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1. Introduction

On a Riemannian manifold (M, g), the Levi-Civita connection and the curvature tensor are denoted
by ∇ and R, respectively. Let γ : I ⊂ R → M be a geodesic with coordinate t in I. A vector field
V along a geodesic γ is said to be a Jacobi field along γ if it satisfies the following Jacobi differential
equation, i.e.,

∇ d
dt
∇ d

dt
V + R(V, γ̇)γ̇ = 0. (1.1)

By a homothetic vector field V we refer to that the Lie derivative of the metric g of a Riemannian
manifold M along V is a constant multiple of the metric g. When the constant vanishes, then a
homothetic vector field becomes Killing. We remark that a Killing vector field on a Riemannian
manifold is always a Jacobi field along each geodesic, but the converse is not necessarily true. By
means of (1.1), S. Deshmukh in [4] defined the Jacobi-type vector fields on a Riemannian manifold M
satisfying

∇X∇XV + R(V, X)X = 0 (1.2)

for any vector field X. Such vector fields were studied in some characterizations of typical compact
real hypersurfaces in non-flat complex space forms [4], and compact (or Hopf) real hypersurfaces in
complex two-plane Grassmannians [7]. However, as pointed out in [2, Remark 1], those restrictions of
Jacobi-type vector fields on the structure vector fields of compact real hypersurfaces [4, 7] are in fact
redundant.
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In 2012, S. Deshmukh in [5] defined another type of Jacobi-type vector fields satisfying

∇X∇XV − ∇∇X XV + R(V, X)X = 0 (1.3)

for any vector field X. From here to the ending of this present paper, when involving the Jacobi-type
vector fields we always refer to Eq (1.3). Obviously, any Jacobi-type vector field is a Jacobi field
along each geodesic. Also, the notion of the Jacobi-type vector fields is certainly an extension of the
Killing ones [5, Proposition 2.1]. Recently, such a property has been generalized by A. M. Cherif in
[3, Lemma 7] who proved that a homothetic vector field on a Riemannian manifold must be a Jacobi-
type vector field. A Jacobi-type vector field is said to be trivial when it is Killing. Just like the case
of the homothetic or Killing vector fields, Jacobi-type vector fields constrain the geometry as well as
topology of a Riemannian manifold, and play important roles in differential geometry [1, 2, 5, 6].

It was proved in [2, Theorem 1] that a Jacobi-type vector field on a compact Riemannian manifold
must be Killing. This arises a natural question [2]:
“Under what conditions is a Jacobi-type vector field on a non-compact Riemannian manifold a Killing
vector field?”

The main motivation of the present paper is to investigate the above question on the most simplest
non-compact real space forms, i.e., the hyperbolic 3-space H3 and the Euclidean 3-space R3. We
determine all Jacobi-type vector fields on these two spaces and also present some sufficient and
necessary conditions for those Jacobi-type vector fields becoming Killing ones. Applying this we
obtain infinitely many non-Killing Jacobi-type vector fields.

2. Preliminaries

Now we introduce the well-known model for the hyperbolic 3-space H3(−1). Let H3 = {(x, y, z) :
(x, y, z) ∈ R3, z > 0} and the metric g on it is

g =
1
z2 (dx2 + dy2 + dz2).

We adopt the global orthonormal frame {e1 = z ∂
∂x , e2 = z ∂

∂y , e3 = z ∂
∂z } on H3. By a direct calculation,

we give
[e1, e2] = 0, [e2, e3] = −e2, [e3, e1] = e1

and

∇eie j =


e3 0 −e1

0 e3 −e2

0 0 0

 , i, j ∈ {1, 2, 3},

where ∇ denotes the Levi-Civita connection of the metric g. By applying these, some curvature tensors
are given by

R121 = e2, R122 = −e1, R131 = e3, R133 = −e1, R232 = e3, R233 = −e2

and all others vanish, where Ri jk := R(ei, e j)ek for i, j, k ∈ {1, 2, 3}.
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3. Jacobi-type vector fields on H3

Suppose that V =
∑3

i=1 fiei is a Jacobi-type vector field on H3, where fi, i = 1, 2, 3, are smooth
functions on (x, y, z). With the help of those preliminaries in Section two, we compute

∇e1∇e1V − ∇∇e1 e1V + R(V, e1)e1

=(− f1 + z2∂
2 f1

∂x2 − z
∂ f1

∂z
− 2z

∂ f3

∂x
)e1 + (− f2 + z2∂

2 f2

∂x2 − z
∂ f2

∂z
)e2

+ (−2 f3 + 2z
∂ f1

∂x
+ z2∂

2 f3

∂x2 − z
∂ f3

∂z
)e3,

∇e2∇e2V − ∇∇e2 e2V + R(V, e2)e2

=(− f1 − z
∂ f1

∂z
+ z2∂

2 f1

∂y2 )e1 + (− f2 − z
∂ f2

∂z
+ z2∂

2 f2

∂y2 − 2z
∂ f3

∂y
)e2

+ (−2 f3 + 2z
∂ f2

∂y
− z

∂ f3

∂z
+ z2∂

2 f3

∂y2 )e3

and

∇e3∇e3V − ∇∇e3 e3V + R(V, e3)e3

=(− f1 + z
∂ f1

∂z
+ z2∂

2 f1

∂z2 )e1 + (− f2 + z
∂ f2

∂z
+ z2∂

2 f2

∂z2 )e2

+ (z
∂ f3

∂z
+ z2∂

2 f3

∂z2 )e3.

According to (1.3) and the above there relations, V is a Jacobi-type vector field if and only if the
following nine partial differential equations hold:

− f1 + z2 ∂2 f1
∂x2 − z∂ f1

∂z − 2z∂ f3
∂x = 0,

− f2 + z2 ∂2 f2
∂x2 − z∂ f2

∂z = 0,
−2 f3 + 2z∂ f1

∂x + z2 ∂2 f3
∂x2 − z∂ f3

∂z = 0,
− f1 − z∂ f1

∂z + z2 ∂2 f1
∂y2 = 0,

− f2 − z∂ f2
∂z + z2 ∂2 f2

∂y2 − 2z∂ f3
∂y = 0,

−2 f3 + 2z∂ f2
∂y − z∂ f3

∂z + z2 ∂2 f3
∂y2 = 0,

− f1 + z∂ f1
∂z + z2 ∂2 f1

∂z2 = 0,
− f2 + z∂ f2

∂z + z2 ∂2 f2
∂z2 = 0,

z∂ f3
∂z + z2 ∂2 f3

∂z2 = 0.

(3.1)

The remaining of this section is to solve the above PDEs. First, notice that the ninth equation in
(3.1) can be reduced to ∂2 f3

∂z2 + 1
z
∂ f3
∂z = 0, and this is a linear equation. Solving this equation gives

f3 = H(x, y) ln z + K(x, y), (3.2)
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where both H and K are smooth functions varying only on (x, y). Substituting (3.2) into the third term
in (3.1) yields

∂ f1

∂x
=

1
2z

(2 ln z + 1)H +
1
z

K −
1
2

zlnz
∂2H
∂x2 −

2
z
∂2K
∂x2 . (3.3)

Taking derivative of the seventh term in (3.1) with respect to x yields

−
∂ f1

∂x
+ z

∂2 f1

∂x∂z
+ z2 ∂

3 f1

∂x∂z2 = 0,

which is simplified by applying (3.3) giving 2H + z2 ∂2H
∂x2 = 0. Recalling that this equation holds for any

z > 0 and H varies only on (x, y). It follows immediately that H vanishes identically.
Taking derivative of the first equation in (3.1) with respect to x yields that

−
∂ f1

∂x
+ z2∂

3 f1

∂x3 − z
∂2 f1

∂x∂z
− 2z

∂2 f3

∂x2 = 0,

which is substituted into (3.2), (3.3) and H = 0 giving z4 ∂4K
∂x4 = 0. This equation reduces directly to

∂4K
∂x4 = 0 in view of the arbitrary of z. Moreover, notice that with the help of H = 0, (3.2) and (3.3)
become f3 = K and ∂ f1

∂x = 1
z K − 1

z
∂2K
∂x2 , respectively. Taking derivative of the forth term in (3.1) with

respect to x yields

−
∂ f1

∂x
+ z2 ∂

3 f1

∂x∂y2 − z
∂2 f1

∂x∂z
= 0,

which is substituted into ∂ f1
∂x = 1

z K − 1
z
∂2K
∂x2 giving ∂2K

∂x2 + ∂2K
∂y2 −

1
2z2 ∂4K

∂x2∂y2 = 0. Applying again the arbitrary
of z in this equation, we obtain

∂2K
∂x2 +

∂2K
∂y2 = 0 and

∂4K
∂x2∂y2 = 0. (3.4)

Recalling that we have already obtained ∂4K
∂x4 = 0. Combining this with the second term in (3.4), in

view of that K varies only on (x, y), we obtain

∂2K
∂x2 = k1xy + k2x + k3y + k4, (3.5)

where k1, k2, k3 and k4 are all constants. Taking integral of (3.5) we also have

K(x, y) =
1
6

k1x3y +
1
6

k2x3 +
1
2

k3x2y +
1
2

k4x2 + α1(y)x + α2(y), (3.6)

where both α1 and α2 are smooth functions varying only on y. Substituting the above relation into the
first term in (3.4) gives an equation, and comparing the resulting equation with (3.5) we haveα1(y) = −1

6k1y3 − 1
2k2y2 + k5y + k6,

α2(y) = −1
6k3y3 − 1

2k4y2 + k7y + k8,
(3.7)
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where k5, k6, k7 and k8 are all constants. Putting (3.7) into (3.6) yields

K(x, y) =
1
6

k1xy(x2 − y2) +
1
6

k2x(x2 − 3y2) +
1
6

k3y(3x2 − y2)

+
1
2

k4(x2 − y2) + k5xy + k6x + k7y + k8.

(3.8)

Recalling that we have obtained ∂ f1
∂x = 1

z K − 1
z
∂2K
∂x2 , which is simplified by using (3.8) giving

f1 =
1

24z
k1x2y(x2 − 2y2) +

1
24z

k2x2(x2 − 6y2) +
1
6z

k3xy(x2 − y2)

+
1
6z

k4x(x2 − 3y2) +
1
2z

k5x2y +
1
2z

k6x2 +
1
z

k7xy +
1
z

k8x

−
1
4

xz(k1xy + k2x + 2k3y + 2k4) + M(y, z),

(3.9)

where M is a smooth function varying only on (y, z). Substituting (3.9) into the first term in (3.1) we
obtain

1
6

z(k1y3 + 3k2y2 − 6k5y − 6k6) −
1
2

z3(k1y + k2) = M + z
∂M
∂z

.

Solving the above linear equation we obtain

M =
1

12
z(k1y3 + 3k2y2 − 6k5y − 6k6) −

1
8

z3(k1y + k2) +
1
z
α3(y), (3.10)

where α3 is a smooth function varying only on y. Similarly, substituting (3.9) into the seventh term in
(3.1) we obtain

− M + z
∂M
∂z

+ z2∂
2M
∂z2 = 0, (3.11)

which is substituted into (3.10) giving k1 = k2 = 0. Now putting (3.9) into the forth term in (3.1) we
obtain

− M − z
∂M
∂z

+ z2∂
2M
∂y2 = 0. (3.12)

With the aid of k1 = k2 = 0, substituting (3.10) into (3.12) yields

α3(y) = −
1
6

k5y3 −
1
2

k6y2 + k9y + k10,

where both k9 and k10 are constants. Therefore, f1 can be expressed by means of the above equation,
(3.9) and (3.10), i.e.,

f1 =
1
6z

k3xy(x2 − y2) +
1
6z

k4x(x2 − 3y2) +
1
6z

k5y(3x2 − y2)

+
1
2z

k6(x2 − y2) +
1
z

k7xy +
1
z

k8x +
1
z

k9y

+
1
z

k10 −
1
2

z(k3xy + k4x + k5y + k6).

(3.13)
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With the aid of (3.8) and k1 = k2 = 0, we have already obtained f3 according to (3.2). Substituting
this into the sixth term in (3.1) we obtain

∂ f2

∂y
=

1
z

K −
1
2

z
∂2K
∂y2 .

Substituting (3.8) and k1 = k2 = 0 into the above relation and taking integral we get

f2 =
1

24z
k3y2(6x2 − y2) +

1
6z

k4y(3x2 − y2) +
1
2z

k5xy2 +
1
z

k6xy

+
1
2z

k7y2 +
1
z

k8y +
1
4

yz(k3y + 2k4) + N(x, z),
(3.14)

where N is a smooth function varying only on (x, z). Substituting (3.14) into the fifth term in (3.1)
gives

−
1
2

z(k3x2 + 2k5x + 2k7) +
1
2

z3k3 = N + z
∂N
∂z
.

Solving such a linear equation we obtain

N(x, z) = −
1
4

z(k3x2 + 2k5x + 2k7) +
1
8

z3k3 +
1
z
β(x), (3.15)

where β is a smooth function varying on x. Putting (3.14) into the eighth term in (3.1) we get a new
linear equation

−N + z
∂N
∂z

+ z2∂
2N
∂z2 = 0.

Putting (3.15) into the above equation we obtain k3 = 0. Finally, with the help of k3 = 0, substituting
(3.14) into the second term in (3.1) we acquire

− N − z
∂N
∂z

+ z2∂
2N
∂x2 = 0. (3.16)

Applying again k3 = 0 and (3.15), according to (3.16) we obtain

β(x) = −
1
6

k5x3 −
1
2

k7x2 + k11x + k12,

where k11 and k12 are two constants. Now, with the help of the above relation, from (3.15) we have

N(x, z) = −
1
2

z(k5x + k7) −
1
6z

(k5x3 + 3k7x2 − 6k11x − 6k12). (3.17)

With the help of k3 = 0, from (3.13), (3.14), (3.17), (3.2) and (3.8), the main theorem of this section
is given as the following.

Theorem 3.1. On the hyperbolic 3-space H3, a vector field V =
∑3

i=1 fiei is a Jacobi-type vector field
if and only if

f1 =
1
6z

k4x(x2 − 3y2) +
1
6z

k5y(3x2 − y2) +
1
2z

k6(x2 − y2) +
1
z

k7xy

+
1
z

k8x +
1
z

k9y +
1
z

k10 −
1
2

z(k4x + k5y + k6),
(3.18)
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f2 =
1
6z

k4y(3x2 − y2) +
1
6z

k5x(3y2 − x2) +
1
z

k6xy +
1
2z

k7(y2 − x2)

+
1
z

k8y +
1
z

k11x +
1
z

k12 +
1
2

z(k4y − k5x − k7),
(3.19)

f3 =
1
2

k4(x2 − y2) + k5xy + k6x + k7y + k8. (3.20)

Proof. The “if” part of the proof is easy to check by applying (3.18)–(3.20). The “only if” part has
been presented already. �

Considering a vector field V =
∑3

i=1 fiei on H3, and using those preliminaries in Section two we
have

(LVg)(e1, e1) = 2(z
∂ f1

∂x
− f3).

(LVg)(e1, e2) = z
∂ f1

∂y
+ z

∂ f2

∂x
.

(LVg)(e1, e3) = f1 + z
∂ f1

∂z
+ z

∂ f3

∂x
.

(LVg)(e2, e2) = 2(z
∂ f2

∂y
− f3).

(LVg)(e2, e3) = f2 + z
∂ f2

∂z
+ z

∂ f3

∂y
.

(LVg)(e3, e3) = 2z
∂ f3

∂z
.

With the help the above relations, V is a Killing vector field if and only if the following PDEs hold:z∂ f1
∂x = f3,

∂ f1
∂y +

∂ f2
∂x = 0, f1 + z∂ f1

∂z + z∂ f3
∂x = 0,

z∂ f2
∂y = f3,

∂ f3
∂z = 0, f2 + z∂ f2

∂z + z∂ f3
∂y = 0.

(3.21)

Applying (3.18) and (3.20) into the first term in (3.21) gives k4 = 0. Moreover, applying (3.18) and
(3.19) into the second term in (3.21) yields k5 = 0 and k11 = −k9. We remark that in this situation, all
other equations in (3.21) are necessarily true. Therefore, the following theorem follows from Theorem
3.1.

Theorem 3.2. On the hyperbolic 3-space H3, a Jacobi-type vector field V =
∑3

i=1 fiei is Killing if and
only if

f1 =
1
2z

k6(x2 − y2) +
1
z

k7xy +
1
z

k8x +
1
z

k9y +
1
z

k10 −
1
2

zk6, (3.22)

f2 =
1
z

k6xy +
1
2z

k7(y2 − x2) +
1
z

k8y −
1
z

k9x +
1
z

k12 −
1
2

zk7, (3.23)

f3 = k6x + k7y + k8, (3.24)

where k6, k7, k8, k9, k10 and k12 are all constants.

Comparing the above Theorem 3.2 with Theorem 3.1, one finds infinitely many non-Killing Jacobi-
type vector fields. By applying this theorem, we answer the question proposed in Section one on a
special non-compact manifold H3.
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4. Jacobi-type vector fields on R3

In this section, just like we have done in Section two, we determine all Jacobi-type vector fields on
the Euclidean 3-space. Let (x, y, z) be the usual global coordinates on R3 and V =

∑3
i=1 fiei be a vector

field, where e1 = ∂
∂x , e2 = ∂

∂y , e3 = ∂
∂z are the global orthonormal frame. By a direct calculation, we

have

∇e1∇e1V − ∇∇e1 e1V + R(V, e1)e1 =
∂2 f1

∂x2 e1 +
∂2 f2

∂x2 e2 +
∂2 f3

∂x2 e3.

∇e2∇e2V − ∇∇e2 e2V + R(V, e2)e2 =
∂2 f1

∂y2 e1 +
∂2 f2

∂y2 e2 +
∂2 f3

∂y2 e3.

∇e3∇e3V − ∇∇e3 e3V + R(V, e3)e3 =
∂2 f1

∂z2 e1 +
∂2 f2

∂z2 e2 +
∂2 f3

∂z2 e3.

According to (1.3), V is a Jacobi-type vector field if and only if the following PDEs hold:

∂2 fi

∂x2 = 0,
∂2 fi

∂y2 = 0,
∂2 fi

∂z2 = 0 , i = 1, 2, 3.

In view of ∂2 f1
∂x2 = 0, we may write

f1 = H(y, z)x + K(y, z), (4.1)

where both H and K are smooth functions varying only on (y, z). Applying this on the fact ∂2 f1
∂y2 = 0 we

obtain x ∂
2H
∂y2 + ∂2K

∂y2 = 0, and this is equivalent to

∂2H
∂y2 = 0,

∂2K
∂y2 = 0 (4.2)

due to the arbitrary of x. Similarly, applying (4.1) on the fact ∂2 f1
∂z2 = 0 we also obtain x ∂

2H
∂z2 + ∂2K

∂z2 = 0,
and this is equivalent to

∂2H
∂z2 = 0,

∂2K
∂z2 = 0 (4.3)

due to the arbitrary of x. According to (4.3) and (4.2), we may write

H(y, z) = k1yz + k2y + k3z + k4, K(y, z) = k5yz + k6y + k7z + k8,

where ki, i = 1, · · · , 8, are all constants. Similarly, f2 and f3 can be expressed according to ∂2 f2
∂x2 =

∂2 f2
∂y2 =

∂2 f2
∂z2 = 0 and ∂2 f3

∂x2 =
∂2 f3
∂y2 =

∂2 f3
∂z2 = 0, respectively.

Theorem 4.1. On the Euclidean 3-space R3, a vector field V =
∑3

i=1 fiei is a Jacobi-type vector field if
and only if

f1 = k1xyz + k2xy + k3xz + k4x + k5yz + k6y + k7z + k8, (4.4)

f2 = l1xyz + l2xy + l3xz + l4x + l5yz + l6y + l7z + l8, (4.5)

f3 = m1xyz + m2xy + m3xz + m4x + m5yz + m6y + m7z + m8, (4.6)

where ki, li, mi for i = 1, · · · , 8 are all constants.
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Proof. The “if” part of the proof is easy to check by applying (4.4)–(4.6). The “only if” part has been
presented already. �

Remark 4.1. According to Theorem 4.1, on the Euclidean 3-space R3, the position vector field x ∂
∂x +

y ∂
∂y + z ∂

∂z is a Jacobi-type vector field. Actually, it is a non-Killing homothetic vector field [5, Remark
2.1].

Just like the case shown at the beginning of this Section, a vector field V =
∑3

i=1 fiei on the Euclidean
3-space R3 is Killing if and only if∂ f1

∂x = 0, ∂ f1
∂y +

∂ f2
∂x = 0, ∂ f1

∂z +
∂ f3
∂x = 0,

∂ f2
∂y = 0, ∂ f3

∂z = 0, ∂ f2
∂z +

∂ f3
∂y = 0.

(4.7)

Substituting (4.4) into the the first term in (4.7) gives k1 = k2 = k3 = k4 = 0. Similarly, substituting
(4.5) and (4.6) into the forth and fifth terms in (4.7), respectively, we obtain l1 = l2 = l5 = l6 = 0 and
m1 = m3 = m5 = m7 = 0. Also, with the help of these, putting (4.4) and (4.5) into the second term in
(4.7) gives k5 + l3 = 0 and k6 + l4 = 0. Similarly, putting (4.4) and (4.6) into the third term in (4.7)
gives k5 + m2 = 0 and k7 + m4 = 0. Putting (4.5) and (4.6) into the sixth term in (4.7) gives l3 + m2 = 0
and l7 + m6 = 0. Combining the above relations we also have k5 = l3 = m2 = 0.

Theorem 4.2. On the Euclidean 3-space R3, a Jacobi-type vector field V =
∑3

i=1 fiei is Killing if and
only if

f1 = k6y + k7z + k8, (4.8)

f2 = −k6x + l7z + l8, (4.9)

f3 = −k7x − l7y + m8, (4.10)

where k6, k7, k8, l7, l8 and m8 are all constants.

Comparing Theorem 4.2 with 4.1, one obtains many non-Killing Jacobi-type vector fields on R3.
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