A large number of physical phenomena can be described and modeled by differential equations. One of these famous models is related to the pantograph, which has been investigated in the history of mathematics and physics with different approaches. Optimizing the parameters involved in the pantograph is very important due to the task of converting the type of electric current in the relevant circuit. For this reason, it is very important to use fractional operators in its modeling. In this work, we will investigate the existence of the solution for the fractional pantograph equation by using a new $ \psi $-Caputo operator. The novelty of this work, in addition to the $ \psi $-Caputo fractional operator, is the use of topological degree theory and numerical results from simulations. Techniques in fixed point theory and the use of inequalities will also help to prove the main results. Finally, we provide two examples with some graphical and numerical simulations to make our results more objective. Our data indicate that the boundedness of the solution set for the desired problem depends on the choice of the $ \psi(\kappa) $ function.
Citation: Reny George, Fahad Al-shammari, Mehran Ghaderi, Shahram Rezapour. On the boundedness of the solution set for the $ \psi $-Caputo fractional pantograph equation with a measure of non-compactness via simulation analysis[J]. AIMS Mathematics, 2023, 8(9): 20125-20142. doi: 10.3934/math.20231025
A large number of physical phenomena can be described and modeled by differential equations. One of these famous models is related to the pantograph, which has been investigated in the history of mathematics and physics with different approaches. Optimizing the parameters involved in the pantograph is very important due to the task of converting the type of electric current in the relevant circuit. For this reason, it is very important to use fractional operators in its modeling. In this work, we will investigate the existence of the solution for the fractional pantograph equation by using a new $ \psi $-Caputo operator. The novelty of this work, in addition to the $ \psi $-Caputo fractional operator, is the use of topological degree theory and numerical results from simulations. Techniques in fixed point theory and the use of inequalities will also help to prove the main results. Finally, we provide two examples with some graphical and numerical simulations to make our results more objective. Our data indicate that the boundedness of the solution set for the desired problem depends on the choice of the $ \psi(\kappa) $ function.
[1] | D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 134 (2020), 109705. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705 |
[2] | A. Alalyani, S. Saber, Stability analysis and numerical simulations of the fractional COVID-19 pandemic model, Int. J. Nonlin. Sci. Num., 2022. https://doi.org/10.1515/ijnsns-2021-0042 doi: 10.1515/ijnsns-2021-0042 |
[3] | A. Din, Y. Li, M. A. Shah, The complex dynamics of hepatitis B infected individuals with optimal control, J. Syst. Sci. Complex., 34 (2021), 1301–1323. https://doi.org/10.1007/s11424-021-0053-0 doi: 10.1007/s11424-021-0053-0 |
[4] | W. Sumelka, B. Luczak, T. Gajewski, G. Z. Voyiadjis, Modelling of AAA in the framework of time-fractional damage hyperelasticity, Int. J. Solids Struct., 206 (2020), 30–42. https://doi.org/10.1016/j.ijsolstr.2020.08.015 doi: 10.1016/j.ijsolstr.2020.08.015 |
[5] | A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum mechanics, New York: Springer-Verlag Wien, 1997. https://doi.org/10.1007/978-3-7091-2664-6 |
[6] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[7] | B. J. West, M. Bologna, P. Grigolini, Physics of fractal operators, New York: Springer, 2011. https://doi.org/10.1007/978-0-387-21746-8 |
[8] | J. Alzabut, A. Selvam, R. Dhineshbabu, S. Tyagi, M. Ghaderi, S. Rezapour, A Caputo discrete fractional-order thermostat model with one and two sensors fractional boundary conditions depending on positive parameters by using the Lipschitz-type inequality, J. Inequal. Appl., 2022 (2022), 56. https://doi.org/10.1186/s13660-022-02786-0 doi: 10.1186/s13660-022-02786-0 |
[9] | F. Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models, World Scientific, 2022. |
[10] | R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, Chem. phys., 284 (2002), 399–408. https://doi.org/10.1016/S0301-0104(02)00670-5 doi: 10.1016/S0301-0104(02)00670-5 |
[11] | M. Fabrizio, C. Giorgi, V. Pata, A new approach to equations with memory, Arch. Rational Mech. Anal., 198 (2010), 189–232. https://doi.org/10.1007/s00205-010-0300-3 doi: 10.1007/s00205-010-0300-3 |
[12] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, 1999. https://doi.org/10.1016/s0076-5392(99)x8001-5 |
[13] | A. A. Kilbas, O. I. Marichev, S. G. Samko, Fractional integrals and derivatives theory and applications, 1993. |
[14] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000. |
[15] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A |
[16] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201 |
[17] | J. Hadamard, Essai sur l'étude des fonctions, données par leur développement de Taylor, Gauthier-Villars, 1892. |
[18] | A. Boutiara, J. Alzabut, M. Ghaderi, S. Rezapour, On a coupled system of fractional $(p, q)$-differential equation with Lipschitzian matrix in generalized metric space, AIMS Math., 8 (2023), 1566–1591. https://doi.org/10.3934/math.2023079 doi: 10.3934/math.2023079 |
[19] | M. Shabibi, M. E. Samei, M. Ghaderi, S. Rezapour, Some analytical and numerical results for a fractional q-differential inclusion problem with double integral boundary conditions, Adv. Differ. Equ., 2021 (2021), 466. https://doi.org/10.1186/s13662-021-03623-2 doi: 10.1186/s13662-021-03623-2 |
[20] | D. Baleanu, S. Rezapour, Z. Saberpour, On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivation, Bound. Value Probl., 2019 (2019), 79. https://doi.org/10.1186/s13661-019-1194-0 doi: 10.1186/s13661-019-1194-0 |
[21] | R. George, S. M. Aydogan, F. M. Sakar, M. Ghaderi, S. Rezapour, A study on the existence of numerical and analytical solutions for fractional integrodifferential equations in Hilfer type with simulation, AIMS Math., 8 (2023), 10665–10684. https://doi.org/10.3934/math.2023541 doi: 10.3934/math.2023541 |
[22] | O. P. Agrawal, Generalized variational problems and Euler-Lagrange equations, Comput. Math. Appl., 59 (2010), 1852–1864. https://doi.org/10.1016/j.camwa.2009.08.029 doi: 10.1016/j.camwa.2009.08.029 |
[23] | M. Klimek, M. Lupa, Reflection symmetric formulation of generalized fractional variational calculus, Fract. Calc. Appl. Anal., 16 (2013), 243–261. https://doi.org/10.2478/s13540-013-0015-x doi: 10.2478/s13540-013-0015-x |
[24] | A. B. Malinowska, T. Odzijewicz, D. F. M. Torres, Advanced methods in the fractional calculus of variations, Cham: springer, 2015. https://doi.org/10.1007/978-3-319-14756-7 |
[25] | R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006 |
[26] | R. Almeida, A. B. Malinowska, M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Method. Appl. Sci., 41 (2018), 336–352. https://doi.org/10.1002/mma.4617 doi: 10.1002/mma.4617 |
[27] | M. S. Abdo, A. G. Ibrahim, S. K. Panchal, Nonlinear implicit fractional differential equation involving-Caputo fractional derivative, Proc. Jangjeon Math. Soc., 22 (2019), 387–400. |
[28] | M. S. Abdo, S. K. Panchal, A. M. Saeed, Fractional boundary value problem with $\psi$-Caputo fractional derivative, Proc. Math. Sci., 129 (2019), 65. https://doi.org/10.1007/s12044-019-0514-8 doi: 10.1007/s12044-019-0514-8 |
[29] | H. A. Wahash, M. S. Abdo, A. M. Saeed, S. K. Panchal, Singular fractional differential equations with $\psi$-Caputo operator and modified Picard's iterative method, Appl. Math. E-Notes, 20 (2020), 215–229. |
[30] | G. Z. Voyiadjis, W. Sumelka, Brain modelling in the framework of anisotropic hyperelasticity with time fractional damage evolution governed by the Caputo-Almeida fractional derivative, J. Mech. Behav. Biomed., 89 (2019), 209–216. https://doi.org/10.1016/j.jmbbm.2018.09.029 doi: 10.1016/j.jmbbm.2018.09.029 |
[31] | H. Aydi, M. Jleli, B. Samet, On positive solutions for a fractional thermostat model with a convex–concave source term via $\psi$-Caputo fractional derivative, Mediterr. J. Math., 17 (2020), 16. https://doi.org/10.1007/s00009-019-1450-7 doi: 10.1007/s00009-019-1450-7 |
[32] | R. Almeida, M. Jleli, B. Samet, A numerical study of fractional relaxation-oscillation equations involving $\psi$-Caputo fractional derivative, RACSAM, 113 (2019), 1873–1891. https://doi.org/10.1007/s13398-018-0590-0 doi: 10.1007/s13398-018-0590-0 |
[33] | R. Almeida, Functional differential equations involving the $\psi$-Caputo fractional derivative, Fractal Fract., 4 (2020), 29. https://doi.org/10.3390/fractalfract4020029 doi: 10.3390/fractalfract4020029 |
[34] | C. Derbazi, Z. Baitiche, M. S. Abdo, T. Abdeljawad, Qualitative analysis of fractional relaxation equation and coupled system with $\psi$-Caputo fractional derivative in Banach spaces, AIMS Math., 6 (2021), 2486–2509. https://doi.org/10.3934/math.2021151 doi: 10.3934/math.2021151 |
[35] | A. Suechoei, P. Sa Ngiamsunthorn, Existence uniqueness and stability of mild solutions for semilinear $\psi$-Caputo fractional evolution equations, Adv. Differ. Equ., 2020 (2020), 114. https://doi.org/10.1186/s13662-020-02570-8 doi: 10.1186/s13662-020-02570-8 |
[36] | J. R. Ockendon, A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. Roy. Soc. Lond. A, 322 (1971), 447–468. https://doi.org/10.1098/rspa.1971.0078 doi: 10.1098/rspa.1971.0078 |
[37] | M. M. Bahsi, M. Cevik, M. Sezer, Orthoexponential polynomial solutions of delay pantograph differential equations with residual error estimation, Appl. Math. Comput., 271 (2015), 11–21. https://doi.org/10.1016/j.amc.2015.08.101 doi: 10.1016/j.amc.2015.08.101 |
[38] | A. Iserles, On the generalized pantograph functional-differential equation, Eur. J. Appl. Math., 4 (1993), 1–38. https://doi.org/10.1017/S0956792500000966 doi: 10.1017/S0956792500000966 |
[39] | M. Sezer, S. Yalcinbas, N. Sahin, Approximate solution of multi-pantograph equation with variable coefficients, J. Comput. Appl. Math., 214 (2008), 406–416. https://doi.org/10.1016/j.cam.2007.03.024 doi: 10.1016/j.cam.2007.03.024 |
[40] | S. Sedaghat, Y. Ordokhani, M. Dehghan, Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials, Commun. Nonlinear Sci., 17 (2012), 4815–4830. https://doi.org/10.1016/j.cnsns.2012.05.009 doi: 10.1016/j.cnsns.2012.05.009 |
[41] | M. Iqbal, K. Shah, R. A. Khan, On using coupled fixed-point theorems for mild solutions to coupled system of multipoint boundary value problems of nonlinear fractional hybrid pantograph differential equations, Math. Method. Appl. Sci., 44 (2021), 8113–8124. https://doi.org/10.1002/mma.5799 doi: 10.1002/mma.5799 |
[42] | Y. Zhang, L. Li, Stability of numerical method for semi-linear stochastic pantograph differential equations, J. Inequal. Appl., 2016 (2016), 30. https://doi.org/10.1186/s13660-016-0971-x doi: 10.1186/s13660-016-0971-x |
[43] | R. George, M. Houas, M. Ghaderi, S. Rezapour, S. K. Elagan, On a coupled system of pantograph problem with three sequential fractional derivatives by using positive contraction-type inequalities, Results Phys., 39 (2022), 105687. https://doi.org/10.1016/j.rinp.2022.105687 doi: 10.1016/j.rinp.2022.105687 |
[44] | K. Balachandran, S. Kiruthika, J. J. Trujillo, Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci., 33 (2013), 712–720. https://doi.org/10.1016/S0252-9602(13)60032-6 doi: 10.1016/S0252-9602(13)60032-6 |
[45] | M. Sezer, S. Yalcinbas, N. Sahin, Approximate solution of multi-pantograph equation with variable coefficients, J. Comput. Appl. Math., 214 (2008), 406–416. https://doi.org/10.1016/j.cam.2007.03.024 doi: 10.1016/j.cam.2007.03.024 |
[46] | K. Guida, L. Ibnelazyz, K. Hilal, S. Melliani, Existence and uniqueness results for sequential $\psi$-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions, AIMS Math., 6 (2021), 8239–8255. https://doi.org/10.3934/math.2021477 doi: 10.3934/math.2021477 |
[47] | S. Bhalekar, J. Patade, Series solution of the Pantograph equation and its properties, Fractal Fract., 1 (2017), 16. https://doi.org/10.3390/fractalfract1010016 doi: 10.3390/fractalfract1010016 |
[48] | H. Afshari, H. R. Marasi, J. Alzabut, Applications of new contraction mappings on existence and uniqueness results for implicit $\phi$-Hilfer fractional pantograph differential equations, J. Inequal. Appl., 2021 (2021), 185. https://doi.org/10.1186/s13660-021-02711-x doi: 10.1186/s13660-021-02711-x |
[49] | K. Balachandran, S. Kiruthika, J. J. Trujillo, Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci., 33 (2013), 712–720. https://doi.org/10.1016/S0252-9602(13)60032-6 doi: 10.1016/S0252-9602(13)60032-6 |
[50] | L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162 (1991), 494–505. https://doi.org/10.1016/0022-247X(91)90164-U doi: 10.1016/0022-247X(91)90164-U |
[51] | J. Sabatier, C. Farges, Initial value problems should not be associated to fractional model descriptions whatever the derivative definition used, AIMS Math., 6 (2021), 11318-11329. https://doi.org/10.3934/math.2021657 doi: 10.3934/math.2021657 |
[52] | K. Deimling, Nonlinear functional analysis, Berlin: Springer 1985. |
[53] | F. Isaia, On a nonlinear integral equation without compactness, Acta. Math. Univ. Comenianae, 75 (2006), 233–240. |
[54] | J. W. Green, F. A. Valentine, On the arzela-ascoli theorem, Math. Magazine, 34 (1961), 199–202. https://doi.org/10.1080/0025570X.1961.11975217 doi: 10.1080/0025570X.1961.11975217 |