Research article

The study of fractional-order convection-reaction-diffusion equation via an Elzake Atangana-Baleanu operator

  • Received: 03 May 2022 Revised: 25 July 2022 Accepted: 31 July 2022 Published: 08 August 2022
  • MSC : 33B15, 34A34, 35A20, 35A22, 44A10

  • The major goal of this research is to use a new integral transform approach to obtain the exact solution to the time-fractional convection-reaction-diffusion equations (CRDEs). The proposed method is a combination of the Elzaki transform and the homotopy perturbation method. He's polynomial is used to tackle the nonlinearity which arise in our considered problems.Three test examples are considered to show the accuracy of the proposed scheme. In order to find satisfactory approximations to the offered problems, this work takes into account a sophisticated methodology and fractional operators in this context. In order to achieve better approximations after a limited number of iterations, we first construct the Elzaki transforms of the Caputo fractional derivative (CFD) and Atangana-Baleanu fractional derivative (ABFD) and implement them for CRDEs. It has been found that the proposed method's solution converges at the desired rate towards the accurate solution. We give some graphical representations of the accurate and analytical results, which are in excellent agreement with one another, to demonstrate the validity of the suggested methodology. For validity of the present technique, the convergence of the fractional solutions towards integer order solution is investigated. The proposed method is found to be very efficient, simple, and suitable to other nonlinear problem raised in science and engineering.

    Citation: Muhammed Naeem, Noufe H. Aljahdaly, Rasool Shah, Wajaree Weera. The study of fractional-order convection-reaction-diffusion equation via an Elzake Atangana-Baleanu operator[J]. AIMS Mathematics, 2022, 7(10): 18080-18098. doi: 10.3934/math.2022995

    Related Papers:

  • The major goal of this research is to use a new integral transform approach to obtain the exact solution to the time-fractional convection-reaction-diffusion equations (CRDEs). The proposed method is a combination of the Elzaki transform and the homotopy perturbation method. He's polynomial is used to tackle the nonlinearity which arise in our considered problems.Three test examples are considered to show the accuracy of the proposed scheme. In order to find satisfactory approximations to the offered problems, this work takes into account a sophisticated methodology and fractional operators in this context. In order to achieve better approximations after a limited number of iterations, we first construct the Elzaki transforms of the Caputo fractional derivative (CFD) and Atangana-Baleanu fractional derivative (ABFD) and implement them for CRDEs. It has been found that the proposed method's solution converges at the desired rate towards the accurate solution. We give some graphical representations of the accurate and analytical results, which are in excellent agreement with one another, to demonstrate the validity of the suggested methodology. For validity of the present technique, the convergence of the fractional solutions towards integer order solution is investigated. The proposed method is found to be very efficient, simple, and suitable to other nonlinear problem raised in science and engineering.



    加载中


    [1] J. H. He, A tutorial review on fractal spacetime and fractional calculus, Int. J. Theor. Phys., 53 (2014), 3698–3718. https://doi.org/10.1007/s10773-014-2123-8 doi: 10.1007/s10773-014-2123-8
    [2] F. J. Liu, H. Y. Liu, Z. B. Li, J. H. He, A delayed fractional model for Cocoon heat-proof property, Therm. Sci., 21 (2017), 1867–1871. https://doi.org/10.2298/TSCI160415101L doi: 10.2298/TSCI160415101L
    [3] J. H. He, Fractal calculus and its geometrical explanation, Res. Phys., 10 (2018), 272–276. https://doi.org/10.1016/j.rinp.2018.06.011 doi: 10.1016/j.rinp.2018.06.011
    [4] A. Prakash, P. Veeresha, D. G. Prakasha, M. Goyal, A new efficient technique for solving fractional coupled Navier-Stokes equations using q-homotopy analysis transform method, Pramana, 93 (2019), 6. https://doi.org/10.1007/s12043-019-1763-x doi: 10.1007/s12043-019-1763-x
    [5] V. E. Tarasov, Fractional vector calculus and fractional Maxwell's equations. Ann. Phys., 323 (2008), 2756–2778. https://doi.org/10.1016/j.aop.2008.04.005
    [6] M. Mirzazadeh, A novel approach for solving fractional Fisher equation using differential transform method, Pramana, 86 (2016), 957–963. https://doi.org/10.1007/s12043-015-1117-2 doi: 10.1007/s12043-015-1117-2
    [7] K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194
    [8] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: John Wiley and Sons, 1993.
    [9] F. Mainardi, Fractional calculus: Theory and applications, Mathematics, 6 (2018), 145. https://doi.org/10.3390/math6090145 doi: 10.3390/math6090145
    [10] S. G.Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, USA: Gordon and breach science publishers, 1993.
    [11] R. W. Ibrahim, Fractional complex transforms for fractional differential equations, Adv. Differ. Equ., 2012 (2012), 192. https://doi.org/10.1186/1687-1847-2012-192 doi: 10.1186/1687-1847-2012-192
    [12] R. Shah, H. Khan, D. Baleanu, Fractional Whitham-Broer-Kaup equations within modified analytical approaches, Axioms, 8 (2019), 125. https://doi.org/10.3390/axioms8040125 doi: 10.3390/axioms8040125
    [13] H. Khan, U. Farooq, D. Baleanu, P. Kumam, M. Arif, Analytical solutions of (2+time fractional order) dimensional physical models, using modified decomposition method, Appl. Sci., 10 (2020), 122. https://doi.org/10.3390/app10010122 doi: 10.3390/app10010122
    [14] V. Vijayakumar, C. Ravichandran, K. S. Nisar, K. Kucche, New discussion on approximate controllability results for fractional Sobolev type Volterra-Fredholmintegro-differential systems of order $1 < r < 2.$, Numer. Meth. Part. Differ. Equ., 2021. https://doi.org/10.1002/num.22772
    [15] F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, In: Fractals and fractional calculus in continuum mechanics, New York: Springer-Verlag, 1997. 291–348. https://doi.org/10.1007/978-3-7091-2664-6_7
    [16] Z. Odibat, S. Momani, The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics, Comput. Math. Appl., 58 (2009), 2199–2208. https://doi.org/10.1016/j.camwa.2009.03.009 doi: 10.1016/j.camwa.2009.03.009
    [17] P. V. Ramana, B. K. R. Prasad, Modified Adomian decomposition method for Van der Pol equations, Int. J. Non-Lin. Mech., 65 (2014), 121–132. https://doi.org/10.1016/j.ijnonlinmec.2014.03.006 doi: 10.1016/j.ijnonlinmec.2014.03.006
    [18] M. Merdan, A. Gokdogan, A. Yildirim, S. T. Mohyud-Din, Numerical simulation of fractional Fornberg-Whitham equation by differential transformation method, Abstr. Appl. Anal., 2012 (2012), 965367. https://doi.org/10.1155/2012/965367 doi: 10.1155/2012/965367
    [19] N. H. Aljahdaly, A. Akgul, R. Shah, I. Mahariq, J. Kafle, A comparative analysis of the fractional-order coupled Korteweg-De Vries equations with the Mittag-Leffler law, J. Math., 2022 (2022), 8876149. https://doi.org/10.1155/2022/8876149 doi: 10.1155/2022/8876149
    [20] Y. Qin, A. Khan, I. Ali, M. Al Qurashi, H. Khan, R. Shah, et al., An efficient analytical approach for the solution of certain fractional-order dynamical systems, Energies, 13 (2020), 2725. https://doi.org/10.3390/en13112725 doi: 10.3390/en13112725
    [21] A. Khalouta, A. Kadem, New analytical method for solving nonlinear time-fractional reaction-diffusion-convection problems, Rev. Colomb. Mat., 54 (2020), 1–11. https://doi.org/10.15446/recolma.v54n1.89771 doi: 10.15446/recolma.v54n1.89771
    [22] J. Zhang, X. D. Zhang, B. H, Yang, An approximation scheme for the time fractional convection-diffusion equation, Appl. Math. Comput., 335 (2018), 305–312. https://doi.org/10.1016/j.amc.2018.04.019 doi: 10.1016/j.amc.2018.04.019
    [23] M. K. Alaoui, R. Fayyaz, A. Khan, M. S. Abdo, Analytical investigation of Noyes-Field model for time-fractional Belousov-Zhabotinsky reaction, Complexity, 2021 (2021), 3248376. https://doi.org/10.1155/2021/3248376 doi: 10.1155/2021/3248376
    [24] S. Toprakseven, A weak Galerkin finite element method for time fractional reaction-diffusion-convection problems with variable coefficients, Appl. Numer. Math., 168 (2021), 1–12. https://doi.org/10.1016/j.apnum.2021.05.021 doi: 10.1016/j.apnum.2021.05.021
    [25] M. Areshi, A. M. Zidan, R. Shah, K. Nonlaopon, A modified techniques of fractional-order Cauchy-reaction diffusion equation via Shehu transform, J. Funct. Space., 2021 (2021), 5726822. https://doi.org/10.1155/2021/5726822 doi: 10.1155/2021/5726822
    [26] M. H. Heydari, A. Atangana, A numerical method for nonlinear fractional reaction-advection-diffusion equation with piecewise fractional derivative, Math. Sci., 2022. https://doi.org/10.1007/s40096-021-00451-z
    [27] M. Hosseininia, M. H. Heydari, F. M. M. Ghaini, Z. Avazzadeh, A meshless technique based on the moving least squares shape functions for nonlinear fractal-fractional advection-diffusion equation, Eng. Anal. Bound. Elem., 127 (2021), 8–17. https://doi.org/10.1016/j.enganabound.2021.03.003 doi: 10.1016/j.enganabound.2021.03.003
    [28] A. Hamdi, Identification of point sources in two-dimensional advection-diffusion-reaction equation: application to pollution sources in a river. Stationary case, Inverse Probl. Sci. Eng., 15 (2007), 855–870. https://doi.org/10.1080/17415970601162198 doi: 10.1080/17415970601162198
    [29] G. Deolmi, F. Marcuzzi, A parabolic inverse convection-diffusion-reaction problem solved using space-time localization and adaptivity, Appl. Math. Comput., 219 (2013), 8435–8454. https://doi.org/10.1016/j.amc.2013.02.040 doi: 10.1016/j.amc.2013.02.040
    [30] M. Rostamian, A. Shahrezaee, A meshless method to the numerical solution of an inverse reaction-diffusion-convection problem, Int. J. Comput. Math., 94 (2016), 597–619. https://doi.org/10.1080/00207160.2015.1119816 doi: 10.1080/00207160.2015.1119816
    [31] T. Botmart, R. P. Agarwal, M. Naeem, A. Khan, R. Shah, On the solution of fractional modified Boussinesq and approximate long wave equations with non-singular kernel operators, AIMS Mathematics, 7 (2022), 12483–12513. https://doi.org/10.3934/math.2022693 doi: 10.3934/math.2022693
    [32] M. K. Alaoui, K. Nonlaopon, A. M. Zidan, A. Khan, R. Shah, Analytical investigation of fractional-order Cahn-Hilliard and Gardner equations using two novel techniques, Mathematics, 10 (2022), 1643. https://doi.org/10.3390/math10101643 doi: 10.3390/math10101643
    [33] N. A. Shah, Y. S. Hamed, K. M. Abualnaja, J. Chung, R. Shah, A. Khan, A comparative analysis of fractional-order Kaup-Kupershmidt equation within different operators, Symmetry, 14 (2022), 986. https://doi.org/10.3390/sym14050986 doi: 10.3390/sym14050986
    [34] T. M. Elzaki, The new integral transform "Elzaki transform", Glob. J. Pure Appl. Math. 7 (2011), 57–64.
    [35] K. Nonlaopon, A. Alsharif, A. M. Zidan, A. Khan, Y. S. Hamed, R. Shah, Numerical investigation of fractional-order Swift-Hohenberg equations via a novel transform, Symmetry, 13 (2021), 1263. https://doi.org/10.3390/sym13071263 doi: 10.3390/sym13071263
    [36] R. Shah, H. Khan, D. Baleanu, P. Kumam, M. Arif, The analytical investigation of time-fractional multi-dimensional Navier-Stokes equation, Alex. Eng. J., 59 (2020), 2941–2956. https://doi.org/10.1016/j.aej.2020.03.029 doi: 10.1016/j.aej.2020.03.029
    [37] H. Kim, The time shifting theorem and the convolution for Elzaki transform, Int. J. Pure Appl. Math., 87 (2013), 261–271. https://doi.org/10.12732/ijpam.v87i2.6 doi: 10.12732/ijpam.v87i2.6
    [38] A. K. H. Sedeeg, A coupling Elzaki transform and homotopy perturbation method for solving nonlinear fractional heat-like equations, Am. J. Math. Comput. Model., 1 (2016), 15–20.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1940) PDF downloads(127) Cited by(1)

Article outline

Figures and Tables

Figures(3)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog