Research article Special Issues

Controllability of fractional stochastic evolution inclusion via Hilfer derivative of fixed point theory

  • Received: 09 April 2023 Revised: 29 May 2023 Accepted: 05 June 2023 Published: 14 June 2023
  • MSC : 34A07, 34A08, 60G22

  • In this study, we use the Hilfer derivative to analyze the approximate controllability of fractional stochastic evolution inclusions (FSEIs) with nonlocal conditions. By assuming that the corresponding linear system is approximately controllable, we obtain a novel set of adequate requirements for the approximate controllability of nonlinear FSEIs in meticulous detail. The fixed-point theorem for multi-valued operators and fractional calculus are used to achieve the results. Finally, we use several instances to demonstrate our findings.

    Citation: Abdelkader Moumen, Ammar Alsinai, Ramsha Shafqat, Nafisa A. Albasheir, Mohammed Alhagyan, Ameni Gargouri, Mohammed M. A. Almazah. Controllability of fractional stochastic evolution inclusion via Hilfer derivative of fixed point theory[J]. AIMS Mathematics, 2023, 8(9): 19892-19912. doi: 10.3934/math.20231014

    Related Papers:

  • In this study, we use the Hilfer derivative to analyze the approximate controllability of fractional stochastic evolution inclusions (FSEIs) with nonlocal conditions. By assuming that the corresponding linear system is approximately controllable, we obtain a novel set of adequate requirements for the approximate controllability of nonlinear FSEIs in meticulous detail. The fixed-point theorem for multi-valued operators and fractional calculus are used to achieve the results. Finally, we use several instances to demonstrate our findings.



    加载中


    [1] Y. K. Chang, J. J. Nieto, W. S. Li, Controllability of semilinear differential systems with nonlocal initial conditions in Banach spaces, J. Optim. Theory Appl., 142 (2009), 267–273. https://doi.org/10.1007/s10957-009-9535-2 doi: 10.1007/s10957-009-9535-2
    [2] L. Górniewicz, S. K. Ntouyas, D. O'Regan, Existence and controllability results for first-and second-order functional semilinear differential inclusions with nonlocal conditions, Numer. Funct. Anal. Optim., 28 (2007), 53–82. https://doi.org/10.1080/01630560600883093 doi: 10.1080/01630560600883093
    [3] L. Górniewicz, S. K. Ntouyas, D. O'Regan, Controllability results for first and second order evolution inclusions with nonlocal conditions, Ann. Pol. Math., 89 (2007), 65–101. https://doi.org/10.4064/ap89-1-5 doi: 10.4064/ap89-1-5
    [4] N. U. Ahmed, Nonlinear stochastic differential inclusions on balance space, Stoch. Anal. Appl., 12 (1994), 1–10. https://doi.org/10.1080/07362999408809334 doi: 10.1080/07362999408809334
    [5] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge: Cambridge university press, 2014.
    [6] X. Fu, Approximate controllability for neutral impulsive differential inclusions with nonlocal conditions, J. Dyn. Control Syst., 17 (2011), 359–386. https://doi.org/10.1007/s10883-011-9126-z doi: 10.1007/s10883-011-9126-z
    [7] N. I. Mahmudov, Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces, SIAM J. Control Optim., 42 (2003), 1604–1622. https://doi.org/10.1137/S0363012901391688 doi: 10.1137/S0363012901391688
    [8] P. Muthukumar, C. Rajivganthi, Approximate controllability of impulsive neutral stochastic functional differential system with state-dependent delay in Hilbert spaces, J. Control Theory Appl., 11 (2013), 351–358. https://doi.org/10.1007/s11768-013-2061-7 doi: 10.1007/s11768-013-2061-7
    [9] R. P. Agarwal, B. de Andrade, G. Siracusa, On fractional integro-differential equations with state-dependent delay, Comput. Math. Appl., 62 (2011), 1143–1149. https://doi.org/10.1016/j.camwa.2011.02.033 doi: 10.1016/j.camwa.2011.02.033
    [10] G. M. Mophou, G. M. N'Guérékata, Existence of mild solutions of some semilinear neutral fractional functional evolution equations with infinite delay, Appl. Math. Comput., 216 (2010), 61–69. https://doi.org/10.1016/j.amc.2009.12.062 doi: 10.1016/j.amc.2009.12.062
    [11] X. B. Shu, Y. Lai, Y. Chen, The existence of mild solutions for impulsive fractional partial differential equations, Nonlinear Anal. Theory Method. Appl., 74 (2011), 2003–2011. https://doi.org/10.1016/j.na.2010.11.007 doi: 10.1016/j.na.2010.11.007
    [12] J. Cui, L. Yan, Existence result for fractional neutral stochastic integro-differential equations with infinite delay, J. Phys. A Math. Theor., 44 (2011), 335201. https://doi.org/10.1088/1751-8113/44/33/335201 doi: 10.1088/1751-8113/44/33/335201
    [13] J. Wang, Y. Zhou, Existence and controllability results for fractional semilinear differential inclusions, Nonlinear Anal. Real World Appl., 12 (2011), 3642–3653. https://doi.org/10.1016/j.nonrwa.2011.06.021 doi: 10.1016/j.nonrwa.2011.06.021
    [14] Z. Yan, H. Zhang, Existence of solutions to impulsive fractional partial neutral stochastic integro-differential inclusions with state-dependent delay, Electron. J. Differ. Equ., 2013 (2013), 1–21.
    [15] S. Duan, J. Hu, Y. Li, Exact controllability of nonlinear stochastic impulsive evolution differential inclusions with infinite delay in Hilbert spaces, Int. J. Nonlinear Sci. Numer. Simul., 12 (2011), 23–33. https://doi.org/10.1515/ijnsns.2011.023 doi: 10.1515/ijnsns.2011.023
    [16] A. Debbouche, D. Baleanu, Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems, Comput. Math. Appl., 62 (2011), 1442–1450. https://doi.org/10.1016/j.camwa.2011.03.075 doi: 10.1016/j.camwa.2011.03.075
    [17] A. Debbouche, D. Baleanu, Exact null controllability for fractional nonlocal integrodifferential equations via implicit evolution system, J. Appl. Math., 2012 (2012), 931975. https://doi.org/10.1155/2012/931975 doi: 10.1155/2012/931975
    [18] A. Debbouche, D. F. Torres, Approximate controllability of fractional nonlocal delay semilinear systems in Hilbert spaces, Int. J. Control, 86 (2013), 1577–1585. https://doi.org/10.1080/00207179.2013.791927 doi: 10.1080/00207179.2013.791927
    [19] S. Kumar, N. Sukavanam, Approximate controllability of fractional order semilinear systems with bounded delay, J. Differ. Equ., 252 (2012), 6163–6174. https://doi.org/10.1016/j.jde.2012.02.014 doi: 10.1016/j.jde.2012.02.014
    [20] N. I. Mahmudov, Approximate controllability of fractional neutral evolution equations in Banach spaces, Abstr. Appl. Anal., 2013 (2013), 531894. https://doi.org/10.1155/2013/531894 doi: 10.1155/2013/531894
    [21] Z. Yan, Approximate controllability of fractional neutral integro-differential inclusions with state-dependent delay in Hilbert spaces, IMA J. Math. Control Informa., 30 (2013), 443–462. https://doi.org/10.1093/imamci/dns033 doi: 10.1093/imamci/dns033
    [22] H. M. Ahmed, M. M. El-Borai, W. El-Sayed, A. Elbadrawi, Null controllability of Hilfer fractional stochastic differential inclusions, Fractal Fract., 6 (2022), 721. https://doi.org/10.3390/fractalfract6120721 doi: 10.3390/fractalfract6120721
    [23] T. Sathiyaraj, J. Wang, P. Balasubramaniam, Controllability and optimal control for a class of time-delayed fractional stochastic integro-differential systems, Appl. Math. Optimi., 84 (2021), 2527–2554. https://doi.org/10.1007/s00245-020-09716-w doi: 10.1007/s00245-020-09716-w
    [24] X. Ma, X. B. Shu, J. Mao, Existence of almost periodic solutions for fractional impulsive neutral stochastic differential equations with infinite delay, Stoch. Dynam., 20 (2020), 2050003. https://doi.org/10.1142/S0219493720500033 doi: 10.1142/S0219493720500033
    [25] M. Liu, L. Chen, X. B. Shu, The existence of positive solutions for $\Phi$-Hilfer fractional differential equation with random impulses and boundary value conditions, Wave. Random Complex Media, 2022, 1–19. https://doi.org/10.1080/17455030.2023.2176695 doi: 10.1080/17455030.2023.2176695
    [26] L. Shu, X. B.Shu, J. Mao, Approximate controllability and existence of mild solutions for Riemann-Liouville fractional stochastic evolution equations with nonlocal conditions of order $1 < \alpha < 2$, Fract. Calc. Appl. Anal., 22 (2019), 1086–1112. https://doi.org/10.1515/fca-2019-0057 doi: 10.1515/fca-2019-0057
    [27] Y. Guo, X. B. Shu, F. Xu, C. Yang, HJB equation for optimal control system with random impulses, Optimization, 2022, 1–25. https://doi.org/10.1080/02331934.2022.2154607 doi: 10.1080/02331934.2022.2154607
    [28] L. Byszewski, V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal., 40 (1991), 11–19. https://doi.org/10.1080/00036819008839989 doi: 10.1080/00036819008839989
    [29] J. Alzabut, A. G. M. Selvam, R. A. El-Nabulsi, V. Dhakshinamoorthy, M. E. Samei, Asymptotic stability of nonlinear discrete fractional pantograph equations with non-local initial conditions, Symmetry, 13 (2021), 473. https://doi.org/10.3390/sym13030473 doi: 10.3390/sym13030473
    [30] K. Abuasbeh, R. Shafqat, Fractional Brownian motion for a system of fuzzy fractional stochastic differential equation, J. Math., 2022 (2022), 3559035. https://doi.org/10.1155/2022/3559035 doi: 10.1155/2022/3559035
    [31] K. Abuasbeh, R. Shafqat, A. Alsinai, M. Awadalla, Analysis of the mathematical modelling of COVID-19 by using mild solution with delay caputo operator, Symmetry, 15 (2023), 286. https://doi.org/10.3390/sym15020286 doi: 10.3390/sym15020286
    [32] K. Abuasbeh, R. Shafqat, A. Alsinai, M. Awadalla, Analysis of controllability of fractional functional random integroevolution equations with delay, Symmetry, 15 (2023), 290. https://doi.org/10.3390/sym15020290 doi: 10.3390/sym15020290
    [33] K. Abuasbeh, R. Shafqat, A. U. K. Niazi, M. Awadalla, Oscillatory behavior of solution for fractional order fuzzy neutral predator-prey system, AIMS Math., 7 (2022), 20383–20400. https://doi.org/10.3934/math.20221117 doi: 10.3934/math.20221117
    [34] A. Moumen, R. Shafqat, A. Alsinai, H. Boulares, M. Cancan, M. B. Jeelani, Analysis of fractional stochastic evolution equations by using Hilfer derivative of finite approximate controllability, AIMS Math., 7 (2023), 16094–16114. https://doi.org/10.3934/math.2023821 doi: 10.3934/math.2023821
    [35] A. Moumen, R. Shafqat, Z. Hammouch, A. U. K. Niazi, M. B. Jeelani, Stability results for fractional integral pantograph differential equations involving two Caputo operators, AIMS Math., 8 (2023), 6009–6025. https://doi.org/10.3934/math.2023303 doi: 10.3934/math.2023303
    [36] A. A. A. Ghafli, R. Shafqat, A. U. K. Niazi, K. Abuasbeh, M. Awadalla, Topological structure of solution sets of fractional control delay problem, Fractal Fract., 7 (2023), 59. https://doi.org/10.3390/fractalfract7010059 doi: 10.3390/fractalfract7010059
    [37] R. Sakthivel, R. Ganesh, S. M. Anthoni, Approximate controllability of fractional nonlinear differential inclusions, Appl. Math. Comput., 225 (2013), 708–717. https://doi.org/10.1016/j.amc.2013.09.068 doi: 10.1016/j.amc.2013.09.068
    [38] R. Sakthivel, S. Suganya, S. M. Anthoni, Approximate controllability of fractional stochastic evolution equations, Comput. Math. Appl., 63 (2012), 660–668. https://doi.org/10.1016/j.camwa.2011.11.024 doi: 10.1016/j.camwa.2011.11.024
    [39] Y. Ren, L. Hu, R. Sakthivel, Controllability of impulsive neutral stochastic functional differential inclusions with infinite delay, J. Comput. Appl. Math., 235 (2011), 2603–2614. https://doi.org/10.1016/j.cam.2010.10.051 doi: 10.1016/j.cam.2010.10.051
    [40] I. Podlubny, Fractional differential equations, Math. Sci. Eng., 1999,340.
    [41] F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Cont Dyn. S, 13 (2020), 709–722. https://doi.org/10.3934/dcdss.2020039 doi: 10.3934/dcdss.2020039
    [42] B. C. Dhage, Multi-valued mappings and fixed points Ⅱ, Tamkang J. Math., 37 (2006), 27–46. https://doi.org/10.5556/j.tkjm.37.2006.177 doi: 10.5556/j.tkjm.37.2006.177
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1507) PDF downloads(128) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog