The aim of this article is to introduce a generalized Hausdorff distance function in the setting of a bicomplex valued metric space. Using this, we obtain common fixed point theorems for generalized contractions. Our outcomes extend and generalize some conventional fixed point results in the literature. We also furnish a significant example to express the genuineness of the presented results. As an application, we derive some common fixed point results for self mappings, including the leading results of [Demonstr. Math., 54 (2021), 474-487] and [Int. J. Nonlinear Anal. Appl., 12 (2021), 717-727].
Citation: Afrah Ahmad Noman Abdou. Common fixed point theorems for multi-valued mappings in bicomplex valued metric spaces with application[J]. AIMS Mathematics, 2023, 8(9): 20154-20168. doi: 10.3934/math.20231027
The aim of this article is to introduce a generalized Hausdorff distance function in the setting of a bicomplex valued metric space. Using this, we obtain common fixed point theorems for generalized contractions. Our outcomes extend and generalize some conventional fixed point results in the literature. We also furnish a significant example to express the genuineness of the presented results. As an application, we derive some common fixed point results for self mappings, including the leading results of [Demonstr. Math., 54 (2021), 474-487] and [Int. J. Nonlinear Anal. Appl., 12 (2021), 717-727].
[1] | C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici, Math. Ann., 40 (1892), 413–467. https://doi.org/10.1007/BF01443559 doi: 10.1007/BF01443559 |
[2] | G. B. Price, An introduction to multicomplex spaces and functions, Boca Raton: CRC Press, 1991. https://doi.org/10.1201/9781315137278 |
[3] | L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087 |
[4] | A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim., 32 (2011), 243–253. https://doi.org/10.1080/01630563.2011.533046 doi: 10.1080/01630563.2011.533046 |
[5] | A. A. Mebawondu, H. A. Abass, M. O. Aibinu, O. K. Narain, Existence of solution of differential equation via fixed point in complex valued $b$-metric spaces, Nonlinear Funct. Anal. Appl., 26 (2021), 303–322. https://doi.org/10.22771/nfaa.2021.26.02.05 doi: 10.22771/nfaa.2021.26.02.05 |
[6] | V. Vairaperumal, J. Carmel Pushpa Raj, J. Maria Joseph, M. Marudai, Common fixed point theorems under rational contractions in complex valued extended $b$-metric spaces, Nonlinear Funct. Anal. Appl., 26 (2021), 685–700. https://doi.org/10.22771/nfaa.2021.26.04.03 doi: 10.22771/nfaa.2021.26.04.03 |
[7] | G. A. Okeke, S. H. Khan, J. K. Kim, Fixed point theorems in complex valued convex metric spaces, Nonlinear Funct. Anal. Appl., 26 (2021), 117–135. https://doi.org/10.22771/nfaa.2021.26.01.09 doi: 10.22771/nfaa.2021.26.01.09 |
[8] | J. Choi, S. K. Datta, T. Biswas, M. N. Islam, Some fixed point theorems in connection with two weakly compatible mappings in bicomplex valued metric spaces, Honam Math. J., 39 (2017), 115–126. https://doi.org/10.5831/HMJ.2017.39.1.115 doi: 10.5831/HMJ.2017.39.1.115 |
[9] | I. H. Jebril, S. K. Datta, R. Sarkar, N. Biswas, Common fixed point theorems under rational contractions for a pair of mappings in bicomplex valued metric spaces, J. Interdiscip. Math., 22 (2019), 1071–1082. https://doi.org/10.1080/09720502.2019.1709318 doi: 10.1080/09720502.2019.1709318 |
[10] | I. Beg, S. K. Datta, D. Pal, Fixed point in bicomplex valued metric spaces, Int. J. Nonlinear Anal. Appl., 12 (2021), 717–727. https://doi.org/10.22075/ijnaa.2019.19003.2049 doi: 10.22075/ijnaa.2019.19003.2049 |
[11] | A. J. Gnanaprakasam, S. M. Boulaaras, G. Mani, B. Cherif, S. A. Idris, Solving system of linear equations via bicomplex valued metric space, Demonstr. Math., 54 (2021), 474–487. https://doi.org/10.1515/dema-2021-0046 doi: 10.1515/dema-2021-0046 |
[12] | A. Tassaddiq, J. Ahmad, A. E. Al-Mazrooei, D. Lateef, F. Lakhani, On common fixed point results in bicomplex valued metric spaces with application, AIMS Mathematics, 8 (2023), 5522–5539. https://doi.org/10.3934/math.2023278 doi: 10.3934/math.2023278 |
[13] | A. H. Albargi, A. E. Shammaky, J. Ahmad, Common fixed point results in bicomplex valued metric spaces with application, Mathematics, 11 (2023), 1207. https://doi.org/10.3390/math11051207 doi: 10.3390/math11051207 |
[14] | N. Mlaiki, J. Ahmad, A. E. Al-Mazrooei, D. Santina, Common fixed points of locally contractive mappings in bicomplex valued metric spaces with application to Urysohn integral equation, AIMS Mathematics, 8 (2023), 3897–3912. https://doi.org/10.3934/math.2023194 doi: 10.3934/math.2023194 |
[15] | Z. Mitrovic, G. Mani, A. J. Gnanaprakasam, R. George, The existence of a solution of a nonlinear Fredholm integral equations over bicomplex $b$-metric spaces, Gulf J. Math., 14 (2022), 69–83. https://doi.org/10.56947/gjom.v14i1.984 doi: 10.56947/gjom.v14i1.984 |
[16] | G. Mani, A. J. Gnanaprakasam, O. Ege, N. Fatima, N. Mlaiki, Solution of Fredholm integral equation via common fixed point theorem on bicomplex valued $b$-metric space, Symmetry, 15 (2023), 297. https://doi.org/10.3390/sym15020297 doi: 10.3390/sym15020297 |
[17] | Z. H. Gu, G. Mani, A. J. Gnanaprakasam, Y. J. Li, Solving a system of nonlinear integral equations via common fixed point theorems on bicomplex partial metric space, Mathematics, 9 (2021), 1584. https://doi.org/10.3390/math9141584 doi: 10.3390/math9141584 |
[18] | C. Klin-eam, C. Suanoom, Some common fixed point theorems for generalized contractive type mappings on complex valued metric spaces, Abstr. Appl. Anal., 2013 (2013), 604215. https://doi.org/10.1155/2013/604215 doi: 10.1155/2013/604215 |
[19] | F. Rouzkard, M. Imdad, Some common fixed point theorems on complex valued metric spaces, Comput. Math. Appl., 64 (2012), 1866–1874. https://doi.org/10.1016/j.camwa.2012.02.063 doi: 10.1016/j.camwa.2012.02.063 |
[20] | W. Sintunavarat, P. Kumam, Generalized common fixed point theorems in complex valued metric spaces and applications, J. Inequal. Appl., 2012 (2012), 84. https://doi.org/10.1186/1029-242X-2012-84 doi: 10.1186/1029-242X-2012-84 |
[21] | K. Sitthikul, S. Saejung, Some fixed point theorems in complex valued metric spaces, Fixed Point Theory Appl., 2012 (2012), 189. https://doi.org/10.1186/1687-1812-2012-189 doi: 10.1186/1687-1812-2012-189 |
[22] | J. Ahmad, C. Klin-eam, A. Azam, Common fixed points for multivalued mappings in complex valued metric spaces with applications, Abstr. Appl. Anal., 2013 (2013), 854965. https://doi.org/10.1155/2013/854965 doi: 10.1155/2013/854965 |
[23] | M. S. Abdullahi, A. Azam, Multivalued fixed points results via rational type contractive conditions in complex valued metric spaces, J. Int. Math. Virtual Inst., 7 (2017), 119–146. https://doi.org/10.7251/JIMVI1701119A doi: 10.7251/JIMVI1701119A |
[24] | A. Azam, J. Ahmad, P. Kumam, Common fixed point theorems for multi-valued mappings in complex-valued metric spaces, J. Inequal. Appl., 2013 (2013), 578. https://doi.org/10.1186/1029-242X-2013-578 doi: 10.1186/1029-242X-2013-578 |
[25] | M. A. Kutbi, J. Ahmad, A. Azam, N. Hussain, On fuzzy fixed points for fuzzy maps with generalized weak property, J. Appl. Math., 2014 (2014), 549504. https://doi.org/10.1155/2014/549504 doi: 10.1155/2014/549504 |
[26] | M. Humaira, G. N. V. Kishore, Fuzzy fixed point results for $\varphi $ contractive mapping with applications, Complexity, 2018 (2018), 5303815. https://doi.org/10.1155/2018/5303815 doi: 10.1155/2018/5303815 |
[27] | J. Carmel Pushpa Raj, A. Arul Xavier, J. Maria Joseph, M. Marudai, Common fixed point theorems under rational contractions in complex valued extended $b$-metric spaces, Int. J. Nonlinear Anal. Appl., 13 (2022), 3479–3490. https://doi.org/10.22771/nfaa.2021.26.04.03 doi: 10.22771/nfaa.2021.26.04.03 |
[28] | L. C. Ceng, N. J. Huang, C. F. Wen, On generalized global fractional-order composite dynamical systems with set-valued perturbations, J. Nonlinear Var. Anal., 6 (2022), 149–163. https://doi.org/10.23952/jnva.6.2022.1.09 doi: 10.23952/jnva.6.2022.1.09 |