Let $ N $ be a left $ R $-module with the endomorphism ring $ S = \text{End}(_{R}N) $. Given two cardinal numbers $ \alpha $ and $ \beta $ and a matrix $ A\in S^{\beta\times\alpha} $, $ N $ is called flat relative to $ A $ in case, for each $ x\in l_{N^{(\beta)}}(A) = \{u\in N^{(\beta)} \mid uA = 0\} $, there are a positive integer $ k $, $ y\in N^{k} $ and a $ k\times \beta $ row-finite matrix $ C $ over $ S $ such that $ CA = 0 $ and $ x = yC $. It is shown that $ N_{S} $ is flat relative to a matrix $ A $ if and only if $ l_{N^{(\beta)}}(A) $ is generated by $ N $. $ S $ is called left coherent relative to $ A $ if Ker$ (_{S}S^{(\beta)}\to _{S}S^{(\beta)}A) $ is finitely generated. It is shown that $ S $ is left coherent relative to $ A $ if and only if Hom$ _{R}(N, l_{N^{n}}(A)) $ is a finitely generated left $ S $-module if and only if $ l_{N^{n}}(A) $ has an add$ (N) $-precover (add$ (N) $ denotes the category of all direct summands of finite direct sums of copies of $ _{R}N $). Regarding applications, new necessary and sufficient conditions for epic (monic, having the unique mapping property) add$ (N) $-precovers of $ l_{N^{(\beta)}}(A) $ are investigated. Also, some new characterizations of left $ n $-semihereditary rings and von Neumann regular rings are given.
Citation: Yuedi Zeng. Flat modules and coherent endomorphism rings relative to some matrices[J]. AIMS Mathematics, 2023, 8(6): 14111-14131. doi: 10.3934/math.2023721
Let $ N $ be a left $ R $-module with the endomorphism ring $ S = \text{End}(_{R}N) $. Given two cardinal numbers $ \alpha $ and $ \beta $ and a matrix $ A\in S^{\beta\times\alpha} $, $ N $ is called flat relative to $ A $ in case, for each $ x\in l_{N^{(\beta)}}(A) = \{u\in N^{(\beta)} \mid uA = 0\} $, there are a positive integer $ k $, $ y\in N^{k} $ and a $ k\times \beta $ row-finite matrix $ C $ over $ S $ such that $ CA = 0 $ and $ x = yC $. It is shown that $ N_{S} $ is flat relative to a matrix $ A $ if and only if $ l_{N^{(\beta)}}(A) $ is generated by $ N $. $ S $ is called left coherent relative to $ A $ if Ker$ (_{S}S^{(\beta)}\to _{S}S^{(\beta)}A) $ is finitely generated. It is shown that $ S $ is left coherent relative to $ A $ if and only if Hom$ _{R}(N, l_{N^{n}}(A)) $ is a finitely generated left $ S $-module if and only if $ l_{N^{n}}(A) $ has an add$ (N) $-precover (add$ (N) $ denotes the category of all direct summands of finite direct sums of copies of $ _{R}N $). Regarding applications, new necessary and sufficient conditions for epic (monic, having the unique mapping property) add$ (N) $-precovers of $ l_{N^{(\beta)}}(A) $ are investigated. Also, some new characterizations of left $ n $-semihereditary rings and von Neumann regular rings are given.
[1] | L. X. Mao, $(m, n)$-injective and $(m, n)$-coherent endomorphism rings of modules, J. Algebra Appl., 19 (2020), 993–1008. http://doi.org/10.1142/S0219498820500486 doi: 10.1142/S0219498820500486 |
[2] | L. Angeleri-H$\ddot{u}$gel, Endocoherent modules, Pac. J. Math., 212 (2003), 1–11. http://doi.org/10.2140/pjm.2003.212.1 doi: 10.2140/pjm.2003.212.1 |
[3] | G. Azumaya, Finite splitness and finite projectivity, J. Algebra, 106 (1987), 114–134. http://dx.doi.org/10.1016/0021-8693(87)90024-X doi: 10.1016/0021-8693(87)90024-X |
[4] | N. Q. Ding, J. L. Chen, Relative coherence and preenvelopes, Manuscripta Math., 81 (1993), 243–262. http://doi.org/10.1007/BF02567857 doi: 10.1007/BF02567857 |
[5] | X. X. Zhang, J. L. Chen, Homological properties of modules characterized by matrices, J. Southeast Univ., 21 (2005), 239–243. |
[6] | X. X. Zhang, J. L. Chen, Properties of modules and rings relative to some matrices, Commun. Algebra, 36 (2008), 3682–3707. http://dx.doi.org/10.1080/00927870802157996 doi: 10.1080/00927870802157996 |
[7] | F. W. Anderson, K. R. Fuller, Rings and categries of modules, Springer Verlag, 1974. |
[8] | S. L. Zhu, On rings over which every flat left module is finitely projective, J. Algebra, 139 (1991), 311–321. http://doi.org/10.1016/0021-8693(91)90295-J doi: 10.1016/0021-8693(91)90295-J |
[9] | X. X. Zhang, J. L. Chen, J. Zhang, On $(m, n)$-injective modules and $(m, n)$-coherent rings, Algebra Colloq., 12 (2005), 149–160. https://doi.org/10.1142/S1005386705000143 doi: 10.1142/S1005386705000143 |
[10] | S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc., 97 (1960), 457–473. http://doi.org/10.2307/1993382 doi: 10.2307/1993382 |
[11] | V. Camillo, Coherence for polynomial rings, J. Algebra, 132 (1990), 72–76. http://doi.org/10.1016/0021-8693(90)90252-J doi: 10.1016/0021-8693(90)90252-J |
[12] | L. X. Mao, N. Q. Ding, On divisible and torsionfree modules, Commun. Algebra, 36 (2008), 708–731. http://doi.org/10.1080/00927870701724201 doi: 10.1080/00927870701724201 |
[13] | T. G. Clarke, On $\aleph$-projective modules, Ph. D. thesis, Kent State University, Kent, 1976. |
[14] | J. L. G. Pardo, J. M. Hern$\acute{a}$ndez, Coherence of endomorphism rings, Arch. Math., 48 (1987), 40–52. http://doi.org/10.1007/BF01196353 doi: 10.1007/BF01196353 |
[15] | S. Glaz, Commutative coherent rings, Springer Verlag, 1989. |
[16] | E. E. Enochs, Injective and flat covers, envelopes and resolvents, Isr. J. Math., 39 (1981), 189–209. http://doi.org/10.1007/BF02760849 doi: 10.1007/BF02760849 |
[17] | N. Q. Ding, On envelopes with the unique mapping property, Commun. Algebra, 24 (1995), 1459–1470. http://dx.doi.org/10.1080/00927879608825646 doi: 10.1080/00927879608825646 |
[18] | A. Shamsuddin, $n$-injective and $n$-flat modules, Commun. Algebra, 29 (2001), 2039–2050. http://doi.org/10.1081/AGB-100002166 doi: 10.1081/AGB-100002166 |
[19] | Z. M. Zhu, Z. S. Tan, On $n$-semihereditary rings, Sci. Math. Jpn., 62 (2005), 511–515. |
[20] | J. L. Garcia, M. Hernandez, P. L. Gomez Sanchez, Endomorphism rings and the category of finitely generated projective modules, Commun. Algebra, 28 (2000), 3837–3852. http://doi.org/10.1080/00927870008827061 doi: 10.1080/00927870008827061 |
[21] | A. Abyzov, R. Barati, P. V. Danchev, Rings close to periodic with applications to matrix, endomorphism and group rings, arXiv, 2023. https://doi.org/10.48550/arXiv.2301.07948 |
[22] | S. Breaz, T. Brzezi$\acute{n}$ski, The Baer-Kaplansky theorem for all abelian groups and modules, Bull. Math. Sci., 12 (2022), 2150005. https://doi.org/10.1142/S1664360721500053 doi: 10.1142/S1664360721500053 |
[23] | J. F. Carlson, Negative cohomology and the endomorphism ring of the trivial module, J. Pure Appl. Algebra, 226 (2022), 107046. https://doi.org/10.1016/j.jpaa.2022.107046 doi: 10.1016/j.jpaa.2022.107046 |
[24] | C. Fieker, T. Hofmann, S. P. Sanon, On the computation of the endomorphism rings of abelian surfaces, J. Number Theory, 229 (2021), 39–52. http://doi.org/10.1016/j.jnt.2021.04.024 doi: 10.1016/j.jnt.2021.04.024 |
[25] | F. Couchot, RD-flatness and RD-injectivity, Commun. Algebra, 34 (2006), 3675–3689. http://dx.doi.org/10.1080/00927870600860817 doi: 10.1080/00927870600860817 |
[26] | N. Q. Ding, Y. L. Li, L. X. Mao, J-coherent rings, J. Algebra Appl., 8 (2009), 139–155. http://dx.doi.org/10.1142/S0219498809003229 doi: 10.1142/S0219498809003229 |
[27] | A. Moradzadeh-Dehkordi, F. Couchot, RD-flatness and RD-injectivity of simple modules, J. Pure Appl. Algebra, 226 (2022), 107034. https://doi.org/10.1016/j.jpaa.2022.107034 doi: 10.1016/j.jpaa.2022.107034 |