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1. Introduction

Let Cn denote the complex n-dimensional vector space, and Cn×n the complex n × n matrix space.
Consider an iterative solution of the large sparse system of n linear equations in n unknowns,

Ax = b, A = (ai j) ∈ Cn×n nonsingular, and b, x ∈ Cn. (1.1)

where A is a large, sparse non-Hermitian matrix. In this paper we consider the important case where A
is positive (semi-) definite; i.e., the Hermitian part H = (A + A∗)/2 is Hermitian positive (semi-)
definite, where A∗ denotes the conjugate transpose of the matrix A. Such case of the matrices above
including complex symmetric positive definite matrices [27], accretive-dissipative matrices [24],
(generalized) saddle point matrices [11], complex Benzi-Golub matrices [28], symmetric
quasi-definite matrices [36], and so on. Large, sparse systems of this type arise in many applications,
including discretizations of convection-diffusion problems [22], regularized weighted least-squares
problems [10], real-valued formulations of certain complex symmetric systems [9], and so forth.
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In order to solve system (1.1) by iterative methods, it is useful to construct splitting of the
coefficient matrix A. Such splittings are associated with stationary iterative methods, and are
frequently used as pre-conditioners for Krylov subspace methods or as smoothers for multigrid or
Schwarz-type schemes; see, e.g., [16–18, 25, 35, 42]. Recently, there has been considerable interest in
the Hermitian and skew-Hermitian splitting (HSS) method introduced by Bai, Golub and Ng for
solving non-Hermitian positive definite linear systems, see [3]. We further note the generalizations
and extensions of this basic method proposed in [2, 4–7, 30, 45, 46]. Furthermore, these methods and
their convergence theories have been shown to apply to (generalized) saddle point problems, either
directly or indirectly (as a preconditioner), see [1, 2, 4–6, 12, 13, 30, 38, 39]. However, a potential
difficulty with the HSS method is the need to solve two linear systems at each iteration (or at each
application of the preconditioner), in which the shifted skew-Hermitian system can be much more
problematic; in some cases its solution is as difficult as that of the original linear system Ax = b [7].

It is well known that P-regular splitting methods for Hermitian (or symmetric) positive definite
linear systems are convergent (see [8, 14, 19, 20, 23, 31, 40, 47], and so forth). But, such type of
splitting methods for non-Hermitian (or nonsymmetric) positive definite linear systems is not
necessarily convergent. There have been several studies on the convergence of such type of splitting
methods for non-Hermitian positive definite linear systems. In reference [15], some convergence
conditions for the splitting of non-Hermitian positive definite matrices have been established. More
recently, references [21, 38, 39, 43] give some conditions for the convergence of P-splitting for this
class of linear systems.

In general, the coefficient matrix A ∈ Cn×n is split into

A = M − N, (1.2)

where M ∈ Cn×n is nonsingular and N ∈ Cn×n. Then, the general form of stationary iterative method
and the corresponding relaxed form for (1.1) can be described as follows:

x(i+1) = M−1Nx(i) + M−1b, i = 0, 1, 2, . . . (1.3)

and
x(i+1) = (1 − τ)x(i) + τM−1Nx(i) + τM−1b, τ ∈ (0, 1), i = 0, 1, 2, . . . (1.4)

The matrices T = M−1N and Tτ = (1−τ)I+τM−1N are called the iteration matrices of the methods (1.3)
and (1.4), respectively. It is well known [37] that (1.3) converges for any given x(0) if and only if
ρ(T ) < 1, where ρ(T ) denotes the spectral radius of the matrix T . Thus, to establish convergence
results for stationary iterative methods, we need to study the spectral radius of the iteration matrix
in (1.3).

Continuing in this direction, in this paper we firstly establish new results on splitting methods for
solving system (1.1) iteratively, focusing on a particular class of splittings. For a given matrix A ∈ Cn×n,
a splitting A = M − N with M nonsingular is called a P-regular splitting if the matrix M∗ + N is
positive definite, i.e., the Hermitian part of M∗ + N is Hermitian positive definite [34]. It is a well
known result [34, 41] that if A is Hermitian positive definite and A = M − N is a P-regular splitting,
then the splitting iterative method is convergent: ρ(M−1N) < 1. Let A ∈ Cn×n be non-Hermitian.
Then the splitting A = M − N with M nonsingular is called a strong P-regular splitting if the matrix
M + N is Hermitian positive definite. In this paper, we examine the spectral properties of the iteration
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matrix induced by strong P-regular splitting of a non-Hermitian positive definite matrix. Based on
these properties, we construct various SOR-type methods for non-Hermitian linear systems and prove
their convergence under appropriate restrictions on the choice of the relaxation parameter.

For convenience, some of the terminology used in this paper will be given. The symbol Cn×n will
denote the set of all n × n complex matrices. Let A, B ∈ Cn×n. We use the notation A � 0 (A � 0) if A
is Hermitian positive (semi-) definite. If A and B are both Hermitian, we write A � B (A � B) if and
only if A − B � 0 (A − B � 0). If A is Hermitian all of eigenvalues of A are real, and we denote by
λmin(A) and λmax(A) the smallest (i.e., leftmost) and largest (rightmost) eigenvalues, respectively. Let
A ∈ Cn×n, σ(A) denotes the spectra of A, i.e., the set of all eigenvalues of A, ρ(A) = maxλ∈σ(A) |λ| the
spectral radius of A and %(A) = min0,λ∈σ(A) |λ|. Further, ‖A‖2 =

√
λmax(A∗A) =

√
ρ(A∗A). For a given

matrices B � 0, ‖A‖B = ‖B1/2AB−1/2‖2. Let A ∈ Cn×n with H = (A + A∗)/2 and S = (A − A∗)/2 its
Hermitian and skew-Hermitian parts, respectively; then A is non-Hermitian positive (semi-) definite if
and only if H � 0 (H � 0). Throughout the paper, I will denote the n × n identity matrix.

The paper is organized as follows: Some convergence results for strong P-regular splitting of non-
Hermitian positive (semi) definite linear systems are given in section 2. In section 3 we construct
SOR-type method and use the general theory of section 2 to study its convergence. Two numerical
examples are given in section 4 to demonstrate the convergence results obtained in this paper. Some
conclusions are given in section 5.

2. General convergence results for strong P-regular splittings

In this section some convergence results for strong P-regular splitting methods for non-Hermitian
positive (semi) definite matrices are established. First, some lemmas will be presented to be used in
the sequel.

Lemma 1. [23] Let A � 0, and let A = M−N be a P-regular splitting. Then ρ(M−1N) ≤ ‖M−1N‖A < 1.

Theorem 1. Let A ∈ Cn×n be non-Hermitian positive definite, and let A = M−N be a strong P-regular
splitting, i.e., B := M + N � 0. Then ρ(M−1N) ≤ ‖M−1N‖B < 1.

Proof. Since A is non-Hermitian positive definite and A = M − N be a strong P-regular splitting, i.e.,
B := M + N � 0, B = M − (−N) is a P-regular splitting. It follows from Lemma 1 that ρ[M−1(−N)] ≤
‖M−1(−N)‖B < 1 and hence, ρ(M−1N) ≤ ‖M−1N‖B < 1. This completes the proof. �

Lemma 2. [19,40] Let A ∈ Cn×n be an invertible Hermitian matrix, and let A = M−N be a P-regular
splitting of A. Then ρ(M−1N) < 1 if and only if A is positive definite.

Theorem 2. Let A ∈ Cn×n be an invertible non-Hermitian matrix, and let A = M − N be a strong
P-regular splitting of A. Then ρ(M−1N) < 1 if and only if A is positive definite.

Proof. Obviously, the proof can be obtained from Theorem 1 and Lemma 2. �

Lemma 3. [19, 42] Let A ∈ Cn×n be a Hermitian positive definite matrix, and let A = M − N be a
splitting of A. Then ‖M−1N‖A < 1 if and only if the splitting A = M − N is a P-regular splitting.

Theorem 3. Let A ∈ Cn×n be a non-Hermitian positive definite matrix, and let A = M−N be a splitting
of A. Then ‖M−1N‖A < 1 if and only if the splitting A = M − N be a strong P-regular splitting.
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Proof. It is obviously that we can obtain the proof immediately following from Theorem 1 and
Lemma 3. �

Theorem 4. Let A ∈ Cn×n be non-Hermitian positive definite, and let B ∈ Cn×n be any given Hermitian
positive definite matrix. Then ρ[(A + B)−1(B − A)] ≤ ‖(A + B)−1(B − A)‖B < 1.

Proof. Let M = (A + B)/2 and N = (B − A)/2. Then B = M + N � 0 and consequently, A = M − N is
a strong P-regular splitting of A. Since A is non-Hermitian positive definite, it follows from Theorem
1 that ρ(M−1N) ≤ ‖M−1N‖B < 1 and thus ρ[(A + B)−1(B − A)] ≤ ‖(A + B)−1(B − A)‖B < 1 for
M−1N = (A + B)−1(B − A). This completes the proof. �

In what follows the spectral analysis of the iteration matrix induced by strong P-regular splitting of
non-Hermitian positive semidefinite matrix A.

Theorem 5. Let A ∈ Cn×n be non-Hermitian positive semidefinite and nonsingular, and let A = M − N
be a strong P-regular splitting. Then ρ(M−1N) ≤ 1. Furthermore, assume that λ ∈ C is an eigenvalue
of M−1N and x ∈ Cn is the corresponding eigenvector. Then |λ| < 1 if x < N(H) and |λ| = 1 with
Im(λ) , 0 if x ∈ N(H), where H, N(H) and Im(λ) denotes the Hermitian part of A, the null space of H
and the imaginary part of λ, respectively.

Proof. Since the splitting A = M − N is a strong P-regular splitting, B := M + N � 0. Furthermore,
M = (A + B)/2 = [(H + B) + S ]/2 and N = (B − A)/2 = [(B − H) − S ]/2 with H and S Hermitian and
skew-Hermitian parts of A, respectively. Let λ be an eigenvalue of M−1N satisfying |λ| = ρ(M−1N),
and let x ∈ Cn be a corresponding eigenvector with ‖x‖2 = 1 (note that it must have x , 0). Then, one
has M−1Nx = λx and thus,

Nx = λMx (2.1)

and x∗Nx = λx∗Mx. Since A is non-Hermitian positive semidefinite and B � 0, H � 0 and M =

(A + B)/2 is non-Hermitian positive definite. As a result, x∗Mx , 0, and consequently,

λ =
x∗Nx
x∗Mx

=
x∗(B − H)x − x∗S x
x∗(H + B)x + x∗S x

. (2.2)

Noting B � 0 and H � 0, x∗(H + B)x ≥ |x∗(B − H)x|. Consequently,

[x∗(B − H)x]2 + |x∗S x|2 ≤ [x∗(H + B)x]2 + |x∗S x|2. (2.3)

Therefore, it follows from (2.2) that

|λ| =
|x∗(B − H)x − x∗S x|
|x∗(H + B)x + x∗S x|

=

√
[x∗(B − H)x]2 + |x∗S x|2

[x∗(B + H)x]2 + |x∗S x|2

≤ 1,

(2.4)

which shows ρ(M−1N) ≤ 1. Furthermore, if x < N(H), then x∗Hx > 0 and thus x∗(H + B)x >

|x∗(B − H)x|. As a result, (2.3) holds strictly. Following from (2.4), we have |λ| < 1. If x ∈ N(H), then
x∗Hx = 0 and thus x∗(H + B)x = x∗(B − H)x = x∗Bx > 0. Consequently, (2.2) becomes

λ =
x∗Bx − x∗S x
x∗Bx + x∗S x

=
[(x∗Bx)2 − |x∗S x|2] − 2x∗Bx · x∗S x

(x∗Bx)2 + |x∗S x|2
(2.5)
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which shows that |λ| = 1 and Im(λ) = 2i · x∗Bx · x∗S x/[(x∗Bx)2 + |x∗S x|2]. Since x∗Bx > 0, Im(λ) , 0
only if x∗S x , 0. Assume x∗S x = 0. (2.5) indicates λ = 1. (2.1) yields Nx = Mx. As a result,
Ax = (M − N)x = 0. Since x , 0, the matrix A is singular, which contradicts the nonsingularity of the
matrix A. Thus x∗S x , 0 which induces Im(λ) , 0. This completes the proof. �

Theorem 5 shows that the strong P-regular splitting method (1.4) for non-non-Hermitian positive
semidefinite and nonsingular linear systems is not necessarily convergent. The following will present
a convergence result for the relaxed strong P-regular splitting method (1.4). At first, the following
lemmas will be used in this section.

Lemma 4. [44] Let A ∈ Cn×n be non-Hermitian positive semidefinite and let H = (A + A∗)/2 and
S = (A−A∗)/2 be its Hermitian and skew-Hermitian parts, respectively. Then A is singular if and only
if the set K = N(H) ∩ N(S ) , {0}, where N(H) denotes the null space of the matrix H.

Lemma 5. Let A, B ∈ Cn×n and x ∈ Cn. If A is Hermitian positive definite and B is either Hermitian
or skew-Hermitian with x∗Bx , 0, then

%(A−1B) ≤
|x∗Bx|
x∗Ax

≤ ρ(A−1B). (2.6)

Proof. Since A is a Hermitian positive definite, A1/2 and A−1/2 exist. Furthermore, x ∈ Cn and x∗Bx , 0,

so,
|x∗Bx|
x∗Ax

, 0. Let y = A1/2x, so, x = A−1/2y. Then,

|x∗Bx|
x∗Ax

=
|y∗A−1/2BA−1/2y|

y∗y

≤ max
|y∗A−1/2BA−1/2y|

y∗y
= ρ(A−1/2BA−1/2)
= ρ(A−1B),

(2.7)

and
|x∗Bx|
x∗Ax

=
|y∗A−1/2BA−1/2y|

y∗y

≥ min
|y∗A−1/2BA−1/2y|

y∗y
= %(A−1/2BA−1/2)
= %(A−1B).

(2.8)

�

Lemma 6. Let f (x) =
x

x2 + γ2 , x ∈ [a, b], where b > a > 0 and γ > 0. Then

• f (x) ∈
[
µ,

1
2γ

]
if γ ∈ [a, b], where µ = min

{
a

a2 + γ2 ,
b

b2 + γ2

}
;

• f (x) ∈
[

a
a2 + γ2 ,

b
b2 + γ2

]
if b < γ;

• f (x) ∈
[

b
b2 + γ2 ,

a
a2 + γ2

]
if a > γ.
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Proof. It is obviously that we can obtain the proof immediately following from the monotonicity of
function. �

Theorem 6. Let A ∈ Cn×n be non-Hermitian positive semidefinite and nonsingular with H = (A+A∗)/2
and S = (A − A∗)/2 its Hermitian and skew-Hermitian parts, respectively. Assume that A = M − N is
strong P-regular, i.e., B := M + N � 0. Then the relaxed method (1.4) converges to the unique solution
of (1.1) for any choice of the initial guess x(0), provided τ ∈ (0, 1), i.e., ρ(Tτ) < 1 for all τ ∈ (0, 1),
where Tτ is defined in (1.4). Furthermore,

τ∗ = arg minτ∈(0,1){ρ(Tτ)} =
1
2

and

minτ∈(0,1){ρ(Tτ)} = ρ(T1/2) ∈ [
√

a,
√

b ],

(2.9)

where

a = min
{

1
1 + ζ2 ,

1 + ϕ

(1 + ϕ)2 + ζ2 ,
1 + ψ

(1 + ψ)2 + ζ2

}
, b = max

{
1

1 + ε2 ,
1

1 + ϕ

}
, (2.10)

ε = %(B−1S ), ζ = ρ(B−1S ), ϕ = %(B−1H) and ψ = ρ(B−1H).

Proof. Let λ be an eigenvalue of M−1N, and let x ∈ Cn be a corresponding eigenvector with ‖x‖2 = 1
(note that it must have x , 0). Since Tτ = (1 − τ)I + τM−1N, µτ = (1 − τ) + τλ is an eigenvalue of Tτ

and x ∈ Cn is its corresponding eigenvector. Further assume that |µτ| = ρ(Tτ). If x < N(H), Theorem 5
shows |λ| < 1, and consequently, ρ(Tτ) = |µτ| ≤ (1 − τ) + τ|λ| < 1 for all τ ∈ (0, 1). Conversely, if
x ∈ N(H), Theorem 5 yields |λ| = 1 with Im(λ) , 0, where Im(λ) is the imaginary part of λ. Let Re(λ)
is the real part of λ. Then Re2(λ) + Im2(λ) = 1 and |Re(λ)| < 1 for Im(λ) , 0. Therefore,

ρ(Tτ) = (1 − τ) + τ[Re(λ) + i · Im(λ)]
=

√
[1 + τ(Re(λ) − 1)]2 + τ2Im2(λ)

=
√

(1 − τ)2 + 2(1 − τ)τRe(λ) + τ2

≤
√

(1 − τ)2 + 2(1 − τ)τ|Re(λ)| + τ2

<
√

(1 − τ)2 + 2(1 − τ)τ + τ2

=
√

(1 − τ + τ)2

= 1,

(2.11)

for all τ ∈ (0, 1), i.e., the relaxed method (1.4) converges to the unique solution of (1.1) for any choice
of the initial guess x(0), provided τ ∈ (0, 1).

Again, it follows from the third equality in (2.11) that

ρ2(Tτ) = (1 − τ)2 + 2(1 − τ)τRe(λ) + τ2

= 2(1 − Re(λ))(τ2 − τ) + 1

= 2(1 − Re(λ))(τ −
1
2

)2 +
1 + Re(λ)

2
.

(2.12)

Since 1 − Re(λ) > 0 for |λ| < 1 if x < N(H) and |λ| = 1 with Im(λ) , 0 if x < N(H), it is easy to see
from the last equality in (2.12) that

τ∗ = arg minτ∈(0,1){ρ(Tτ)} =
1
2

(2.13)
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and

minτ∈(0,1){ρ(Tτ)} = ρ(T1/2) =

√
1 + Re(λ)

2
. (2.14)

Following (2.2),

Re(λ) =
x∗(H + B)x · x∗(B − H)x − |x∗S x|2

[x∗(H + B)x]2 + |x∗S x|2
, (2.15)

where B = M + N � 0, and H and S are Hermitian and skew-Hermitian parts of A, respectively.
Then (2.14) and (2.15) yield

minτ∈(0,1){ρ(Tτ)} = ρ(T1/2) =

√
x∗(H + B)x · x∗Bx

[x∗(H + B)x]2 + |x∗S x|2
. (2.16)

Let y = x∗Hx/x∗Bx ∈ [ϕ, ψ] and t = |x∗S x|/x∗Bx ∈ [ε, ζ]. Then

minτ∈(0,1){ρ(Tτ)} = ρ(T1/2) =

√
1 + y

(1 + y)2 + t2 . (2.17)

Lemma 5 shows that y ∈ [ϕ, ψ] and t ∈ [ε, ζ] with ε = %(B−1S ), ζ = ρ(B−1S ), ϕ = %(B−1H) and
ψ = ρ(B−1H). In what follows, we distinguish between the following three cases.

(i) If x ∈ N(H), then x∗Hx = 0. Now, we assert x∗S x , 0. Otherwise, it follows from (2.16) that
ρ(T1/2) = 1 which contradicts (2.11). Thus, x∗S x , 0. Consequently, Lemma 5 shows that

minτ∈(0,1){ρ(Tτ)} = ρ(T1/2) =

√
1

1 + t2 ∈

√ 1
1 + ζ2 ,

√
1

1 + ε2

 . (2.18)

(ii) If x ∈ N(S ), it follows from Lemma 4 x < N(H). As a result, x∗Hx , 0 and x∗S x = 0. Hence,

minτ∈(0,1){ρ(Tτ)} = ρ(T1/2) =

√
1

1 + y
∈

[√
1

1 + ψ
,

√
1

1 + ϕ

]
. (2.19)

(iii) If x < N(S ) and x < N(H), then x∗Hx , 0 and x∗S x , 0. Hence, (2.17) holds. Since

1 + y
(1 + y)2 + t2 <

1
1 + y

≤
1

1 + ϕ
(2.20)

and Lemma 6 yields

1 + y
(1 + y)2 + t2 ≥

1 + y
(1 + y)2 + ζ2 ≥ φ := min{

1 + ϕ

(1 + ϕ)2 + ζ2 ,
1 + ψ

(1 + ψ)2 + ζ2 }, (2.21)

minτ∈(0,1){ρ(Tτ)} =
1 + y

(1 + y)2 + t2 ∈

φ,
√

1
1 + ϕ

 . (2.22)

It follows from the three cases above that

minτ∈(0,1){ρ(Tτ)} = ρ(T1/2) ∈ [
√

a,
√

b ], (2.23)

where a and b is defined in (2.10). This completes the proof. �
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Corollary 1. Let A ∈ Cn×n be non-Hermitian positive definite with H = (A + A∗)/2 and S = (A−A∗)/2
its Hermitian and skew-Hermitian parts, respectively. Assume that A = M − N is strong P-regular,
i.e., B := M + N � 0. Then the relaxed method (1.4) converges to the unique solution of (1.1) for any
choice of the initial guess x(0), provided τ ∈ (0, 1), i.e., ρ(Tτ) < 1 for all τ ∈ (0, 1), where Tτ is defined
in (1.4). Furthermore,

τ∗ = arg minτ∈(0,1){ρ(Tτ)} =
1
2

(2.24)

and

minτ∈(0,1){ρ(Tτ)} = ρ(T1/2) ∈
[
√
φ,

√
1

1 + ϕ

]
,

where φ = min
{

1 + ϕ

(1 + ϕ)2 + ζ2 ,
1 + ψ

(1 + ψ)2 + ζ2

}
, ζ = ρ(B−1S ), ϕ = %(B−1H) and ψ = ρ(B−1H).

3. The SOR method and its relaxed version for non-Hermitian linear systems

While convergence results on the classic SOR methods have been known for many years for
Hermitian positive definite matrices, monotone matrices and H-matrices (see,
e.g., [15, 25, 26, 34, 35, 37, 42]), very little appears to be known in the non-Hermitian positive definite
case. Among the few studies known to us we mention [15, 29, 32, 33]. Recently, Zhang and Benzi
in [43] proposed some new SOR methods and obtained their convergence. In this section new SOR
methods and their relaxed version are constructed and the general theory developed in the previous
section is applied to establish the convergence of such iteration methods for non-Hermitian positive
(semi-) definite systems. Our results are more general and complete than the few results found in
literature.

Without loss of generality, we write

A = I − L − U

= I −
L − U∗

2
−

2U + U∗ + L
2

= I −
U − L∗

2
−

2L + L∗ + U
2

,
(3.1)

where L and U are lower and upper triangular matrices, respectively, with their diagonal entries either
imaginary numbers or zero. The forward and backward successive over-relaxation methods (forward
and backward SOR methods) are defined by the iteration matrices

Lω =

[
I −

ω(L − U∗)
2

]−1 [
ω(2U + U∗ + L)

2
+ (1 − ω)I

]
(3.2)

and

Uω =

[
I −

ω(U − L∗)
2

]−1 [
ω(2L + L∗ + U)

2
+ (1 − ω)I

]
, (3.3)

respectively, while their relaxed version are given by the iteration matrices

Sτ,ω = (1 − τ)I + τLω, (3.4)

Tτ,ω = (1 − τ)I + τUω, (3.5)

respectively.
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Theorem 7. Let A ∈ Cn×n be non-Hermitian positive definite, and let A = I−L−U be defined by (3.1).
Also, let η = λmin(B) be the smallest eigenvalue of B := U + U∗. Then the forward SOR method (3.2)
converges to the unique solution of (1.1) for any choice of the initial guess x(0), provided ω ∈ (0, 2

1−η ),
i.e., ρ(Lω) < 1 for all ω ∈ (0, 2

1−η ), where Lω is defined in (3.2).

Proof. Let M =
1
ω

I −
L − U∗

2
and N =

(
1
ω
− 1

)
I +

2U + U∗ + L
2

. Then Lω = M−1N and

M + N =

(
2
ω
− 1

)
I + (U + U∗) (3.6)

Since ω ∈ (0, 2
1−η ),

2
ω
− 1 + η > 0, and consequently,

M + N =

(
2
ω
− 1

)
I + (U + U∗) �

(
2
ω
− 1 + η

)
I � 0,

which shows that A = M − N be strong P-regular. Since A is non-Hermitian positive definite, it
follows again from Theorem 1 that ρ(Lω) = ρ(M−1N) < 1, i.e., the SOR method is convergent for all
ω ∈ (0, 2

1−η ). This completes the proof. �

In the same method of proof, we can obtain the following conclusion.

Theorem 8. Let A ∈ Cn×n be non-Hermitian positive definite, and let A = I−L−U be defined by (3.1).
Also, let φ = λmin(C) be the smallest eigenvalue of C := L + L∗. Then the backward SOR method (3.3)
converges to the unique solution of (1.1) for any choice of the initial guess x(0), provided ω ∈ (0, 2

1−φ ).

Remark 1. Theorem 7 becomes Theorem 1 in [32] if A = I − L + LT ∈ Rn×n; hence, Theorem 7
generalizes the convergence result of Niethammer and Schade.

Theorem 9. Let A ∈ Cn×n be non-Hermitian positive semidefinite and nonsingular, and let A = I−L−U
be defined by (3.1). Also, let η = λmin(B) and φ = λmin(C) be the smallest eigenvalues of B := U + U∗

and C := L + L∗, respectively. Then,
(i) the relaxed forward SOR method converges to the unique solution of (1.1) for any choice of the

initial guess x(0), provided ω ∈ (0, 2
1−η ); and

(ii) the relaxed backward SOR method converges to the unique solution of (1.1) for any choice of
the initial guess x(0), provided ω ∈ (0, 2

1−φ ).

Proof. The proof can be immediately obtained from Theorem 6. �

4. Numerical experiments

In this section we obtain the results of some numerical experiments with the SOR method and
relaxed SOR method on linear systems.

Example 1. Consider the following three-dimensional convection-diffusion equations,

− (uxx + uyy + uzz) + q(ux + uy + uz) = f (x, y, z) (4.1)
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on the unite cube Ω = [0, 1] × [0, 1] × [0, 1] with the first boundary conditions, where q is coefficient
constant. We get the coefficient matrix A by using the centered differences to the diffusive terms and
convective terms

A = Ax ⊗ I ⊗ I + I ⊗ Ay ⊗ I + I ⊗ I ⊗ Az, (4.2)

where ⊗ denotes the Kronecker product, Ax, Ay and Az are tri-diagonal matrices given by

Ax = tridiag(t2, t1, t3), Ay = tridiag(t2, 0, t3), Az = tridiag(t2, 0, t3), (4.3)

with t1 = 6, t2 = −1 − r, t3 = −1 + r. where r =
qh
2 , the step length h = 1

n+1 , n is the number of intervals
along axes.

Obviously, A satisfies the conditions of Theorem 3.4, following we do experiments to illustrate the
efficiency of results. For simplicity, The iterative scheme (1.4) is written as A1 (stationary iterative
method) given in [37], the scheme (3.4) is written as A2 (SOR forward iterative method), the
scheme (3.5) is written as A3 (SOR backward iterative method) respectively. These four algorithms
were coded in Matlab, and all computations were performed on a DESKTOP-GBSME13 (Intel(R)
Core(TM) i5-8250U, CPU 1.80 GHz, RAM 8.00 GB ) with Matlab R2020a.

The stopping criterion is defined as

RE =
||xk+1 − xk||2

max{1, ||xk||2}
≤ 10−6.

where xk+1 is the k + 1−th step’s iterative value, xk is the k−th step’s iterative value.
Numerical results compared are presented in Table 1. In particular, we report in Figure 1 the change

of RE of A1–A3, when q = 1 with the iteration number increasing, where k is the convergent steps.
From Table 1, we observe that SOR iterative method generally has much less iteration number than

stationary iterative method at the same accuracy, when n = 8, n = 16, n = 32, n = 64, and SOR iterative
method is basically stable as the number n increasing. Thus, SOR iterative method is generally superior
to stationary iterative method in terms of iteration number and computation times.

Figure 1 shows that RE generated by SOR iterative method quickly converges to 0 with the interval
number increasing when q = 1.

Table 1. Performance of A1–A3 with different n.

n Algorithm k RE times(s)

8 A1 3044 9.9089e−07 0.746
A2 441 9.8110e−07 0.078
A3 276 9.7385e−07 0.056

16 A1 1534 9.9581e−07 0.134
A2 404 9.9714e−07 0.072
A3 321 9.7366e−07 0.058

32 A1 927 9.9549e−07 0.178
A2 309 9.8860e−07 0.054
A3 293 9.9925e−07 0.050

64 A1 884 9.9495e−07 0.153
A2 327 9.8474e−07 0.054
A3 325 9.9430e−07 0.055
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Figure 1. When n = 64, q = 1 the change of RE of A1–A3 with the iteration number
increasing.

Example 2. Consider the linear system Ax = b with the matrix A = In − L − U, and b = ones(n, 1),
where n is the size of A, L is the lower triangular matrices with diagonal entries zero, secondary
diagonal entries is -0.25 and others entries are 0.25, and U is the upper triangular matrices with diagonal
entries zero and others entries are 0.25.

Obviously, A satisfies the conditions of Theorems 3.1 and 3.2, so we do experiments to illustrate
the efficiency of results. For simplicity, The iterative scheme (1.3) is written as A21 (relaxed stationary
iterative method) given in [37], the scheme (3.1) is written as A22 (relaxed SOR forward iterative
method), the scheme (3.2) is written as A23 (relaxed SOR backward iterative method) respectively.
These four algorithms were coded in Matlab, and all computations were performed on a DESKTOP-
GBSME13 (Intel(R) Core(TM) i5-8250U, CPU 1.80 GHz, RAM 8.00 GB ) with Matlab R2020a.

The stopping criterion is defined as

RE =
||xk+1 − xk||2

max{1, ||xk||2}
=< 10−6.

where xk+1 is the k + 1−th step’s iterative value, xk is the k−th step’s iterative value.

Numerical results compared are presented in Table 2. In particular, we report in Figure 2 the change
of RE of A1–A3, when n=100 with the iteration number increasing.

From Table 2, we observe that SOR iterative method generally has much less iteration number than
relaxed stationary iterative method at the same accuracy, when the matrices dimension n = 100, n =

200 and n = 500. Thus, relaxed SOR iterative method is generally superior to relaxed stationary
iterative method in terms of iteration number and computation times.

Figure 2 shows that RE generated by relaxed SOR iterative method quickly converges to 0 with the
iteration number increasing when n = 100.
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Table 2. Performance of A1–A3 with different n.

Algorithm n RE k times(s)

A21 100 9.9801e−07 2940 3.458
200 9.9878e−07 5529 17.284
500 9.9983e−07 12565 378.391

A22 100 9.9650e−07 577 0.462
200 9.96795e−07 1325 2.268
500 9.9902e−07 5789 56.365

A23 100 9.8396e−07 581 0.484
200 9.9962e−07 1302 2.278
500 9.9860e−07 5782 57.126
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Figure 2. When n = 100 the change of RE of A1–A3 with the iteration number increasing.

5. Conclusions

The strong P-regular splitting firstly has been defined for non-Hermitian positive (semi-) definite
linear systems, and the spectral radius of the iteration matrix obtained by strong P-regular splitting for
the non-Hermitian positive (semi-) definite matrix has been analyzed in this paper, and we have
studied the convergence of strong P-regular splitting methods for the solution of non-Hermitian
positive definite linear systems. Some of our results can be regarded as generalizations of analogous
results for the Hermitian positive definite case. As an application of our theory, we obtain new
convergence conditions for SOR-like methods in the non-Hermitian case.
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