complex two-plane Grassmannians, Cent. Eur. J. Math., 10 (2012), 451–455. doi: 10.2478/s11533-012-0004-z
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1951) PDF downloads(83) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog