Research article Special Issues

Boosting task scheduling in IoT environments using an improved golden jackal optimization and artificial hummingbird algorithm

  • Received: 30 September 2023 Revised: 15 November 2023 Accepted: 22 November 2023 Published: 04 December 2023
  • MSC : 68M10, 68M11, 68M20, 90C29

  • Applications for the internet of things (IoT) have grown significantly in popularity in recent years, and this has caused a huge increase in the use of cloud services (CSs). In addition, cloud computing (CC) efficiently processes and stores generated application data, which is evident in the lengthened response times of sensitive applications. Moreover, CC bandwidth limitations and power consumption are still unresolved issues. In order to balance CC, fog computing (FC) has been developed. FC broadens its offering of CSs to target end users and edge devices. Due to its low processing capability, FC only handles light activities; jobs that require more time will be done via CC. This study presents an alternative task scheduling in an IoT environment based on improving the performance of the golden jackal optimization (GJO) using the artificial hummingbird algorithm (AHA). To test the effectiveness of the developed task scheduling technique named golden jackal artificial hummingbird (GJAH), we conducted a large number of experiments on two separate datasets with varying data sizing. The GJAH algorithm provides better performance than those competitive task scheduling methods. In particular, GJAH can schedule and carry out activities more effectively than other algorithms to reduce the makespan time and energy consumption in a cloud-fog computing environment.

    Citation: Ibrahim Attiya, Mohammed A. A. Al-qaness, Mohamed Abd Elaziz, Ahmad O. Aseeri. Boosting task scheduling in IoT environments using an improved golden jackal optimization and artificial hummingbird algorithm[J]. AIMS Mathematics, 2024, 9(1): 847-867. doi: 10.3934/math.2024043

    Related Papers:

  • Applications for the internet of things (IoT) have grown significantly in popularity in recent years, and this has caused a huge increase in the use of cloud services (CSs). In addition, cloud computing (CC) efficiently processes and stores generated application data, which is evident in the lengthened response times of sensitive applications. Moreover, CC bandwidth limitations and power consumption are still unresolved issues. In order to balance CC, fog computing (FC) has been developed. FC broadens its offering of CSs to target end users and edge devices. Due to its low processing capability, FC only handles light activities; jobs that require more time will be done via CC. This study presents an alternative task scheduling in an IoT environment based on improving the performance of the golden jackal optimization (GJO) using the artificial hummingbird algorithm (AHA). To test the effectiveness of the developed task scheduling technique named golden jackal artificial hummingbird (GJAH), we conducted a large number of experiments on two separate datasets with varying data sizing. The GJAH algorithm provides better performance than those competitive task scheduling methods. In particular, GJAH can schedule and carry out activities more effectively than other algorithms to reduce the makespan time and energy consumption in a cloud-fog computing environment.



    加载中


    [1] J. B. Hu, J. W. Huang, Z. Y. Li, J. X. Wang, T. He, A receiver-driven transport protocol with high link utilization using anti-ecn marking in data center networks, IEEE Trans. Netw. Serv. Manag., 20 (2022), 1898–1912. https://doi.org/10.1109/TNSM.2022.3218343 doi: 10.1109/TNSM.2022.3218343
    [2] J. Wang, Y. Liu, S. Y. Rao, X. Y. Zhou, J. B. Hu, A novel self-adaptive multi-strategy artificial bee colony algorithm for coverage optimization in wireless sensor networks, Ad Hoc Netw., 150 (2023), 103284. https://doi.org/10.1016/j.adhoc.2023.103284 doi: 10.1016/j.adhoc.2023.103284
    [3] H. Singh, S. Tyagi, P. Kumar, S. S. Gill, R. Buyya, Metaheuristics for scheduling of heterogeneous tasks in cloud computing environments: Analysis, performance evaluation, and future directions, Simul. Model. Pract. Theory, 111 (2021), 102353. https://doi.org/10.1016/j.simpat.2021.102353 doi: 10.1016/j.simpat.2021.102353
    [4] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility, Future Gener. Comp. Syst., 25 (2009), 599–616. https://doi.org/10.1016/j.future.2008.12.001 doi: 10.1016/j.future.2008.12.001
    [5] B. M. Nguyen, H. T. T. Binh, T. T. Anh, D. B. Son, Evolutionary algorithms to optimize task scheduling problem for the Iot based bag-of-tasks application in cloud-fog computing environment, Appl. Sci., 9 (2019), 1730. https://doi.org/10.3390/app9091730 doi: 10.3390/app9091730
    [6] M. A. Elaziz, I. Attiya, L. Abualigah, M. Iqbal, A. Ali, A. Al-Fuqaha, et al., Hybrid enhanced optimization-based intelligent task scheduling for sustainable edge computing, IEEE Trans. Consum. Electr., 2023, 1. https://doi.org/10.1109/TCE.2023.3321783 doi: 10.1109/TCE.2023.3321783
    [7] I. Attiya, M. A. Elaziz, L. Abualigah, T. N. Nguyen, A. A. A. El-Latif, An improved hybrid swarm intelligence for scheduling iot application tasks in the cloud, IEEE Trans. Ind. Inform., 18 (2022), 6264–6272. https://doi.org/10.1109/TII.2022.3148288 doi: 10.1109/TII.2022.3148288
    [8] M. R. Raju, S. K. Mothku, Delay and energy aware task scheduling mechanism for fog-enabled iot applications: A reinforcement learning approach, Comput. Netw., 224 (2023), 109603. https://doi.org/10.1016/j.comnet.2023.109603 doi: 10.1016/j.comnet.2023.109603
    [9] M. A. A. Al-qaness, A. A. Ewees, H. Fan, L. Abualigah, M. A. Elaziz, Boosted ANFIS model using augmented marine predator algorithm with mutation operators for wind power forecasting, Appl. Energy, 314 (2022), 118851. https://doi.org/10.1016/j.apenergy.2022.118851 doi: 10.1016/j.apenergy.2022.118851
    [10] T. Li, S. Fong, R. C. Millham, J. Fiaidhi, S. Mohammed, Fast incremental learning with swarm decision table and stochastic feature selection in an iot extreme automation environment, IT Prof., 21 (2019), 14–26. https://doi.org/10.1109/MITP.2019.2900016 doi: 10.1109/MITP.2019.2900016
    [11] M. A. A. Al-qaness, A. M. Helmi, A. Dahou, M. A. Elaziz, The applications of metaheuristics for human activity recognition and fall detection using wearable sensors: A comprehensive analysis, Biosensors, 12 (2022), 821. https://doi.org/10.3390/bios12100821 doi: 10.3390/bios12100821
    [12] M. A. Elaziz, M. A. A. Al-qaness, A. Dahou, R. A. Ibrahim, A. A. A. El-Latif, Intrusion detection approach for cloud and iot environments using deep learning and capuchin search algorithm, Adv. Eng. Softw., 176 (2023), 103402. https://doi.org/10.1016/j.advengsoft.2022.103402 doi: 10.1016/j.advengsoft.2022.103402
    [13] S. N. Ghorpade, M. Zennaro, B. S. Chaudhari, R. A. Saeed, H. Alhumyani, S. Abdel-Khalek, Enhanced differential crossover and quantum particle swarm optimization for iot applications, IEEE Access, 9 (2021), 93831–93846. https://doi.org/10.1109/ACCESS.2021.3093113 doi: 10.1109/ACCESS.2021.3093113
    [14] G. Agarwal, S. Gupta, R. Ahuja, A. K. Rai, Multiprocessor task scheduling using multi-objective hybrid genetic algorithm in fog-cloud computing, Knowl. Based Syst., 272 (2023), 110563. https://doi.org/10.1016/j.knosys.2023.110563 doi: 10.1016/j.knosys.2023.110563
    [15] W. B. Sun, J. Xie, X. Yang, L. Wang, W. X. Meng, Efficient computation offloading and resource allocation scheme for opportunistic access fog-cloud computing networks, IEEE Trans. Cogn. Commun. Netw., 9 (2023), 521–533. https://doi.org/10.1109/TCCN.2023.3234290 doi: 10.1109/TCCN.2023.3234290
    [16] B. Jana, M. Chakraborty, T.a Mandal, A task scheduling technique based on particle swarm optimization algorithm in cloud environment, In: Soft computing: Theories and applications, Singapore: Springer, 742 (2019), 525–536. https://doi.org/10.1007/978-981-13-0589-4_49
    [17] A. Pradhan, S. K. Bisoy, A. Das, A survey on PSO based meta-heuristic scheduling mechanism in cloud computing environment, J. King Saud Univ. Comput. Inform. Sci., 34 (2022), 4888–4901. https://doi.org/10.1016/j.jksuci.2021.01.003 doi: 10.1016/j.jksuci.2021.01.003
    [18] F. Al-Turjman, M. Z. Hasan, H. Al-Rizzo, Task scheduling in cloud-based survivability applications using swarm optimization in Iot, Trans. Emerg. Telecommun. Technol., 30 (2019), e3539. http://doi.org/10.1002/ett.3539 doi: 10.1002/ett.3539
    [19] A. M. S. Kumar, M. Venkatesan, Multi-objective task scheduling using hybrid genetic-ant colony optimization algorithm in cloud environment, Wireless Pers. Commun., 107 (2019), 1835–1848. http://doi.org/10.1007/s11277-019-06360-8 doi: 10.1007/s11277-019-06360-8
    [20] M. A. Elaziz, I. Attiya, An improved Henry gas solubility optimization algorithm for task scheduling in cloud computing, Artif. Intell. Rev., 54 (2021), 3599–3637. http://doi.org/10.1007/s10462-020-09933-3 doi: 10.1007/s10462-020-09933-3
    [21] A. Mohammadzadeh, M. Masdari, F. S. Gharehchopogh, Energy and cost-aware workflow scheduling in cloud computing data centers using a multi-objective optimization algorithm, J. Netw. Syst. Manag., 29 (2021), 31. http://doi.org/10.1007/s10922-021-09599-4 doi: 10.1007/s10922-021-09599-4
    [22] M. A. Elaziz, L. Abualigah, R. A. Ibrahim, I. Attiya, Iot workflow scheduling using intelligent arithmetic optimization algorithm in fog computing, Comput. Intel. Neurosc., 2021 (2021), 9114113. https://doi.org/10.1155/2021/9114113 doi: 10.1155/2021/9114113
    [23] N. Arivazhagan, K. Somasundaram, D. V. Babu, M. G. Nayagam, R. M. Bommi, G. B. Mohammad, et al., Cloud-internet of health things (IOHT) task scheduling using hybrid moth flame optimization with deep neural network algorithm for e healthcare systems, Sci. Program., 2022 (2022), 4100352. https://doi.org/10.1155/2022/4100352 doi: 10.1155/2022/4100352
    [24] B. B. Naik, D. Singh, A. B. Samaddar, Multi-objective virtual machine selection in cloud data centers using optimized scheduling, Wireless Pers. Commun., 116 (2021), 2501–2524. https://doi.org/10.1007/s11277-020-07807-z doi: 10.1007/s11277-020-07807-z
    [25] N. Arora, R. K. Banyal, Workflow scheduling using particle swarm optimization and gray wolf optimization algorithm in cloud computing, Concurr. Comput. Pract. Exper., 33 (2021), e6281. https://doi.org/10.1002/cpe.6281 doi: 10.1002/cpe.6281
    [26] S. Goyal, S. Bhushan, Y. Kumar, A. ul H. S. Rana, M. R. Bhutta, M. F. Ijaz, et al., An optimized framework for energy-resource allocation in a cloud environment based on the whale optimization algorithm, Sensors, 21 (2021), 1583. https://doi.org/10.3390/s21051583 doi: 10.3390/s21051583
    [27] D. Alsadie, TSMGWO: Optimizing task schedule using multi-objectives grey wolf optimizer for cloud data centers, IEEE Access, 9 (2021), 37707–37725. https://doi.org/10.1109/ACCESS.2021.3063723 doi: 10.1109/ACCESS.2021.3063723
    [28] W. Zhao, L. Wang, S. Mirjalili, Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications, Comput. Methods Appl. Mech. Eng., 388 (2022), 114194. https://doi.org/10.1016/j.cma.2021.114194 doi: 10.1016/j.cma.2021.114194
    [29] N. Chopra, M. M. Ansari, Golden jackal optimization: A novel nature-inspired optimizer for engineering applications, Expert Syst. Appl., 198 (2022), 116924. https://doi.org/10.1016/j.eswa.2022.116924 doi: 10.1016/j.eswa.2022.116924
    [30] I. Attiya, L. Abualigah, D. Elsadek, S. A. Chelloug, M. A. Elaziz, An intelligent chimp optimizer for scheduling of Iot application tasks in fog computing, Mathematics, 10 (2022), 1100. https://doi.org/10.3390/math10071100 doi: 10.3390/math10071100
    [31] I. Attiya, X. Zhang, X. Yang, TCSA: A dynamic job scheduling algorithm for computational grids, In: 2016 First IEEE international conference on computer communication and the internet (ICCCI), 2016,408–412. https://doi.org/10.1109/CCI.2016.7778954
    [32] Mahdi Azizi, Atomic orbital search: A novel metaheuristic algorithm, Appl. Math. Modell., 93 (2021), 657–683. https://doi.org/10.1016/j.apm.2020.12.021 doi: 10.1016/j.apm.2020.12.021
    [33] A. Faramarzi, M. Heidarinejad, S. Mirjalili, A. H. Gandomi, Marine predators algorithm: A nature-inspired metaheuristic, Expert Syst. Appl., 152 (2020), 113377. https://doi.org/10.1016/j.eswa.2020.113377 doi: 10.1016/j.eswa.2020.113377
    [34] L. Abualigah, A. Diabat, S. Mirjalili, M. A. Elaziz, A. H. Gandomi, The arithmetic optimization algorithm, Comput. Methods Appl. Mech. Engrg., 376 (2021), 113609. https://doi.org/10.1016/j.cma.2020.113609 doi: 10.1016/j.cma.2020.113609
    [35] I. Attiya, L. Abualigah, S. Alshathri, D. Elsadek, M. A. Elaziz, Dynamic jellyfish search algorithm based on simulated annealing and disruption operators for global optimization with applications to cloud task scheduling, Mathematics, 10 (2022), 1894. https://doi.org/10.3390/math10111894 doi: 10.3390/math10111894
    [36] M. S. Braik, Chameleon swarm algorithm: A bio-inspired optimizer for solving engineering design problems, Expert Syst. Appl., 174 (2021), 114685. https://doi.org/10.1016/j.eswa.2021.114685 doi: 10.1016/j.eswa.2021.114685
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1124) PDF downloads(72) Cited by(1)

Article outline

Figures and Tables

Figures(12)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog