In this note we consider the notion of rate of vanishing of the simple connectivity at infinity, a (growth) function that estimates metrically the topology at infinity of metric spaces. In particular we provide a different (geometric) proof of the linearity of the sci-growth for hyperbolic groups.
Citation: Daniele Ettore Otera. Remarks on the end-topology of some discrete groups[J]. AIMS Mathematics, 2023, 8(9): 20143-20153. doi: 10.3934/math.20231026
In this note we consider the notion of rate of vanishing of the simple connectivity at infinity, a (growth) function that estimates metrically the topology at infinity of metric spaces. In particular we provide a different (geometric) proof of the linearity of the sci-growth for hyperbolic groups.
[1] | M. Bestvina, G. Mess, The boundary of negatively curved groups, J. Amer. Math. Soc., 4 (1991), 469–481. |
[2] | M. Bonk, B. Kleiner, Quasi-hyperbolic planes in hyperbolic groups, Proc. Amer. Math. Soc., 133 (2005), 2491–2494. |
[3] | B. H. Bowditch, Connectedness properties of limit sets, Trans. Amer. Math. Soc., 35 (1999), 3673–3686. |
[4] | M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Berlin, Heidelberg: Springer, 1999. https://doi.org/10.1007/978-3-662-12494-9 |
[5] | M. W. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidian spaces, Ann. Math., 117 (1983), 293–324. https://doi.org/10.2307/2007079 doi: 10.2307/2007079 |
[6] | L. Funar, M. Giannoudovardi, D. E. Otera, On groups with linear sci growth, Fund. Math., 228 (2015), 47–62. https://doi.org/10.4064/fm228-1-4 doi: 10.4064/fm228-1-4 |
[7] | L. Funar, D. E. Otera, A refinement of the simple connectivity at infinity of groups, Arch. Math., 81 (2003), 360–368. https://doi.org/10.1007/s00013-003-4654-8 doi: 10.1007/s00013-003-4654-8 |
[8] | M. Gromov, Asymptotic invariants of infinite groups, In: Geometric group theory, Cambridge University Press, 1993. |
[9] | I. Kapovich, N. Benakli, Boundaries of hyperbolic groups, In: Combinatorial and geometric group theory, American Mathematical Society, 2002, 39–93. |
[10] | B. Kleiner, The asymptotic geometry of negatively curved spaces: uniformization, geometrization and rigidity, In: Proceedings of the International Congress of Mathematicians, 2006,743–768. |
[11] | B. Kleiner, J. Lott, Notes on Perelman's papers, Geom. Top., 12 (2008), 2587–2858. |
[12] | D. E. Otera, On Poénaru's inverse-representations, Quaest. Math., 40 (2017), 277–293. https://doi.org/10.2989/16073606.2017.1286403 doi: 10.2989/16073606.2017.1286403 |
[13] | D. E. Otera, On simplicial resolutions of groups, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 116 (2022), 138. https://doi.org/10.1007/s13398-022-01283-9 doi: 10.1007/s13398-022-01283-9 |
[14] | E. L. Swenson, A cut point theorem for $ \rm CAT $(0) groups, J. Differ. Geom., 53 (1999), 327–358. |
[15] | G. A. Swarup, On the cut point conjecture, Electron. Res. Announc. Amer. Math. Soc., 2 (1996), 98–100. https://doi.org/10.1090/S1079-6762-96-00013-3 doi: 10.1090/S1079-6762-96-00013-3 |