Research article

Multi-objective optimization for AGV energy efficient scheduling problem with customer satisfaction

  • Received: 07 April 2023 Revised: 06 June 2023 Accepted: 12 June 2023 Published: 19 June 2023
  • MSC : 90C11, 90C29

  • In recent years, it has been gradually recognized that efficient scheduling of automated guided vehicles (AGVs) can help companies find the balance between energy consumption and workstation satisfaction. Therefore, the energy consumption of AGVs for the manufacturing environment and the AGV energy efficient scheduling problem with customer satisfaction (AGVEESC) in a flexible manufacturing system are investigated. A new multi-objective non-linear programming model is developed to minimize energy consumption while maximizing workstation satisfaction by optimizing the pick-up and delivery processes of the AGV for material handling. Through the introduction of auxiliary variables, the model is linearized. Then, an interactive fuzzy programming approach is developed to obtain a compromise solution by constructing a membership function for two conflicting objectives. The experimental results show that a good level of energy consumption and workstation satisfaction can be achieved through the proposed model and algorithm.

    Citation: Jiaxin Chen, Yuxuan Wu, Shuai Huang, Pei Wang. Multi-objective optimization for AGV energy efficient scheduling problem with customer satisfaction[J]. AIMS Mathematics, 2023, 8(9): 20097-20124. doi: 10.3934/math.20231024

    Related Papers:

  • In recent years, it has been gradually recognized that efficient scheduling of automated guided vehicles (AGVs) can help companies find the balance between energy consumption and workstation satisfaction. Therefore, the energy consumption of AGVs for the manufacturing environment and the AGV energy efficient scheduling problem with customer satisfaction (AGVEESC) in a flexible manufacturing system are investigated. A new multi-objective non-linear programming model is developed to minimize energy consumption while maximizing workstation satisfaction by optimizing the pick-up and delivery processes of the AGV for material handling. Through the introduction of auxiliary variables, the model is linearized. Then, an interactive fuzzy programming approach is developed to obtain a compromise solution by constructing a membership function for two conflicting objectives. The experimental results show that a good level of energy consumption and workstation satisfaction can be achieved through the proposed model and algorithm.



    加载中


    [1] X. Wang, W. Wu, Z. Xing, X. Chen, T. Zhang, H. Niu, A neural network based multi-state scheduling algorithm for multi-AGV system in FMS, J. Manuf. Syst., 64 (2022), 344–355. http://dx.doi.org/10.1016/j.jmsy.2022.06.017 doi: 10.1016/j.jmsy.2022.06.017
    [2] J. Gao, X. Zheng, F. Gao, X. Tong, Q. Han, Heterogeneous multitype fleet green vehicle path planning of automated guided vehicle with time windows in flexible manufacturing system, Machines, 10 (2022), 197. http://dx.doi.org/10.3390/machines10030197 doi: 10.3390/machines10030197
    [3] T. Adamo, T. Bektaş, G. Ghiani, E. Guerriero, E. Manni, Path and speed optimization for conflict-free pickup and delivery under time windows, Transport. Sci., 52 (2018), 739–755. http://dx.doi.org/10.1287/trsc.2017.0816 doi: 10.1287/trsc.2017.0816
    [4] W. Zou, Q. Pan, L. Wang, Z. Miao, C. Peng, Efficient multiobjective optimization for an AGV energy-efficient scheduling problem with release time, Knowl.-Based Syst., 242 (2022), 108334. http://dx.doi.org/10.1016/j.knosys.2022.108334 doi: 10.1016/j.knosys.2022.108334
    [5] Z. Zhang, L. Wu, W. Zhang, T. Peng, J. Zheng, Energy-efficient path planning for a single-load automated guided vehicle in a manufacturing workshop, Comput. Ind. Eng., 158 (2021), 107397. http://dx.doi.org/10.1016/j.cie.2021.107397 doi: 10.1016/j.cie.2021.107397
    [6] S. Shahparvari, B. Bodaghi, Risk reduction for distribution of the perishable rescue items; a possibilistic programming approach, Int. J. Disast. Risk Re., 31 (2018), 886–901. http://dx.doi.org/10.1016/j.ijdrr.2018.07.018 doi: 10.1016/j.ijdrr.2018.07.018
    [7] W. Tan, X. Yuan, G. Huang, Z. Liu, Low-carbon joint scheduling in flexible open-shop environment with constrained automatic guided vehicle by multi-objective particle swarm optimization, Appl. Soft Comput., 111 (2021), 107695. http://dx.doi.org/10.1016/j.asoc.2021.107695 doi: 10.1016/j.asoc.2021.107695
    [8] E. Demir, T. Bektaş, G. Laporte, The bi-objective pollution-routing problem, Eur. J. Oper. Res., 232 (2014), 464–478. http://dx.doi.org/10.1016/j.ejor.2013.08.002 doi: 10.1016/j.ejor.2013.08.002
    [9] Z. Li, H. Sang, J. Li, Y. Han, K. Gao, Z. Zheng, et al., Invasive weed optimization for multi-AGVs dispatching problem in a matrix manufacturing workshop, Swarm Evol. Comput., 77 (2023), 101227. http://dx.doi.org/10.1016/j.swevo.2023.101227 doi: 10.1016/j.swevo.2023.101227
    [10] X. Li, G. Hua, A. Huang, J. Sheu, T. Cheng, F. Huang, Storage assignment policy with awareness of energy consumption in the kiva mobile fulfilment system, Transport. Res. E-Log., 144 (2020), 102158. http://dx.doi.org/10.1016/j.tre.2020.102158 doi: 10.1016/j.tre.2020.102158
    [11] J. Wang, Y. Yu, J. Tang, Compensation and profit distribution for cooperative green pickup and delivery problem, Transport. Res. B-Meth., 113 (2018), 54–69. http://dx.doi.org/10.1016/j.trb.2018.05.003 doi: 10.1016/j.trb.2018.05.003
    [12] B. Zhou, C. Shen, Multi-objective optimization of material delivery for mixed model assembly lines with energy consideration, J. Clean. Prod., 192 (2018), 293–305. http://dx.doi.org/10.1016/j.jclepro.2018.04.251 doi: 10.1016/j.jclepro.2018.04.251
    [13] S. Ghannadpour, A. Zarrabi, Multi-objective heterogeneous vehicle routing and scheduling problem with energy minimizing, Swarm Evol. Comput., 44 (2019), 728–747. http://dx.doi.org/10.1016/j.swevo.2018.08.012 doi: 10.1016/j.swevo.2018.08.012
    [14] N. Sivarami Reddy, D. Ramamurthy, K. Prahlada Rao, M. Padma Lalitha, Practical simultaneous scheduling of machines, AGVs, tool transporter and tools in a multi machine fms using symbiotic organisms search algorithm, Int. J. Comput. Integ. M., 34 (2021), 153–174. http://dx.doi.org/10.1080/0951192X.2020.1858503 doi: 10.1080/0951192X.2020.1858503
    [15] W. Zou, Q. Pan, T. Meng, L. Gao, Y. Wang, An effective discrete artificial bee colony algorithm for multi-AGVs dispatching problem in a matrix manufacturing workshop, Expert Syst. Appl., 161 (2020), 113675. http://dx.doi.org/10.1016/j.eswa.2020.113675 doi: 10.1016/j.eswa.2020.113675
    [16] D. Fontes, S. Homayouni, Joint production and transportation scheduling in flexible manufacturing systems, J. Glob. Optim., 74 (2019), 879–908. http://dx.doi.org/10.1007/s10898-018-0681-7 doi: 10.1007/s10898-018-0681-7
    [17] G. Li, B. Zeng, W. Liao, X. Li, L. Gao, A new AGV scheduling algorithm based on harmony search for material transfer in a real-world manufacturing system, Adv. Mech. Eng., 10 (2018), 1–13. http://dx.doi.org/10.1177/1687814018765560 doi: 10.1177/1687814018765560
    [18] T. Bektaş, G. Laporte, The pollution-routing problem, Transport. Res. B-Meth., 45 (2011), 1232–1250. http://dx.doi.org/10.1016/j.trb.2011.02.004 doi: 10.1016/j.trb.2011.02.004
    [19] X. Pu, X. Lu, G. Han, An improved optimization algorithm for a multi-depot vehicle routing problem considering carbon emissions, Environ. Sci. Pollut. Res. Int., 29 (2022), 54940–54955. http://dx.doi.org/10.1007/s11356-022-19370-0 doi: 10.1007/s11356-022-19370-0
    [20] B. Olgun, Ç. Koç, F. Altıparmak, A hyper heuristic for the green vehicle routing problem with simultaneous pickup and delivery, Comput. Ind. Eng., 153 (2021), 107010. http://dx.doi.org/10.1016/j.cie.2020.107010 doi: 10.1016/j.cie.2020.107010
    [21] V. Yu, P. Jodiawan, A. Gunawan, An adaptive large neighborhood search for the green mixed fleet vehicle routing problem with realistic energy consumption and partial recharges, Appl. Soft Comput., 105 (2021), 107251. http://dx.doi.org/10.1016/j.asoc.2021.107251 doi: 10.1016/j.asoc.2021.107251
    [22] F. Tamke, U. Buscher, The vehicle routing problem with drones and drone speed selection, Comput. Oper. Res., 152 (2023), 106112. http://dx.doi.org/10.1016/j.cor.2022.106112 doi: 10.1016/j.cor.2022.106112
    [23] S. Umar Sherif, P. Asokan, P. Sasikumar, K. Mathiyazhagan, J. Jerald, Integrated optimization of transportation, inventory and vehicle routing with simultaneous pickup and delivery in two-echelon green supply chain network, J. Clean. Prod., 287 (2020), 125434. http://dx.doi.org/10.1016/j.jclepro.2020.125434 doi: 10.1016/j.jclepro.2020.125434
    [24] T. Simolin, K. Rauma, R. Viri, J. Mäkinen, A. Rautiainen, P. Järventausta, Charging powers of the electric vehicle fleet: evolution and implications at commercial charging sites, Appl. Energ., 303 (2021), 117651. http://dx.doi.org/10.1016/j.apenergy.2021.117651 doi: 10.1016/j.apenergy.2021.117651
    [25] S. Erdoğan, E. Miller-Hooks, A green vehicle routing problem, Transport. Res. E-Log., 48 (2012), 100–114. http://dx.doi.org/10.1016/j.tre.2011.08.001 doi: 10.1016/j.tre.2011.08.001
    [26] G. Macrina, L. Di Puglia Pugliese, F. Guerriero, G. Laporte, The green mixed fleet vehicle routing problem with partial battery recharging and time windows, Comput. Oper. Res., 101 (2019), 183–199. http://dx.doi.org/10.1016/j.cor.2018.07.012 doi: 10.1016/j.cor.2018.07.012
    [27] Y. Xiao, Y. Zhang, I. Kaku, R. Kang, X. Pan, Electric vehicle routing problem: a systematic review and a new comprehensive model with nonlinear energy recharging and consumption, Renew. Sust. Energ. Rev., 151 (2021), 111567. http://dx.doi.org/10.1016/j.rser.2021.111567 doi: 10.1016/j.rser.2021.111567
    [28] G. Macrina, G. Laporte, F. Guerriero, L. Di Puglia Pugliese, An energy-efficient green-vehicle routing problem with mixed vehicle fleet, partial battery recharging and time windows, Eur. J. Oper. Res., 276 (2019), 971–982. http://dx.doi.org/10.1016/j.ejor.2019.01.067 doi: 10.1016/j.ejor.2019.01.067
    [29] D. Goeke, M. Schneider, Routing a mixed fleet of electric and conventional vehicles, Eur. J. Oper. Res., 245 (2015), 81–99. http://dx.doi.org/10.1016/j.ejor.2015.01.049 doi: 10.1016/j.ejor.2015.01.049
    [30] L. Qiu, J. Wang, W. Chen, H. Wang, Heterogeneous AGV routing problem considering energy consumption, Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO), 2015, 1894–1899. http://dx.doi.org/10.1109/ROBIO.2015.7419049 doi: 10.1109/ROBIO.2015.7419049
    [31] F. Stavropoulou, The consistent vehicle routing problem with heterogeneous fleet, Comput. Oper. Res., 140 (2022), 105644. http://dx.doi.org/10.1016/j.cor.2021.105644 doi: 10.1016/j.cor.2021.105644
    [32] S. Wang, X. Wang, X. Liu, J. Yu, A bi-objective vehicle-routing problem with soft time windows and multiple depots to minimize the total energy consumption and customer dissatisfaction, Sustainability, 10 (2018), 4257. http://dx.doi.org/10.3390/su10114257 doi: 10.3390/su10114257
    [33] H. Kargari Esfand Abad, B. Vahdani, M. Sharifi, F. Etebari, A bi-objective model for pickup and delivery pollution-routing problem with integration and consolidation shipments in cross-docking system, J. Clean. Prod., 193 (2018), 784–801. http://dx.doi.org/10.1016/j.jclepro.2018.05.046 doi: 10.1016/j.jclepro.2018.05.046
    [34] T. Liao, Integrated inbound vehicle routing and scheduling under a fixed outbound schedule at a multi-door cross-dock terminal, IEEE T. Intell. Transp., 23 (2022), 13217–13229. http://dx.doi.org/10.1109/TITS.2021.3122396 doi: 10.1109/TITS.2021.3122396
    [35] S. Javanmard, B. Vahdani, R. Tavakkoli-Moghaddam, Solving a multi-product distribution planning problem in cross docking networks: an imperialist competitive algorithm, Int. J. Adv. Manuf. Technol., 70 (2014), 1709–1720. http://dx.doi.org/10.1007/s00170-013-5355-5 doi: 10.1007/s00170-013-5355-5
    [36] M. Samani, S. Hosseini-Motlagh, A novel capacity sharing mechanism to collaborative activities in the blood collection process during the covid-19 outbreak, Appl. Soft Comput., 112 (2021), 107821. http://dx.doi.org/10.1016/j.asoc.2021.107821 doi: 10.1016/j.asoc.2021.107821
    [37] S. Jun, S. Lee, Y. Yih, Pickup and delivery problem with recharging for material handling systems utilising autonomous mobile robots, Eur. J. Oper. Res., 289 (2021), 1153–1168. http://dx.doi.org/10.1016/j.ejor.2020.07.049 doi: 10.1016/j.ejor.2020.07.049
    [38] C. Liu, J. Tan, H. Zhao, Y. Li, X. Bai, Path planning and intelligent scheduling of multi-AGV systems in workshop, Proceedings of 36th Chinese Control Conference (CCC), 2017, 2735–2739. http://dx.doi.org/10.23919/ChiCC.2017.8027778 doi: 10.23919/ChiCC.2017.8027778
    [39] C. Hwang, A. Masud, Multiple objective decision making-methods and applications, Berlin: Springer-Verlag, 1979. http://dx.doi.org/10.1007/978-3-642-45511-7
    [40] S. Torabi, E. Hassini, An interactive possibilistic programming approach for multiple objective supply chain master planning, Fuzzy Set. Syst., 159 (2008), 193–214. http://dx.doi.org/10.1016/j.fss.2007.08.010 doi: 10.1016/j.fss.2007.08.010
    [41] Y. Lai, C. Hwang, Possibilistic linear programming for managing interest rate risk, Fuzzy Set. Syst., 54 (1993), 135–146. http://dx.doi.org/10.1016/0165-0114(93)90271-I doi: 10.1016/0165-0114(93)90271-I
    [42] H. Selim, I. Ozkarahan, A supply chain distribution network design model: an interactive fuzzy goal programming-based solution approach, Int. J. Adv. Manuf. Technol., 36 (2008), 401–418. http://dx.doi.org/10.1007/s00170-006-0842-6 doi: 10.1007/s00170-006-0842-6
    [43] W. Zou, Q. Pan, L. Wang, An effective multi-objective evolutionary algorithm for solving the AGV scheduling problem with pickup and delivery, Knowl.-Based Syst., 218 (2021), 106881. http://dx.doi.org/10.1016/j.knosys.2021.106881 doi: 10.1016/j.knosys.2021.106881
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1399) PDF downloads(147) Cited by(3)

Article outline

Figures and Tables

Figures(6)  /  Tables(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog