Research article Special Issues

A numerically stable high-order Chebyshev-Halley type multipoint iterative method for calculating matrix sign function

  • Received: 07 January 2023 Revised: 23 February 2023 Accepted: 09 March 2023 Published: 27 March 2023
  • MSC : 65B99, 65H05

  • A new eighth-order Chebyshev-Halley type iteration is proposed for solving nonlinear equations and matrix sign function. Basins of attraction show that several special cases of the new method are globally convergent. It is analytically proven that the new method is asymptotically stable and the new method has the order of convergence eight as well. The effectiveness of the theoretical results are illustrated by numerical experiments. In numerical experiments, the new method is applied to a random matrix, Wilson matrix and continuous-time algebraic Riccati equation. Numerical results show that, compared with some well-known methods, the new method achieves the accuracy requirement in the minimum computing time and the minimum number of iterations.

    Citation: Xiaofeng Wang, Ying Cao. A numerically stable high-order Chebyshev-Halley type multipoint iterative method for calculating matrix sign function[J]. AIMS Mathematics, 2023, 8(5): 12456-12471. doi: 10.3934/math.2023625

    Related Papers:

  • A new eighth-order Chebyshev-Halley type iteration is proposed for solving nonlinear equations and matrix sign function. Basins of attraction show that several special cases of the new method are globally convergent. It is analytically proven that the new method is asymptotically stable and the new method has the order of convergence eight as well. The effectiveness of the theoretical results are illustrated by numerical experiments. In numerical experiments, the new method is applied to a random matrix, Wilson matrix and continuous-time algebraic Riccati equation. Numerical results show that, compared with some well-known methods, the new method achieves the accuracy requirement in the minimum computing time and the minimum number of iterations.



    加载中


    [1] M. Hernández, M. Salanova, A family of Chebyshev-Halley type methods, Int. J. Comput. Math., 47 (1993), 59–63. http://dx.doi.org/10.1080/00207169308804162 doi: 10.1080/00207169308804162
    [2] J. Gutiérrez, M. Hernández, A family of Chebyshev-Halley type methods in Banach spaces, Bull. Austral. Math. Soc., 55 (1997), 113–130. http://dx.doi.org/10.1017/S0004972700030586 doi: 10.1017/S0004972700030586
    [3] N. Osada, Chebyshev-Halley methods for analytic functions, J. Comput. Appl. Math., 216 (2008), 585–599. http://dx.doi.org/10.1016/j.cam.2007.06.020 doi: 10.1016/j.cam.2007.06.020
    [4] Y. Kim, R. Behl, S. Motsa, Higher-order efficient class of Chebyshev-Halley type methods, Appl. Math. Comput., 273 (2016), 1148–1159. http://dx.doi.org/10.1016/j.amc.2015.09.013 doi: 10.1016/j.amc.2015.09.013
    [5] S. Ivanov, Unified convergence analysis of Chebyshev-Halley methods for multiple polynomial zeros, Mathematics, 10 (2022), 135. http://dx.doi.org/10.3390/math10010135 doi: 10.3390/math10010135
    [6] Z. Bai, J. Demmel, Using the matrix sign function to compute invariant subspaces, SIAM J. Matrix Anal. Appl., 19 (1998), 205–225. http://dx.doi.org/10.1137/S0895479896297719 doi: 10.1137/S0895479896297719
    [7] R. Byers, C. He, V. Mehrmann, The matrix sign function method and the computation of invariant subspaces, SIAM J. Matrix Anal. Appl., 18 (1997), 615–632. http://dx.doi.org/10.1137/S0895479894277454 doi: 10.1137/S0895479894277454
    [8] C. Kenney, A. Laub, P. Papadopoulos, Matrix-sign algorithms for Riccati equations, IMA J. Math. Control I., 9 (1992), 331–344. http://dx.doi.org/10.1093/imamci/9.4.331 doi: 10.1093/imamci/9.4.331
    [9] N. Higham, Functions of matrices: theory and computation, Philadelphia: Society for Industrial and Applied Mathematics, 2008.
    [10] A. Norris, A. Shuvalov, A. Kutsenko, The matrix sign function for solving surface wave problems in homogeneous and laterally periodic elastic half-spaces, Wave Motion, 50 (2013), 1239–1250. http://dx.doi.org/10.1016/j.wavemoti.2013.03.010 doi: 10.1016/j.wavemoti.2013.03.010
    [11] J. van den Eshof, A. Frommer, T. Lippert, K. Schilling, H. van der Vorst, Numerical methods for the QCD overlap operator. I. Sign-function and error bounds, Comput. Phys. Commun., 146 (2002), 203–224. http://dx.doi.org/10.1016/S0010-4655(02)00455-1 doi: 10.1016/S0010-4655(02)00455-1
    [12] P. Benner, E. Quintana-Ortí, Solving stable generalized Lyapunov equations with the matrix sign function, Numerical Algorithms, 20 (1999), 75–100. http://dx.doi.org/10.1023/A:1019191431273 doi: 10.1023/A:1019191431273
    [13] F. Soleymani, P. Stanimirović, S. Shateyi, F. Khaksar Haghani, Approximating the matrix sign function using a novel iterative method, Abst. Appl. Anal., 2014 (2014), 105301. http://dx.doi.org/10.1155/2014/105301 doi: 10.1155/2014/105301
    [14] A. Soheili, F. Toutounian, F. Soleymani, A fast convergent numerical method for matrix sign function with application in SDEs, J. Comput. Appl. Math., 282 (2015), 167–178. http://dx.doi.org/10.1016/j.cam.2014.12.041 doi: 10.1016/j.cam.2014.12.041
    [15] A. Cordero, F. Soleymani, J. Torregrosa, M. Zaka Ullah, Numerically stable improved Chebyshev-Halley type schemes for matrix sign function, J. Comput. Appl. Math., 318 (2017), 189–198. http://dx.doi.org/10.1016/j.cam.2016.10.025 doi: 10.1016/j.cam.2016.10.025
    [16] X. Wang, W. Li, Stability analysis of simple root seeker for nonlinear equation, Axioms, 12 (2023), 215. http://dx.doi.org/10.3390/axioms12020215 doi: 10.3390/axioms12020215
    [17] X. Wang, X. Chen, Derivative-free Kurchatov-type accelerating iterative method for solving nonlinear systems: dynamics and applications, Fractal Fract., 6 (2022), 59. http://dx.doi.org/10.3390/fractalfract6020059 doi: 10.3390/fractalfract6020059
    [18] D. Jung, C. Chun, X. Wang, Construction of stable and globally convergent schemes for the matrix sign function, Linear Algebra Appl., 580 (2019), 14–36. http://dx.doi.org/10.1016/j.laa.2019.06.019 doi: 10.1016/j.laa.2019.06.019
    [19] J. Roberts, Linear model reduction and solution of the algebraic Riccati equation by use of the sign function, Int. J. Control, 32 (1980), 677–687. http://dx.doi.org/10.1080/00207178008922881 doi: 10.1080/00207178008922881
    [20] L. Shieh, Y. Tsay, C. Wang, Matrix sector functions and their applications to systems theory, IEE Proceedings D, 131 (1984), 171–181. http://dx.doi.org/10.1049/ip-d.1984.0029 doi: 10.1049/ip-d.1984.0029
    [21] B. Iannazzo, Numerical solution of certain nonlinear matrix equations, Ph. D. Thesis, Università di Pisa, 2007.
    [22] C. Kenney, A. Laub, Rational iterative methods for the matrix sign function, SIAM Matrix Anal. Appl., 12 (1991), 273–291. http://dx.doi.org/10.1137/0612020 doi: 10.1137/0612020
    [23] M. Misrikhanov, V. Ryabchenko, Matrix sign function in the problems of analysis and design of the linear systems, Autom. Remote Control, 69 (2008), 198–222. http://dx.doi.org/10.1134/S0005117908020033 doi: 10.1134/S0005117908020033
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1134) PDF downloads(46) Cited by(6)

Article outline

Figures and Tables

Figures(6)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog