This paper studies the problem of facility location in a hybrid uncertain environment with both randomness and fuzziness. We establish a data-driven two-stage fuzzy random mixed integer optimization model, by considering the uncertainty of transportation cost and customer demand. Given the complexity of the model, this paper based on particle swarm optimization (PSO), beetle antenna search algorithm (BAS) and interior point algorithm, a hybrid intelligent algorithm (HIA) is proposed to solve two-stage fuzzy random mixed integer optimization model, yielding the optimal facility location and maximal expected return of supply chain simultaneously. Finally, taking the supply chain of medical mask in Shanghai as an example, the influence of uncertainty on the location of processing factory was studied. We compare the HIA with hybrid PSO and hybrid genetic algorithm (GA), to validate the proposed algorithm based on the computational time and the convergence rate.
Citation: Zhimin Liu, Ripeng Huang, Songtao Shao. Data-driven two-stage fuzzy random mixed integer optimization model for facility location problems under uncertain environment[J]. AIMS Mathematics, 2022, 7(7): 13292-13312. doi: 10.3934/math.2022734
[1] | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283 |
[2] | Eze R. Nwaeze, Muhammad Adil Khan, Ali Ahmadian, Mohammad Nazir Ahmad, Ahmad Kamil Mahmood . Fractional inequalities of the Hermite–Hadamard type for m-polynomial convex and harmonically convex functions. AIMS Mathematics, 2021, 6(2): 1889-1904. doi: 10.3934/math.2021115 |
[3] | Wenbing Sun, Rui Xu . Some new Hermite-Hadamard type inequalities for generalized harmonically convex functions involving local fractional integrals. AIMS Mathematics, 2021, 6(10): 10679-10695. doi: 10.3934/math.2021620 |
[4] | Serap Özcan, Saad Ihsan Butt, Sanja Tipurić-Spužević, Bandar Bin Mohsin . Construction of new fractional inequalities via generalized n-fractional polynomial s-type convexity. AIMS Mathematics, 2024, 9(9): 23924-23944. doi: 10.3934/math.20241163 |
[5] | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392 |
[6] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[7] | Muhammad Bilal Khan, Omar Mutab Alsalami, Savin Treanțǎ, Tareq Saeed, Kamsing Nonlaopon . New class of convex interval-valued functions and Riemann Liouville fractional integral inequalities. AIMS Mathematics, 2022, 7(8): 15497-15519. doi: 10.3934/math.2022849 |
[8] | Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024 |
[9] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[10] | Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad . (m,n)-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates. AIMS Mathematics, 2021, 6(5): 4677-4690. doi: 10.3934/math.2021275 |
This paper studies the problem of facility location in a hybrid uncertain environment with both randomness and fuzziness. We establish a data-driven two-stage fuzzy random mixed integer optimization model, by considering the uncertainty of transportation cost and customer demand. Given the complexity of the model, this paper based on particle swarm optimization (PSO), beetle antenna search algorithm (BAS) and interior point algorithm, a hybrid intelligent algorithm (HIA) is proposed to solve two-stage fuzzy random mixed integer optimization model, yielding the optimal facility location and maximal expected return of supply chain simultaneously. Finally, taking the supply chain of medical mask in Shanghai as an example, the influence of uncertainty on the location of processing factory was studied. We compare the HIA with hybrid PSO and hybrid genetic algorithm (GA), to validate the proposed algorithm based on the computational time and the convergence rate.
In convex functions theory, Hermite-Hadamard inequality is very important which was discovered by C. Hermite and J. Hadamard independently (see, also [1], and [2,p.137])
F(π1+π22)≤1π2−π1π2∫π1F(ϰ)dϰ≤F(π1)+F(π2)2, | (1.1) |
whereF is a convex function. In the case of concave mappings, the above inequality is satisfied in reverse order.
Over the last twenty years, numerous studies have focused on obtaining trapezoid and midpoint type inequalities which give bounds for the right-hand side and left-hand side of the inequality (1.1), respectively. For example, the authors first obtained trapezoid and midpoint type inequalities for convex functions in [3] and in [4], respectively. In [5], Sarikaya et al. obtained the inequalities (1.1) for Riemann-Liouville fractional integrals and the authors also proved some corresponding trapezoid type inequalities for fractional integrals. Iqbal et al. presented some fractional midpoint type inequalities for convex functions in [6]. Sarikaya and Ertuğral [7] introduced the notions of generalized fractional integrals and proved some Hermite-Hadamard type inequalities for convex functions. In [8], Budak et al. used the generalized fractional integrals to prove Hermite-Hadamard type inequalities for twice differentiable convex functions. After that, the authors used generalized fractional integrals and proved the different variants of integral inequalities in [9,10,11,12,13,14].
On the other hand, İşcan [15] defined the following class of functions called harmonically convex functions:
If the mapping F:I⊂R∖{0}→R satisfies the inequality
F(1σϰ+1−σy)≤σF(ϰ)+(1−σ)F(y), |
for all ϰ,y∈I and σ∈[0,1], then F is called harmonically convex function. In the case of harmonically concave mappings, the above inequality is satisfied in reverse order.
It is worth noting that the harmonic feature has been important in a variety of disciplines in pure and applied sciences. The authors explore the significance of the harmonic mean in Asian stock company [16]. Harmonic methods are used in electric circuit theory, which is interesting. The overall resistance of a set of parallel resistors is just half of the entire resistors' harmonic mean. If r1 and r2 are the resistances of two parallel resistors, the total resistance may be calculated using the following formula:
rσ=r1r2r1+r2=12H(r1,r2), |
which is the half of the harmonic mean.
The harmonic mean, according to Noor [17], is also important in the creation of parallel algorithms for solving nonlinear problems. Several researchers have proposed iterative approaches for solving linear and nonlinear systems of equations using harmonic means and harmonically convex functions.
Several research articles have recently been published on various generalizations of integral inequalities using various approaches. For example, İşcan established some new Hermite-Hadamard type inequalities for harmonically convex functions and trapezoid type inequalities for this class of functions in [15]. In [18], İ şcan and Wu established Hermite-Hadamard type inequalities for harmonically convex functions via Riemann-Liouville fractional integrals. They also proved some fractional trapezoid type inequalities for mapping whose derivatives in absolute value are harmonically convex. İşcan proved Ostrowski type integral inequalities for harmonically s-convex functions in [19] and in [20], Chen gave an extension of fractional Hermite-Hadamard type inequalities for harmonically convex functions. Kunt et al. [21] and Set et al. [22] used the Riemann-Liouville fractional integrals and proved Hermite-Hadamard type inequalities for harmonically convex functions. In [23], Șanlı proved several fractional midpoint type inequalities utilizing differentiable convex functions. The authors used the generalized fractional integrals and proved Hermite-Hadamard type inequalities for harmonically convex functions in [24,25]. Mohsen et al. [26] used the h- harmonically convexity to prove some new Ostrowski type inequalities and in [27], Akhtar et al. proved a new variant of Ostrowski inequalities for harmonically convex functions. In the literature there are several papers on the inequalities for harmonically convex functions. For some recent developments in integral inequalities and harmonically convexity, one can consult [28,29,30].
Inspired by the ongoing studies, we use the generalized fractional integrals to develop some new Ostrowski type inequalities for differentiable harmonically convex functions. We also show that the newly developed inequalities are extensions of some previously known inequalities.
The following is the structure of this paper: Section 2 provides a brief overview of the fractional calculus as well as other related studies in this field. In Section 3, we establish Ostrowski type inequalities for differentiable functions. The relationship between the findings reported here and similar findings in the literature are also taken into account. We discuss the special cases of newly established inequalities in Section 4 and obtain several new Ostrowski type inequalities. We give some applications to special means of real numbers in Section 5. Section 6 concludes with some recommendations for future research.
In this section, we recall some basic concepts of fractional integrals and related integral inequalities.
Definition 2.1. [7] The left and right-sided generalized fractional integrals given as follows:
π1+IφF(ϰ)=ϰ∫π1φ(ϰ−σ)ϰ−σF(σ)dσ, ϰ>π1, | (2.1) |
π2−IφF(ϰ)=π2∫ϰφ(σ−ϰ)σ−ϰF(σ)dσ, ϰ<π2, | (2.2) |
where the function φ:[0,∞)→[0,∞) satisfies ∫10φ(σ)σdσ<∞. For the details about the genrarlized fractional integrals, one can consult [7].
The most important feature of the generalized fractional integrals is that they generalize some types of fractional integrals such as Riemann-Liouville fractional integral, k-Riemann-Liouville fractional integral, Katugampola fractional integrals, conformable fractional integral, Hadamard fractional integrals, etc. Few important special cases of the integral operators (2.1) and (2.2) are mentioned below.
i) Taking φ(σ)=σ, the operators (2.1) and (2.2) reduces to the classical Riemann integrals as follows:
Iπ+1F(ϰ)=∫ϰπ1F(σ)dσ,ϰ>π1, |
Iπ−2F(ϰ)=∫π2ϰF(σ)dσ, ϰ<π2. |
ii) Taking φ(σ)=σαΓ(α), the operators (2.1) and (2.2) reduces to the well-known Riemann–Liouville fractional integrals as follows:
Jαπ+1F(ϰ)=1Γ(α)∫ϰπ1(ϰ−σ)α−1F(σ)dσ, ϰ>π1, |
Jαπ−2F(ϰ)=1Γ(α)∫π2ϰ(σ−ϰ)α−1F(σ)dσ, ϰ<π2. |
iii) Taking φ(σ)=σαkkΓk(α), the operators (2.1) and (2.2) reduces to the well-known k–Riemann–Liouville fractional integrals as follows:
Jα,kπ1+F(ϰ)=1kΓk(α)∫ϰπ1(ϰ−σ)αk−1F(σ)dσ, ϰ>π1, |
Jα,kπ2−F(ϰ)=1kΓk(α)∫π2ϰ(σ−ϰ)αk−1F(σ)dσ, ϰ<π2, |
where
Γk(α)=∫∞0σα−1e−σkkdσ, R(α)>0 |
and
Γk(α)=kαk−1Γ(αk), R(α)>0;k>0. |
Recently, Zhao et al. used the generalized fractional integrals and proved the following Hermite-Hadamard type inequalities.
Theorem 2.2. [25] For any harmonically convex mapping, the following inequalityholds:
F(2π1π2π1+π2)≤12Φ(1){Jα1π1−(F∘g)(1π2)+Jα1π2+(F∘g)(1π1)}≤F(π1)+F(π2)2, | (2.3) |
where g(ϰ)=1ϰ and Φ(σ)=∫σ0φ(π2−π1π1π2s)sds<+∞.
Remark 2.3. It is obvious that if we set φ(σ)=σ in inequality (2.3), then we obtain the following inequality of Hermite-Hadamard type inequality (see, [15]):
F(2π1π2π1+π2)≤π1π2π2−π1∫π2π1F(ϰ)dϰ≤F(π1)+F(π2)2. |
Remark 2.4. It is obvious that if we set φ(σ)=σαΓ(α) in inequality (2.3), then we obtain the following inequality of Hermite-Hadamard type inequality for Riemann-Liouville fractional integrals (see, [18]):
F(2π1π2π1+π2)≤Γ(α+1)2(π1π2π2−π1)α{Jα1π1−(F∘g)(1π2)+Jα1π2+(F∘g)(1π1)}≤F(π1)+F(π2)2. |
Remark 2.5. It is obvious that if we set φ(σ)=σαkkΓk(α) in inequality (2.3), then we obtain the following inequality of Hermite-Hadamard type inequality for k-Riemann Liouville fractional integrals (see, [25]):
F(2π1π2π1+π2)≤kΓk(α+k)2(π1π2π2−π1)αk{Jα,k1π1−(F∘g)(1π2)+Jα,k1π2+(F∘g)(1π1)}≤F(π1)+F(π2)2. |
In this section, we prove some new Ostrowski type inequalities for differentiable harmonically convex functions via the generalized fractional integrals. For brevity, we give the following special functions:
(1) The Beta function:
β(ϰ,y)=Γ(ϰ)Γ(y)Γ(ϰ+y)=∫10σϰ−1(1−σ)y−1dσ, ϰ,y>0. |
(2) The hypergeometric function:
2F1(π1,π2;c;z)=1β(π2,c−π2)∫10σπ2−1(1−σ)c−π2−1(1−zσ)−αdσ, c>π2>0, |z|<1. |
Lemma 3.1. Let F:I=[π1,π2]⊆(0,+∞)→R be a differentiable function on I∘ such that F′∈L([π1,π2]). Then, the following generalized fractional integrals identity holds for all ϰ∈(π1,π2):
π1ϰ(ϰ−π1)∫10Δ(σ)(σπ1+(1−σ)ϰ)2F′(π1ϰσπ1+(1−σ)ϰ)dσ−ϰπ2(π2−ϰ)∫10Λ(σ)(σπ2+(1−σ)ϰ)2F′(π2ϰσπ2+(1−σ)ϰ)dσ=(Δ(1)+Λ(1))F(ϰ)−[1ϰ+Iφ(F∘g)(1π1)+1ϰ−Iφ(F∘g)(1π2)], | (3.1) |
where the mappings Δ and Λ are defined as:
Δ(σ)=∫σ0φ(ϰ−π1π1ϰs)sds<+∞, |
and
Λ(σ)=∫σ0φ(π2−ϰπ2ϰs)sds<+∞. |
Proof. Consider
π1ϰ(ϰ−π1)∫10Δ(σ)(σπ1+(1−σ)ϰ)2F′(π1ϰσπ1+(1−σ)ϰ)dσ−ϰπ2(π2−ϰ)∫10Λ(σ)(σπ2+(1−σ)ϰ)2F′(π2ϰσπ2+(1−σ)ϰ)dσ=I1−I2. | (3.2) |
From fundamentals of integrations, we have
I1=π1ϰ(ϰ−π1)∫10Δ(σ)(σπ1+(1−σ)ϰ)2F′(π1ϰσπ1+(1−σ)ϰ)dσ=∫10Δ(σ)dF(π1ϰσπ1+(1−σ)ϰ)dσ=Δ(1)F(ϰ)−∫10φ((ϰ−π1)π1ϰσ)σF(π1ϰσπ1+(1−σ)ϰ)dσ=Δ(1)F(ϰ)−1ϰ+Iφ(F∘g)(1π1). |
Similarly, we have
I2=ϰπ2(π2−ϰ)∫10Λ(σ)(σπ2+(1−σ)ϰ)2F′(π2ϰσπ2+(1−σ)ϰ)dσ=−Λ(1)F(ϰ)+1ϰ−Iφ(F∘g)(1π2). |
Thus, we obtain the required identity (3.1) by using the calculated values of I1 and I2 in (3.2).
Remark 3.2. If we set φ(σ)=σ in Lemma 3.1, then we obtain the following equality:
π1π2π2−π1{(ϰ−π1)2∫10σ(σπ1+(1−σ)ϰ)2F′(π1ϰσπ1+(1−σ)ϰ)dσ−(π2−ϰ)2∫10σ(σπ2+(1−σ)ϰ)2F′(π2ϰσπ2+(1−σ)ϰ)dσ}=F(ϰ)−π1π2π2−π1∫π2π1F(u)u2du. |
This is proved by İşcan in [19,Lemma 2.1].
Remark 3.3. In Lemma 3.1, if we set φ(σ)=σαΓ(α), then we have the following equality for Riemann-Liouville fractional integrals:
(ϰ−π1)α+1(π1ϰ)α−1∫10σα(σπ1+(1−σ)ϰ)2F′(π1ϰσπ1+(1−σ)ϰ)dσ−(π2−ϰ)α+1(ϰπ2)α−1∫10σα(σπ2+(1−σ)ϰ)2F′(π2ϰσπ2+(1−σ)ϰ)dσ=[(ϰ−π1π1ϰ)α+(π2−ϰπ2ϰ)α]F(ϰ)−Γ(α+1)[1ϰ+Jα(F∘g)(1π1)+1ϰ−Jα(F∘g)(1π2)]. |
This is proved by İşcan in [31].
Corollary 3.4. In Lemma 3.1, if we set φ(σ)=σαkkΓ(α), then we have thefollowing new equality for k-Riemann-Liouville fractional integrals:
(ϰ−π1)α+kk(π1ϰ)α−kk∫10σαk(σπ1+(1−σ)ϰ)2F′(π1ϰσπ1+(1−σ)ϰ)dσ−(π2−ϰ)α+kk(ϰπ2)α−kk∫10σαk(σπ2+(1−σ)ϰ)2F′(π2ϰσπ2+(1−σ)ϰ)dσ=[(ϰ−π1π1ϰ)αk+(π2−ϰπ2ϰ)αk]F(ϰ)−Γk(α+k)[1ϰ+Jα,k(F∘g)(1π1)+1ϰ−Jα,k(F∘g)(1π2)]. |
Theorem 3.5. We assume that the conditions of Lemma 3.1 are valid. If |F′|q is harmonicallyconvex on [π1,π2] for some q≥1, then the followinginequality holds for the generalized fractional integrals:
|(Δ(1)+Λ(1))F(ϰ)−[1ϰ+Iφ(F∘g)(1π1)+1ϰ−Iφ(F∘g)(1π2)]|≤π1ϰ(ϰ−π1)Θ1−1q1(Θ2|F′(ϰ)|q+Θ3|F′(π1)|q)1q+π2ϰ(π2−ϰ)Θ1−1q4(Θ5|F′(ϰ)|q+Θ6|F′(π2)|q)1q, |
where
Θ1=∫10Δ(σ)(σπ1+(1−σ)ϰ)2dσ,Θ2=∫10σΔ(σ)(σπ1+(1−σ)ϰ)2dσ,Θ3=∫10(1−σ)Δ(σ)(σπ1+(1−σ)ϰ)2dσ,Θ4=∫10Λ(σ)(σπ2+(1−σ)ϰ)2dσ,Θ5=∫10σΛ(σ)(σπ2+(1−σ)ϰ)2dσ, |
and
Θ6=∫10(1−σ)Λ(σ)(σπ2+(1−σ)ϰ)2dσ. |
Proof. Taking absolute in Lemma 3.1 and then applying the well known power mean inequality, we have
|(Δ(1)+Λ(1))F(ϰ)−[1ϰ+Iφ(F∘g)(1π1)+1ϰ−Iφ(F∘g)(1π2)]|≤π1ϰ(ϰ−π1)∫10Δ(σ)(σπ1+(1−σ)ϰ)2|F′(π1ϰσπ1+(1−σ)ϰ)|dσ+π2ϰ(π2−ϰ)∫10Λ(σ)(σπ2+(1−σ)ϰ)2|F′(π2ϰσπ2+(1−σ)ϰ)|dσ≤π1ϰ(ϰ−π1)(∫10Δ(σ)(σπ1+(1−σ)ϰ)2dσ)1−1q×(∫10Δ(σ)(σπ1+(1−σ)ϰ)2|F′(π1ϰσπ1+(1−σ)ϰ)|qdσ)1q+π2ϰ(π2−ϰ)(∫10Λ(σ)(σπ2+(1−σ)ϰ)2dσ)1−1q×(∫10Λ(σ)(σπ2+(1−σ)ϰ)2|F′(π2ϰσπ2+(1−σ)ϰ)|qdσ)1q. |
Now from harmonically convexity of |F′|q, we have
(∫10Δ(σ)(σπ1+(1−σ)ϰ)2dσ)1−1q(∫10Δ(σ)(σπ1+(1−σ)ϰ)2|F′(π1ϰσπ1+(1−σ)ϰ)|qdσ)1q≤Θ1−1q1(|F′(ϰ)|q∫10σΔ(σ)(σπ1+(1−σ)ϰ)2dσ+|F′(π1)|q∫10(1−σ)Δ(σ)(σπ1+(1−σ)ϰ)2dσ)1q=Θ1−1q1(Θ2|F′(ϰ)|q+Θ3|F′(π1)|q)1q. |
and
(∫10Λ(σ)(σπ2+(1−σ)ϰ)2dσ)1−1q(∫10Λ(σ)(σπ2+(1−σ)ϰ)2|F′(π2ϰσπ2+(1−σ)ϰ)|qdσ)1q≤Θ1−1q4(|F′(ϰ)|q∫10σΛ(σ)(σπ2+(1−σ)ϰ)2dσ+|F′(π2)|q∫10(1−σ)Λ(σ)(σπ2+(1−σ)ϰ)2dσ)1q=Θ1−1q4(Θ5|F′(ϰ)|q+Θ6|F′(π2)|q)1q. |
Thus, the proof is completed.
Remark 3.6. In Theorem 3.5, if we assume φ(σ)=σ, then we have the following Ostrowski type inequalities:
|F(ϰ)−π1π2π2−π1∫π2π1F(u)u2du|≤π1π2π2−π1{χ1−1q1(π1,ϰ)(ϰ−π1)2(χ2(π1,ϰ,1,1)|F′(ϰ)|q+χ3(π1,ϰ,1,1)|F′(π1)|q)1q+χ1−1q1(π2,ϰ)(π2−ϰ)2(χ4(π2,ϰ,1,1)|F′(ϰ)|q+χ5(π2,ϰ,1,1)|F′(π2)|q)1q}, |
where
χ1(υ,ϰ)=1ϰ−ν[1υ−lnϰ−lnυϰ−υ],χ2(π1,ϰ,υ,μ)=β(μ+2,1)ϰ2υ2F1(2υ,μ+2;μ+3;1−π1ϰ),χ3(π1,ϰ,υ,μ)=β(μ+1,1)ϰ2υ2F1(2υ,μ+1;μ+3;1−π1ϰ),χ4(π2,ϰ,υ,μ)=β(1,μ+2)π2υ22F1(2υ,1;μ+3;1−ϰπ2),χ5(π2,ϰ,υ,μ)=β(2,μ+1)π2υ22F1(2υ,2;μ+3;1−ϰπ2). |
This is proved by İşcan in [19,Theorem 2.4 for s=1].
Corollary 3.7. In Theorem 3.5, if we set |F′(ϰ)|≤M, ϰ∈[π1,π2], then we obtain the following Ostrowski typeinequality for generalized fractional integrals:
|(Δ(1)+Λ(1))F(ϰ)−[1ϰ+Iφ(F∘g)(1π1)+1ϰ−Iφ(F∘g)(1π2)]|≤M{π1ϰ(ϰ−π1)Θ1−1q1(Θ2+Θ3)1q+π2ϰ(π2−ϰ)Θ1−1q4(Θ5+Θ6)1q}. |
Remark 3.8. In Theorem 3.5, if we set φ(σ)=σαΓ(α), then we obtain the following Ostrowski type inequality for Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)α+(π2−ϰπ2ϰ)α]F(ϰ)+Γ(α+1)[1ϰ+Jα(F∘g)(1π1)+1ϰ−Jα(F∘g)(1π2)]|≤(ϰ−π1)α+1(π1ϰ)α−1Ω1−1q1(π1,ϰ,α)(Ω3(π1,ϰ,α)|F′(ϰ)|q+Ω4(π1,ϰ,α)|F′(π1)|q)1q+(π2−ϰ)α+1(π2ϰ)α−1Ω1−1q2(π2,ϰ,α)(Ω5(π2,ϰ,α)|F′(ϰ)|q+Ω6(π2,ϰ,α)|F′(π2)|q)1q, |
where
Ω1(π1,ϰ,α)=ϰ−22F1(2,α+1;α+2;1−π1ϰ),Ω2(π2,ϰ,α)=π−222F1(2,1;α+2;1−ϰπ2)Ω3(π1,ϰ,α)=β(α+2,1)ϰ22F1(2,α+2;α+3;1−π1ϰ),Ω4(π1,ϰ,α)=Ω1(π1,ϰ,α)−Ω3(π1,ϰ,α),Ω5(π2,ϰ,α)=β(1,α+2)π222F1(2,1;α+3;1−ϰπ2),Ω6(π2,ϰ,α)=Ω2(π2,ϰ,α)−Ω5(π2,ϰ,α). |
This is proved by İşcan in [31].
Corollary 3.9. In Theorem 3.5, if we set φ(σ)=σαkkΓk(α), then we obtain the followingnew Ostrowski type inequality for k-Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)αk+(π2−ϰπ2ϰ)αk]F(ϰ)+Γk(α+k)[1ϰ+Jα,k(F∘g)(1π1)+1ϰ−Jα,k(F∘g)(1π2)]|≤(ϰ−π1)α+kk(π1ϰ)α−kkΩ1−1q1(π1,ϰ,αk)(Ω3(π1,ϰ,αk)|F′(ϰ)|q+Ω4(π1,ϰ,αk)|F′(π1)|q)1q+(π2−ϰ)α+kk(π2ϰ)α−kkΩ1−1q2(π2,ϰ,αk)(Ω5(π2,ϰ,αk)|F′(ϰ)|q+Ω6(π2,ϰ,αk)|F′(π2)|q)1q, |
where
Ω1(π1,ϰ,αk)=ϰ−22F1(2,αk+1;αk+2;1−π1ϰ),Ω2(π2,ϰ,αk)=π−222F1(2,1;αk+2;1−ϰπ2)Ω3(π1,ϰ,αk)=β(αk+2,1)ϰ22F1(2,αk+2;αk+3;1−π1ϰ),Ω4(π1,ϰ,αk)=Ω1(π1,ϰ,αk)−Ω3(π1,ϰ,αk),Ω5(π2,ϰ,αk)=β(1,αk+2)π222F1(2,1;αk+3;1−ϰπ2),Ω6(π2,ϰ,αk)=Ω2(π2,ϰ,αk)−Ω5(π2,ϰ,αk). |
Theorem 3.10. We assume that the conditions of Lemma 3.1 are valid. If |F′|q is harmonicallyconvex on [π1,π2] for some q>1, then the followinginequality holds for the generalized fractional integrals:
|(Δ(1)+Λ(1))F(ϰ)−[1ϰ+Iφ(F∘g)(1π1)+1ϰ−Iφ(F∘g)(1π2)]|≤π1ϰ(ϰ−π1)Θ1p7(|F′(ϰ)|q+|F′(π1)|q2)1q+π2ϰ(π2−ϰ)Θ1p8(|F′(ϰ)|q+|F′(π2)|q2)1q, |
where 1p+1q=1 and
Θ7=∫10(Δ(σ)(σπ1+(1−σ)ϰ)2)pdσ,Θ8=∫10(Λ(σ)(σπ2+(1−σ)ϰ)2)pdσ. |
Proof. From Lemma 3.1 and applying well-known Hölder's inequality, we have
|(Δ(1)+Λ(1))F(ϰ)−[1ϰ+Iφ(F∘g)(1π1)+1ϰ−Iφ(F∘g)(1π2)]|≤π1ϰ(ϰ−π1)∫10Δ(σ)(σπ1+(1−σ)ϰ)2|F′(π1ϰσπ1+(1−σ)ϰ)|dσ+π2ϰ(π2−ϰ)∫10Λ(σ)(σπ2+(1−σ)ϰ)2|F′(π2ϰσπ2+(1−σ)ϰ)|dσ≤π1ϰ(ϰ−π1)(∫10(Δ(σ)(σπ1+(1−σ)ϰ)2)pdσ)1p(∫10|F′(π1ϰσπ1+(1−σ)ϰ)|qdσ)1q+π2ϰ(π2−ϰ)(∫10(Λ(σ)(σπ2+(1−σ)ϰ)2)pdσ)1p(∫10|F′(π2ϰσπ2+(1−σ)ϰ)|qdσ)1q. |
Now from harmonically convexity of |F′|q, we have
(∫10(Δ(σ)(σπ1+(1−σ)ϰ)2)pdσ)1p(∫10|F′(π1ϰσπ1+(1−σ)ϰ)|qdσ)1q≤Θ1p7(|F′(ϰ)|q∫10σdσ+|F′(π1)|q∫10(1−σ)dσ)1q=Θ1p7(|F′(ϰ)|q+|F′(π1)|q2)1q. |
and
(∫10(Λ(σ)(σπ2+(1−σ)ϰ)2)pdσ)1p(∫10|F′(π2ϰσπ2+(1−σ)ϰ)|qdσ)1q≤Θ1p8(|F′(ϰ)|q∫10σdσ+|F′(π2)|q∫10(1−σ)dσ)1q=Θ1p8(|F′(ϰ)|q+|F′(π2)|q2)1q. |
Thus, the proof is completed.
Remark 3.11. In Theorem 3.10, if we set φ(σ)=σ, then we obtain the following Ostrowski type inequality:
|F(ϰ)−π1π2π2−π1∫π2π1F(u)u2du|≤π1π2π2−π1{(χ∗2(π1,ϰ,υ,μ))1p(ϰ−π1)2(|F′(ϰ)|q+|F′(π1)|q2)1q+(χ∗4(π2,ϰ,υ,μ))1p(π2−ϰ)2(|F′(ϰ)|q+|F′(π2)|q2)1q}, |
where
χ∗2(π1,ϰ,υ,μ)=β(μ+1,1)ϰ2υ2F1(2υ,μ+1;μ+2;1−π1ϰ),χ∗4(π2,ϰ,υ,μ)=β(1,μ+1)π2υ22F1(2υ,1;μ+2;1−ϰπ2). |
This is proved by İşcan in [19,Theorem 2.6 for s=1].
Corollary 3.12. In Theorem 3.5, if we set |F′(ϰ)|≤M, ϰ∈[π1,π2], then we obtain the following Ostrowski typeinequality for generalized fractional integrals:
|(Δ(1)+Λ(1))F(ϰ)−[1ϰ+Iφ(F∘g)(1π1)+1ϰ−Iφ(F∘g)(1π2)]|≤M{π1ϰ(ϰ−π1)Θ1p7+π2ϰ(π2−ϰ)Θ1p8}. |
Remark 3.13. In Theorem 3.10, if we set φ(σ)=σαΓ(α), then we obtain the following Ostrowski type inequalities for Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)α+(π2−ϰπ2ϰ)α]F(ϰ)+Γ(α+1)[1ϰ+Jα(F∘g)(1π1)+1ϰ−Jα(F∘g)(1π2)]|≤(ϰ−π1)α+1(π1ϰ)α−1Ω1p7(π1,ϰ,α,p)(|F′(ϰ)|q+|F′(π1)|q2)1q+(π2−ϰ)α+1(π2ϰ)α−1Ω1p7(π2,ϰ,α,p)(|F′(ϰ)|q+|F′(π2)|q2)1q, |
where
Ω7(υ,ϰ,α,p)=ϰ−2αp+12F1(2p,αp+1;αp+2;1−υϰ). |
This is proved by İşcan in [31].
Corollary 3.14. In Theorem 3.5, if we set φ(σ)=σαkkΓk(α), then we obtain the followingnew Ostrowski type inequality for k-Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)αk+(π2−ϰπ2ϰ)αk]F(ϰ)+Γk(α+k)[1ϰ+Jα,k(F∘g)(1π1)+1ϰ−Jα,k(F∘g)(1π2)]|≤(ϰ−π1)α+kk(π1ϰ)α−kkΩ1p7(π1,ϰ,αk,p)(|F′(ϰ)|q+|F′(π1)|q2)1q+(π2−ϰ)α+kk(π2ϰ)α−kkΩ1p7(π2,ϰ,αk,p)(|F′(ϰ)|q+|F′(π2)|q2)1q, |
where
Ω7(υ,ϰ,αk,p)=kϰ−2αp+k2F1(2p,αp+kk;αp+2kk;1−υϰ). |
In this section, we discuss more special cases of the results proved in the last section.
Remark 4.1. In Corollary 3.7, if we set φ(σ)=σ, then we obtain the following Ostrowski type inequality:
|F(ϰ)−π1π2π2−π1∫π2π1F(u)u2du|≤Mπ1π2π2−π1{χ1−1q1(π1,ϰ)(ϰ−π1)2(χ2(π1,ϰ,1,1)+χ3(π1,ϰ,1,1))1q+χ1−1q1(π2,ϰ)(π2−ϰ)2(χ4(π2,ϰ,1,1)+χ5(π2,ϰ,1,1))1q}. | (4.1) |
This is proved by İşcan in [19,Corollary 2.3 for s=1].
Remark 4.2. In Corollary 3.7, if we set φ(σ)=σαΓ(α), then we obtain the following Ostrowski type inequality for Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)α+(π2−ϰπ2ϰ)α]F(ϰ)+Γ(α+1)[1ϰ+Jα(F∘g)(1π1)+1ϰ−Jα(F∘g)(1π2)]|≤M[(ϰ−π1)α+1(π1ϰ)α−1Ω1−1q1(π1,ϰ,α)(Ω3(π1,ϰ,α)+Ω4(π1,ϰ,α))1q+(π2−ϰ)α+1(π2ϰ)α−1Ω1−1q2(π2,ϰ,α)(Ω5(π2,ϰ,α)+Ω6(π2,ϰ,α))1q]. |
This is proved by İşcan in [31].
Remark 4.3. In Corollary 3.7, if we set φ(σ)=σαkkΓk(α), then we obtain the following new Ostrowski type inequality for k-Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)αk+(π2−ϰπ2ϰ)αk]F(ϰ)+Γk(α+k)[1ϰ+Jα,k(F∘g)(1π1)+1ϰ−Jα,k(F∘g)(1π2)]|≤M[(ϰ−π1)α+kk(π1ϰ)α−kkΩ1−1q1(π1,ϰ,αk)(Ω3(π1,ϰ,αk)+Ω4(π1,ϰ,αk))1q+(π2−ϰ)α+kk(π2ϰ)α−kkΩ1−1q2(π2,ϰ,αk)(Ω5(π2,ϰ,αk)+Ω6(π2,ϰ,αk))1q]. |
Remark 4.4. In Corollary 3.12, if we set φ(σ)=σ, then we obtain the following Ostrowski type inequality:
|F(ϰ)−π1π2π2−π1∫π2π1F(u)u2du|≤Mπ1π2π2−π1{(χ∗2(π1,ϰ,υ,μ))1p(ϰ−π1)2+(χ∗4(π2,ϰ,υ,μ))1p(π2−ϰ)2}. | (4.2) |
This is proved by İşcan in [19,Corollary 2.5 for s=1].
Remark 4.5. In Corollary 3.12, if we set φ(σ)=σαΓ(α), then we obtain the following Ostrowski type inequality for Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)α+(π2−ϰπ2ϰ)α]F(ϰ)+Γ(α+1)[1ϰ+Jα(F∘g)(1π1)+1ϰ−Jα(F∘g)(1π2)]|≤M[(ϰ−π1)α+1(π1ϰ)α−1Ω1p7(π1,ϰ,α,p)+(π2−ϰ)α+1(π2ϰ)α−1Ω1p7(π2,ϰ,α,p)]. |
This is proved by İşcan in [31].
Remark 4.6. In Corollary 3.12, if we set φ(σ)=σαkkΓk(α), then we obtain the following new Ostrowski type inequality for k-Riemann-Liouville fractional integrals:
|[(ϰ−π1π1ϰ)αk+(π2−ϰπ2ϰ)αk]F(ϰ)+Γk(α+k)[1ϰ+Jα,k(F∘g)(1π1)+1ϰ−Jα,k(F∘g)(1π2)]|≤M[(ϰ−π1)α+kk(π1ϰ)α−kkΩ1p7(π1,ϰ,αk,p)+(π2−ϰ)α+kk(π2ϰ)α−kkΩ1p7(π2,ϰ,αk,p)]. |
Remark 4.7. If we set q=1 in Theorem 3.5 and Corollaries 3.7–3.14, then we obtain some new Ostrowski type inequlities for the harmonically convexity of |F′|. Moreover, for different choices of φ in the generalized fractional integrals, one can obtain several Ostrowski type inequalities via Katugampola fractional integrals, conformable fractional integral, Hadamard fractional integrals, etc.
For arbitrary positive numbers π1,π2(π1≠π2), we consider the means as follows:
(1) The arithmatic mean
A=A(π1,π2)=π1+π22. |
(2) The geometric mean
G=G(π1,π2)=√π1π2. |
(3) The harmonic means
H=H(π1,π2)=2π1π2π1+π2. |
(4) The logarithmic mean
L=L(π1,π2)=π2−π1lnπ2−lnπ1. |
(5) The generalize logarithmic mean
Lp=Lp(π1,π2)=[π2−π1(π2−π1)(p+1)]1p,p∈R∖{−1,0}. |
(6) The identric mean
I=I(π1,π2)={1e(π2π1)1π2−π1, if π1≠π2,π1, if π1=π2,π1,π2>0. |
These means are often employed in numerical approximations and other fields. However, the following straightforward relationship has been stated in the literature.
H≤G≤L≤I≤A. |
Proposition 5.1. For π1,π2∈(0,∞) with π1<π2, then the following inequality holds:
|A(π1,π2)−G2(π1,π2)L(π1,π2)|≤MG2(π1,π2)(π2−π1)4×{χ1−1q1(π1,A(π1,π2))(χ2(π1,A(π1,π2),1,1)+χ3(π1,A(π1,π2),1,1))1q+χ1−1q1(π2,A(π1,π2))(χ4(π2,A(π1,π2),1,1)+χ5(π2,A(π1,π2),1,1))1q}. |
Proof. The inequality (4.1) with ϰ=π1+π22 for mapping F:(0,∞)→R, F(ϰ)=ϰ leads to this conclusion.
Proposition 5.2. For π1,π2∈(0,∞) with π1<π2, then the following inequality holds:
|H(π1,π2)−G2(π1,π2)L(π1,π2)|≤MG2(π1,π2)π2−π1×{χ1−1q1(π1,H(π1,π2))(G2(π1,π2)−π212A(π1,π2))2(χ2(π1,H(π1,π2),1,1)+χ3(π1,H(π1,π2),1,1))1q+χ1−1q1(π2,H(π1,π2))(π22−G2(π1,π2)2A(π1,π2))2(χ4(π2,H(π1,π2),1,1)+χ5(π2,H(π1,π2),1,1))1q}. |
Proof. The inequality (4.1) with ϰ=2π1π2π1+π2 for mapping F:(0,∞)→R, F(ϰ)=ϰ leads to this conclusion.
Proposition 5.3. For π1,π2∈(0,∞) with π1<π2, then the following inequality holds:
|Ap+2(π1,π2)−G2(π1,π2)Lpp(π1,π2)|≤MG2(π1,π2)(π2−π1)4×{χ1−1q1(π1,A(π1,π2))(χ2(π1,A(π1,π2),1,1)+χ3(π1,A(π1,π2),1,1))1q+χ1−1q1(π2,A(π1,π2))(χ4(π2,A(π1,π2),1,1)+χ5(π2,A(π1,π2),1,1))1q}. |
Proof. The inequality (4.1) with ϰ=π1+π22 for mapping F:(0,∞)→R, F(ϰ)=ϰp+2,p∈(−1,∞){0} leads to this conclusion.
Proposition 5.4. For π1,π2∈(0,∞) with π1<π2, then the following inequality holds:
|Hp+2(π1,π2)−G2(π1,π2)Lpp(π1,π2)|≤MG2(π1,π2)π2−π1×{χ1−1q1(π1,H(π1,π2))(G2(π1,π2)−π212A(π1,π2))2(χ2(π1,H(π1,π2),1,1)+χ3(π1,H(π1,π2),1,1))1q+χ1−1q1(π2,H(π1,π2))(π22−G2(π1,π2)2A(π1,π2))2(χ4(π2,H(π1,π2),1,1)+χ5(π2,H(π1,π2),1,1))1q}. |
Proof. The inequality (4.1) with ϰ=2π1π2π1+π2 for mapping F:(0,∞)→R, F(ϰ)=ϰp+2, p∈(−1,∞){0} leads to this conclusion.
Proposition 5.5. For π1,π2∈(0,∞) with π1<π2, then the following inequality holds:
|A2(π1,π2)ln(A(π1,π2))−G2(π1,π2)ln(I(π1,π2))|≤MG2(π1,π2)(π2−π1)4×{χ1−1q1(π1,A(π1,π2))(χ2(π1,A(π1,π2),1,1)+χ3(π1,A(π1,π2),1,1))1q+χ1−1q1(π2,A(π1,π2))(χ4(π2,A(π1,π2),1,1)+χ5(π2,A(π1,π2),1,1))1q}. |
Proof. The inequality (4.1) with ϰ=π1+π22 for mapping F:(0,∞)→R, F(ϰ)=ϰ2lnϰ, leads to this conclusion.
Proposition 5.6. For π1,π2∈(0,∞) with π1<π2, then the following inequality holds:
|H2(π1,π2)ln(H(π1,π2))−G2(π1,π2)ln(I(π1,π2))|≤MG2(π1,π2)π2−π1×{χ1−1q1(π1,H(π1,π2))(G2(π1,π2)−π212A(π1,π2))2(χ2(π1,H(π1,π2),1,1)+χ3(π1,H(π1,π2),1,1))1q+χ1−1q1(π2,H(π1,π2))(π22−G2(π1,π2)2A(π1,π2))2(χ4(π2,H(π1,π2),1,1)+χ5(π2,H(π1,π2),1,1))1q}. |
Proof. The inequality (4.1) with ϰ=2π1π2π1+π2 for mapping F:(0,∞)→R, F(ϰ)=ϰ2lnϰ leads to this conclusion.
In this paper, we have proved several new Ostrowski type inequalities for differentiable harmonically convex functions via the generalized fractional integrals. Moreover, we have proved that the established inequalities are the extensions of some existing inequalities in the literature. It is an interesting and new problem that the upcoming researchers can offer similar inequalities for different type of harmonically and co-ordinated harmonically convexity.
This research was funded by King Mongkut's University of Technology North Bangkok. Contract No. KMUTNB-63-KNOW-22.
The authors declare no conflict of interest.
[1] |
J. Current, S. Ratick, C. Revelle, Dynamic facility location when the total number of facilities is uncertain: A decision analysis approach, Eur. J. Oper. Res., 110 (1998), 597–609. https://doi.org/10.1016/s0377-2217(97)00303-2 doi: 10.1016/s0377-2217(97)00303-2
![]() |
[2] |
A. Klose, A. Drexl, Facility location models for distribution system design, Eur. J. Oper. Res., 162 (2005), 4–29. https://doi.org/10.1016/j.ejor.2003.10.031 doi: 10.1016/j.ejor.2003.10.031
![]() |
[3] |
R. Manzini, E. Gebennini, Optimization models for the dynamic facility location and allocation problem, Int. J. Prod. Res., 46 (2008), 2061–2086. https://doi.org/10.1080/00207540600847418 doi: 10.1080/00207540600847418
![]() |
[4] |
I. Akgun, F. Gumusbuga, B. Tansel, Risk based facility location by using fault tree analysis in disaster management, Omega, 52 (2015), 168–179. https://doi.org/10.1016/j.omega.2014.04.003 doi: 10.1016/j.omega.2014.04.003
![]() |
[5] |
A. A. Ageev, Improved approximation algorithms for multilevel facility location problems, Oper. Res. Lett., 30 (2002), 327–332. https://doi.org/10.1016/S0167-6377(02)00162-1 doi: 10.1016/S0167-6377(02)00162-1
![]() |
[6] |
T. H. Tran, M. P. Scaparra, J. R. OHanley, A hypergraph multi-exchange heuristic for the single-source capacitated facility location problem, Eur. J. Oper. Res., 263 (2017), 173–187. https://doi.org/10.1016/j.ejor.2017.04.032 doi: 10.1016/j.ejor.2017.04.032
![]() |
[7] |
A. Moya-Martinez, M. Landete, J. F. Monge, Close-enough facility location, Mathematics, 9 (2021), 670. https://doi.org/10.3390/math9060670 doi: 10.3390/math9060670
![]() |
[8] |
G. Laporte, F. V. Louveaux, L. van Hamme, Exact solution to a location problem with stochastic demands, Transport. Sci., 28 (1994), 95–103. https://doi.org/10.1287/trsc.28.2.95 doi: 10.1287/trsc.28.2.95
![]() |
[9] |
Z. M. Liu, S. J. Qu, H. Raza, Z. Wu, D. Q. Qu, J. H. Du, Two-stage mean-risk stochastic mixed integer optimization model for location-allocation problems under uncertain environment, JIMO, 17 (2021), 2783–2804. https://doi.org/10.3934/jimo.2020094 doi: 10.3934/jimo.2020094
![]() |
[10] |
Q. Wang, R. Batta, C. M. Rump, Algorithms for a facility location problem with stochastic customer demand and immobile servers, Ann. Oper. Res., 111 (2002), 17–34. https://doi.org/10.1023/A:1020961732667 doi: 10.1023/A:1020961732667
![]() |
[11] |
A. S. Zadeh, R. Sahraeian, S. M. Homayouni, A dynamic multi-commodity inventory and facility location problem in steel supply chain network design, Int. J. Adv. Manuf. Technol., 70 (2014), 1267–1282. https://doi.org/10.1007/s00170-013-5358-2 doi: 10.1007/s00170-013-5358-2
![]() |
[12] |
J. de Armas, A. A. Juan, J. M. Marques, J. P. Pedroso, Solving the deterministic and stochastic uncapacitated facility location problem: from a heuristic to a simheuristic, J. Oper. Res. Soc., 68 (2017), 1161–1176. https://doi.org/10.1057/s41274-016-0155-6 doi: 10.1057/s41274-016-0155-6
![]() |
[13] |
B. Li, Q. Xun, J. Sun, K. L. Teo, C. J. Yu, A model of distributionally robust two-stage stochastic convex programming with linear recourse, Appl. Math. Model., 58 (2018), 86–97. https://doi.org/10.1016/j.apm.2017.11.039 doi: 10.1016/j.apm.2017.11.039
![]() |
[14] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |
[15] |
B. A. Kumar, S. K. Paikray, H. Dutta, Cost optimization model for items having fuzzy demand and deterioration with two-warehouse facility under the trade credit financing, AIMS Mathematics, 5 (2020), 1603–1620. https://doi.org/10.3934/math.2020109 doi: 10.3934/math.2020109
![]() |
[16] |
L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Set. Syst.k, 1 (1978), 3–28. https://doi.org/10.1016/0165-0114(78)90029-5 doi: 10.1016/0165-0114(78)90029-5
![]() |
[17] |
B. D. Liu, Y. K. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE T. Fuzzy Syst., 10 (2002), 445–450. https://doi.org/10.1109/TFUZZ.2002.800692 doi: 10.1109/TFUZZ.2002.800692
![]() |
[18] |
S. Y. Choua, Y. H. Changa, C. Y. Shen, A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes, European Journal of Operational Research, 189 (2008), 132–145. https://doi.org/10.1016/j.ejor.2007.05.006 doi: 10.1016/j.ejor.2007.05.006
![]() |
[19] |
S. M. Wang, J. Watada, W. Pedrycz, Value-at-risk based two-stage fuzzy facility location problems, IEEE T. Ind. Inform., 5 (2009), 465–482. https://doi.org/10.1109/TII.2009.2022542 doi: 10.1109/TII.2009.2022542
![]() |
[20] |
M. Rezaei, M. H. F. Zarandi, Facility location via fuzzy modeling and simulation, Appl. Soft Comput., 11 (2011), 5330–5340. https://doi.org/10.1016/j.asoc.2011.05.026 doi: 10.1016/j.asoc.2011.05.026
![]() |
[21] |
T. Paksoy, N. Y. Pehlivan, E. Ozceylan, A new tradeoff model for fuzzy supply chain network design and optimization, Human Ecol. Risk Assess.: Int. J., 19 (2013), 492–514. https://doi.org/10.1080/10807039.2013.755100 doi: 10.1080/10807039.2013.755100
![]() |
[22] |
S. M. Wang, J. Z. Watada, Capacitated two-stage facility location problem with fuzzy costs and demands, Int. J. Mach. Learn. Cyber., 4 (2013), 65–74. https://doi.org/10.1007/s13042-012-0073-0 doi: 10.1007/s13042-012-0073-0
![]() |
[23] |
Z. M. Liu, S. J. Qu, Z. Wu, Y. Ji, Two-stage fuzzy mixed integer optimization model for three-level location allocation problems under uncertain environment, J. Intell. Fuzzy Syst., 39 (2020), 6741–6756. https://doi.org/10.3233/JIFS-191453 doi: 10.3233/JIFS-191453
![]() |
[24] |
H. Kwakernaak, Fuzzy random variables-I. definitions and theorems, Inform. Sci., 15 (1978), 1–29. https://doi.org/10.1016/0020-0255(78)90019-1 doi: 10.1016/0020-0255(78)90019-1
![]() |
[25] |
Y. K. Liu, B. D. Liu, Fuzzy random variable: A scalar expected value operator, Fuzzy Optim. Decis. Ma., 2 (2003), 143–160. https://doi.org/10.1023/A:1023447217758 doi: 10.1023/A:1023447217758
![]() |
[26] |
M. Wen, K. Iwamura, Facility location-allocation problem in random fuzzy environment: Using(α,β) -cost minimization model under the Hurewicz criterion, Comput. Math. Appl., 55 (2008), 704–713. https://doi.org/10.1016/j.camwa.2007.03.026 doi: 10.1016/j.camwa.2007.03.026
![]() |
[27] |
S. M. Wang, J. Watada, W. Pedrycz, Recourse-based facility-location problems in hybrid uncertain environment, IEEE T. Syst. Man Cyber. Part B, 40 (2010), 1176–1187. https://doi.org/10.1109/TSMCB.2009.2035630 doi: 10.1109/TSMCB.2009.2035630
![]() |
[28] |
M. Wen, R. Kang, Some optimal models for facility location-allocation problem with random fuzzy demands, Appl. Soft Comput. J., 11 (2011), 1202–1207. https://doi.org/10.1016/j.asoc.2010.02.018 doi: 10.1016/j.asoc.2010.02.018
![]() |
[29] |
T. Uno, H. Katagiri, K. Kato, Competitive facility location with fuzzy random demands, AIP Conf. Proc., 99 (2010), 99–108. https://doi.org/10.1063/1.3510583 doi: 10.1063/1.3510583
![]() |
[30] | J. Watada, Building models based on environment with hybrid uncertainty, 2011 Fourth International Conference on Modeling, Simulation and Applied Optimization, 2011. https://doi.org/10.1109/ICMSAO.2011.5775646 |
[31] |
M. K. Luhandjula, Fuzziness and randomness in an optimization framework, Fuzzy Set. Syst., 77 (1996), 291–297. https://doi.org/10.1016/0165-0114(95)00043-7 doi: 10.1016/0165-0114(95)00043-7
![]() |
[32] |
M. Lopez-Diaz, M. A. Gil, Constructive definitions of fuzzy random variables, Stat. Prob. Lett., 36 (1997), 135–143. https://doi.org/10.1016/S0167-7152(97)00056-4 doi: 10.1016/S0167-7152(97)00056-4
![]() |
[33] | B. D. Liu, Uncertainty theory-A branch of mathematics for modeling human uncertainty, Berlin, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-13959-8 |
[34] | L. R. Medsker, Hybrid intelligent systems, Boston: Kluwer Academic Publishers, 1995. |
[35] |
B. D. Liu, Fuzzy random chance-constrained programming, IEEE T. Fuzzy Syst., 9 (2001), 713–720. https://doi.org/10.1109/91.963757 doi: 10.1109/91.963757
![]() |
[36] |
B. D. Liu, Fuzzy random dependent-chance programming, IEEE T. Fuzzy Syst., 9 (2001), 721–726. https://doi.org/10.1109/91.963758 doi: 10.1109/91.963758
![]() |
[37] |
S. M. Wang, J. Watada, A hybrid modified PSO approach to VaR-based facility location problems with variable capacity in fuzzy random uncertainty, Inform. Sci., 192 (2012), 3–18. https://doi.org/10.1016/j.ins.2010.02.014 doi: 10.1016/j.ins.2010.02.014
![]() |
[38] | X. Y. Jiang, S. Li, BAS: Beetle antennae search algorithm for optimization problems, 2017. arXiv: 1710.10724. |
[39] |
J. Kennedy, R. C. Eberhart, A discrete binary version of the particle swarm algorithm, IEEE I. Conf. Syst. Man Cyber., 5 (1997), 4104–4108. https://doi.org/10.1109/ICSMC.1997.637339 doi: 10.1109/ICSMC.1997.637339
![]() |
[40] |
R. D. C. Monteiro, I. Adler, Interior path following primal-dual algorithms. Part I: Linear programming, Math. Program., 44 (1989), 27–41. https://doi.org/10.1007/BF01587075 doi: 10.1007/BF01587075
![]() |
[41] | D. E. Goldberg, Genetic algorithms in search, optimization and machine learning, Addison-Wesley, 1989. |
[42] |
K. M. Sim, Y. Y. Guo, B. Shi, BLGAN: Bayesian learning and genetic algorithm for supporting negotiation with incomplete information, IEEE T. Syst. Man Cyber. Part B, 39 (2009), 198–211. https://doi.org/10.1109/TSMCB.2008.2004501 doi: 10.1109/TSMCB.2008.2004501
![]() |
1. | Muhammad Amer Latif, Mappings related to Hermite-Hadamard type inequalities for harmonically convex functions, 2022, 1016-2526, 665, 10.52280/pujm.2022.541101 | |
2. | YONGFANG QI, GUOPING LI, FRACTIONAL OSTROWSKI TYPE INEQUALITIES FOR (s,m)-CONVEX FUNCTION WITH APPLICATIONS, 2023, 31, 0218-348X, 10.1142/S0218348X23501281 | |
3. | Muhammad Tariq, Sotiris K. Ntouyas, Bashir Ahmad, Ostrowski-Type Fractional Integral Inequalities: A Survey, 2023, 3, 2673-9321, 660, 10.3390/foundations3040040 |