Research article

On the generalized spectrum of bounded linear operators in Banach spaces

  • Received: 05 February 2023 Revised: 31 March 2023 Accepted: 05 April 2023 Published: 17 April 2023
  • MSC : 47A10, 47A55

  • Utilizing the stability characterizations of generalized inverses, we investigate the generalized resolvent of linear operators in Banach spaces. We first prove that the local analyticity of the generalized resolvent is equivalent to the continuity and the local boundedness of generalized inverse functions. We also prove that several properties of the classical spectrum remain true in the case of the generalized one. Finally, we elaborate on the reason why we use the generalized inverse rather than the Moore-Penrose inverse or the group inverse to define the generalized resolvent.

    Citation: Jue Feng, Xiaoli Li, Kaicheng Fu. On the generalized spectrum of bounded linear operators in Banach spaces[J]. AIMS Mathematics, 2023, 8(6): 14132-14141. doi: 10.3934/math.2023722

    Related Papers:

  • Utilizing the stability characterizations of generalized inverses, we investigate the generalized resolvent of linear operators in Banach spaces. We first prove that the local analyticity of the generalized resolvent is equivalent to the continuity and the local boundedness of generalized inverse functions. We also prove that several properties of the classical spectrum remain true in the case of the generalized one. Finally, we elaborate on the reason why we use the generalized inverse rather than the Moore-Penrose inverse or the group inverse to define the generalized resolvent.



    加载中


    [1] S. J. Chen, Y. Y. Zhao, L. P. Zhu, Q. L. Huang, Regular factorizations and group inverses of linear operators in Banach spaces, Linear Multilinear Algebra, 70 (2022), 1252–1270. http://dx.doi.org/10.1080/03081087.2020.1757604 doi: 10.1080/03081087.2020.1757604
    [2] M. A. Shubin, On holomorphic families of subspaces of a banach space, Integr. Equ. Oper. Theory, 2 (1979), 407–420. http://dx.doi.org/10.1007/BF01682677 doi: 10.1007/BF01682677
    [3] M. Mbekhta, R${\rm\acute{e}}$solvant g$ \rm \acute{e} $n$ \rm \acute{e} $ralis$ \rm \acute{e} $ et th$ \rm \acute{e} $orie spectrale, J. Oper. Theory, 21 (1989), 69–105.
    [4] M. Mbekhta, On the generalized resolvent in Banach spaces, J. Math. Anal. Appl., 189 (1995), 362–377. http://dx.doi.org/10.1006/jmaa.1995.1024 doi: 10.1006/jmaa.1995.1024
    [5] C. Badea, M. Mbekhta, Generalized inverses and the maximal radius of regularity of a Fredholm operator, Integr. Equ. Oper. Theory, 28 (1997), 133–146. http://dx.doi.org/10.1007/BF01191814 doi: 10.1007/BF01191814
    [6] C. Badea, M. Mbekhta, The stability radius of Fredholm linear pencils, J. Math. Anal. Appl., 260 (2001), 159–172. http://dx.doi.org/10.1006/jmaa.2000.7445 doi: 10.1006/jmaa.2000.7445
    [7] A. Hoefer, Reduction of generalized resolvents of linear operator function, Integr. Equ. Oper. Theory, 48 (2004), 479–496. http://dx.doi.org/10.1007/s00020-002-1194-8 doi: 10.1007/s00020-002-1194-8
    [8] Z. Fang, Existence of generalized resolvent of linear bounded operators on Banach space, Nanjing Univ. J. Math. Biquarterly, 22 (2005), 47–52.
    [9] H. F. Ma, H. Hudzik, Y. W. Wang, Z. F. Ma, The generalized regular points and narrow spectrum points of bounded linear operators on Hilbert spaces, Acta Math. Sin.-English Ser., 26 (2010), 2349–2354. http://dx.doi.org/10.1007/s10114-010-9329-3 doi: 10.1007/s10114-010-9329-3
    [10] Q. L. Huang, J. P. Ma, L. Wang, Existence results for generalized resolvents of closed linear operators in Banach spaces, Chin. Ann. Math., 32A (2011), 653–646.
    [11] Q. L. Huang, S. Y. Gao, On the generalized resolvent of linear pencils in Banach spaces, Anal. Theory Appl., 28 (2012), 146–155.
    [12] M. Berkani, S. Č. Živković-Zlatanović, Pseudo-B-Fredholm operators, poles of the resolvent and mean convergence in the Calkin algebra, Filomat, 33 (2019), 3351–3359.
    [13] M. Berkani, On the B-discrete spectrum, Filomat, 34 (2020), 2541–2547.
    [14] J. P. Ma, Complete rank theorem of advanced calculus and singularities of bounded linear operators, Front. Math. China., 3 (2008), 305–316. http://dx.doi.org/10.1007/s11464-008-0019-8 doi: 10.1007/s11464-008-0019-8
    [15] A. Ben-Israel, T. N. E. Greville, Generalized inverses: theory and applications, New York: Springer-Verlag, 2003. https://doi.org/10.1007/b97366
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(922) PDF downloads(52) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog