Research article Special Issues

Remarks on the end-topology of some discrete groups

  • Received: 07 April 2023 Revised: 10 June 2023 Accepted: 13 June 2023 Published: 19 June 2023
  • MSC : 20F05, 20F67, 20F69

  • In this note we consider the notion of rate of vanishing of the simple connectivity at infinity, a (growth) function that estimates metrically the topology at infinity of metric spaces. In particular we provide a different (geometric) proof of the linearity of the sci-growth for hyperbolic groups.

    Citation: Daniele Ettore Otera. Remarks on the end-topology of some discrete groups[J]. AIMS Mathematics, 2023, 8(9): 20143-20153. doi: 10.3934/math.20231026

    Related Papers:

  • In this note we consider the notion of rate of vanishing of the simple connectivity at infinity, a (growth) function that estimates metrically the topology at infinity of metric spaces. In particular we provide a different (geometric) proof of the linearity of the sci-growth for hyperbolic groups.



    加载中


    [1] M. Bestvina, G. Mess, The boundary of negatively curved groups, J. Amer. Math. Soc., 4 (1991), 469–481.
    [2] M. Bonk, B. Kleiner, Quasi-hyperbolic planes in hyperbolic groups, Proc. Amer. Math. Soc., 133 (2005), 2491–2494.
    [3] B. H. Bowditch, Connectedness properties of limit sets, Trans. Amer. Math. Soc., 35 (1999), 3673–3686.
    [4] M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Berlin, Heidelberg: Springer, 1999. https://doi.org/10.1007/978-3-662-12494-9
    [5] M. W. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidian spaces, Ann. Math., 117 (1983), 293–324. https://doi.org/10.2307/2007079 doi: 10.2307/2007079
    [6] L. Funar, M. Giannoudovardi, D. E. Otera, On groups with linear sci growth, Fund. Math., 228 (2015), 47–62. https://doi.org/10.4064/fm228-1-4 doi: 10.4064/fm228-1-4
    [7] L. Funar, D. E. Otera, A refinement of the simple connectivity at infinity of groups, Arch. Math., 81 (2003), 360–368. https://doi.org/10.1007/s00013-003-4654-8 doi: 10.1007/s00013-003-4654-8
    [8] M. Gromov, Asymptotic invariants of infinite groups, In: Geometric group theory, Cambridge University Press, 1993.
    [9] I. Kapovich, N. Benakli, Boundaries of hyperbolic groups, In: Combinatorial and geometric group theory, American Mathematical Society, 2002, 39–93.
    [10] B. Kleiner, The asymptotic geometry of negatively curved spaces: uniformization, geometrization and rigidity, In: Proceedings of the International Congress of Mathematicians, 2006,743–768.
    [11] B. Kleiner, J. Lott, Notes on Perelman's papers, Geom. Top., 12 (2008), 2587–2858.
    [12] D. E. Otera, On Poénaru's inverse-representations, Quaest. Math., 40 (2017), 277–293. https://doi.org/10.2989/16073606.2017.1286403 doi: 10.2989/16073606.2017.1286403
    [13] D. E. Otera, On simplicial resolutions of groups, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 116 (2022), 138. https://doi.org/10.1007/s13398-022-01283-9 doi: 10.1007/s13398-022-01283-9
    [14] E. L. Swenson, A cut point theorem for $ \rm CAT $(0) groups, J. Differ. Geom., 53 (1999), 327–358.
    [15] G. A. Swarup, On the cut point conjecture, Electron. Res. Announc. Amer. Math. Soc., 2 (1996), 98–100. https://doi.org/10.1090/S1079-6762-96-00013-3 doi: 10.1090/S1079-6762-96-00013-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(995) PDF downloads(93) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog