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1. Introduction

Gauss gave the theory of complex numbers in 17" century, but his research work was not on record.
Later on, Cauchy initiated an in-depth review of complex numbers in the year 1840, and he is familiar
as a successful originator of complex analysis. The study of complex numbers had its beginning
because the solution of the quadratic equation ax? + bx + ¢ = 0 did not exist for b*> — 4ac < 0 in the set
of real numbers. Under this background, Euler was the first mathematician who presented the symbol
i for V-1, with the property, i> = —1.

On the other hand, the beginning of bicomplex numbers was set up by Segre [1], and they provide
a commutative replacement to the skew field of quaternions. These numbers extrapolated complex
numbers more firmly and precisely to quaternions. For a better extensive study of investigation in
bicomplex numbers, we refer the readers to [2]. In 2007, Huang et al. [3] presented the notion of a
cone metric space (CMS) as an expansion of a traditional metric space (MS) and determined fixed
point results for contractive mappings. Later on, Azam et al. [4] introduced the concept of a complex
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valued metric space (CVMS) as a particular case of a CMS. Mebawondu et al. [5] investigated the
existence of solutions of differential equations by fixed point results in complex valued b-metric
spaces. Vairaperumal et al. [6] established some common fixed point results for rational contractions
in complex valued extended b-metric spaces. Okeke et al. [7] introduced the notion of complex valued
convex metric spaces and proved certain fixed point results. In 2017, Choi et al. [8] introduced the
notion of bicomplex valued metric spaces (bi-CVMS) by combining bicomplex numbers and CVMS.
They proved some common fixed point theorems for weakly compatible mappings. Subsequently,
Jebril et al. [9] used the idea of this novel space and presented theorems for two self mappings in the
framework of bi-CVMS. In 2021, Beg et al. [10] reinforced the conception of bi-CVMS and proved
extrapolated fixed point results. Afterward, Gnanaprakasam et al. [11] presented results for a
contractive type condition in the framework of bi-CVMSs and explored the solution of linear
equations. Later on, Tassaddiq et al. [12] involved control functions in the contractive inequality and
established common fixed point results. Recently, Albargi et al. [13] obtained common fixed points of
six self mapping in the setting of bi-CVMS. Mlaiki et al. [14] introduced locally contractive mappings
in bi-CVMS and proved common fixed point theorems. For more details on CVMS and bi-CVMS, we
refer the readers to [15-28].

In this research work, we introduce a generalized Hausdorff distance function in the framework of
bi-CVMS and obtain common fixed point theorems for generalized contractions. We also furnish a
significant example to illustrate the originality of the obtained results.

2. Preliminaries

We represent by Cy, C; and C, the set of real numbers, the set of complex numbers and the set of
bicomplex numbers, respectively. Segre [1] defined the idea of a bicomplex number as follows:

€ =a+ay + asiy + asiyis,

where ay, a,, a3, a, € Cy, and the independent units iy, i, are such that i% = ig = —1 and i;i, = iri;. We
define the set of bicomplex numbers C, as

G, = {f l=a +axi; + azir + auiyiy @ ay,az, as,a, € Co},

that is,
Co={l:0=21+b2:21,20€Cy},

where 71 = a; + axi1 € Cyand 2, = a3 + a4iy € C. If € = 71 + i,20, p = W1 + lhw, € C,, then the sum is
Cxp=(21+02) (W +ihw) =(21 £w)+ k(22 w)),
and the product is
C-p=(21 +022) (W1 + hwy) = (21w — 22w2) + 12 (Z1W2 + 22w1) .

There are four idempotent elements in C,, which are, 0, 1,¢e; = % and e, = %, out of which ¢;

and e, are nontrivial such that e; + e, = 1 and e;e, = 0. Every bicomplex number z; + iz, can uniquely
be expressed as a combination of e;and e;, namely,

(=z1+hz =@ —Lzn)e +(z1+ii122)en.
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This description of ¢ is familiar as the idempotent representation of £, and the complex coeflicients ¢,
= (z1 —i122) and ¢, = (21 + i122) are known as idempotent components of the bicomplex number ¢.

An element ¢ = z; + iz, € G, is invertible if there exists p € C, such that {p = 1. In this way, the
element p is the multiplicative inverse of £. As a consequence, ¢ is the multiplicative inverse of p.

An element £ = z; + iz, € C, is non-singular if and only if |z + z3| # 0 and singular if and only if
|22 + 22| = 0. The inverse of ¢ is defined as

-1 21 — 2
l 0 Zf N Z% .
Zero is the only member in C, that does not possess a multiplicative inverse, and in C;, 0 = 0 + i0
is the only member that does not possess a multiplicative inverse. We represent the sets of singular
members of Cy and C; by ‘W, and W, respectively. There are many members in C, that do not have
multiplicative inverse. We represent this set by W,, and evidently W, = W, c W,.

A bicomplex number € = a; + ayi; + asiy + aqiji; € C, is said to be degenerated if the matrix

as A4 )y
is degenerated. In that case, ™! exists, and it is also degenerated.
The norm ||-|| of C, is a positive real valued function, and [|-|| : C, — Cj is defined by

1
. 2 212
lz1 + ixzall = {la P + |z

[|(Z1 — 1) + |(z1 + i122)|2]2
2

121l

=

(a%+a§+a§+aﬁ) ,

where € = ay + axiy + azip + aslir =71 + 22 € Cz.
A linear space C, with regard to norm ||-|| is a normed linear space, and since C, is complete, thus
C, is the Banach space. If £, p € C,, then

ol < V21el ol

holds instead of
I€oll < [I€1] lloll -

Therefore C, is not the Banach algebra. The partial order relation <;, on C,; is defined as follows:
Let C, be the set of bicomplex numbers and € = z; + 1222, p = Wy + hw, € C,. Then

{ <, p© Re(z;) 2 Re(w;) and Im(z;) < Im (wy).

It follows that
t=<pp

if one of these assertions is satisfied:
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@z = wi, 22 <wy,
(b)zi < wi, 22 = wy,
©z1 < w, 22<w,
Dz = wi, 22=ws.

In particular, we can write £ 5;, p if £ <;, p and € # p, that is, one of (a), (b) and (c) 1s satisfied, and we
will write £ = p if only (d) is satisfied. For any two bicomplex numbers ¢, p € C,, we can verify the
followings:

D) £ =, p = Il < lloll,

@) 1€+ pll < €l + llell
(i11) |laf|| < allpll , where a 1s a non-negative real number,

@(v) lleoll < V21l el
™ [l = nar,
el — el
i [£] = g
Choi et al. [8] defined the notion of a bi-CVMS as follows.

Definition 2.1. [8] Let O # 0 and x : O X O — C, be a function satisfying

(1) 0 <, k(0,0) and k(0,0) =0 © 0 =,
(i) «(0,0) = k(p,0),

(ii1) k(0 0) =, k(0 V) + k(v, 0),
for all o, 0,v € O. Then (O, k) is a bi-CVMS.
Example 2.1. [10] Let O = C; and 0,0 € O. Define k : O X O — C, by

K(0,0) = |21 — wi| + i2 |22 — wol
where o = 71 + 022, 0 = Wy + hw, € C,. Then, (O, k) is a bi-CVMS.
Lemma 2.1. [10] Let {o,,} C (O, k). Then, {0} converges to { if and only if ||k(c,,, o)|| = 0asn — oo.

Lemma 2.2. [10] Let {0} C (O, k). Then, {0} is a Cauchy sequence if and only if ||k(c, O pim)ll —
0asn — oo, where m € N.

Let (O, k) be a bi-CVMS. We denote by N(O) ( resp. CB(0)) the collection of nonempty (resp. the
collection of nonempty, closed and bounded ) subsets of (O, ). Now, we denote generalized Hausdorff
distance function as g and define

PO =lpeCs: £=,p)

for £ € C,, and
9(.B) = Up(k(e.0) = UILeCr: k(0:0) %5 0)

foroc € Oand B € CB(O).For A, B € CB(0O), we denote
0.8 =(n ga(mB))m(n go(a,A)).
o€A o€B
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Remark 2.1. Let (O,«) be a bi-CVMS. If we take a» = a3 = a4, then (O, k) is a metric space.
Furthermore, for A, B € CB(O),
H(A,B) =inf 9 (A, B)

is the Hausdorff distance induced by «.
Let 3 : O — CB(0O) be a multi-valued mapping. For o € O, and A € CB(O), define
W,(A) = {k(o,0) : 0 € A}.
Thus, for o, 0 € O
Wy(30) = {k(0,0) : 0 € Zo}-

Definition 2.2. Let (O, k) be a bi-CVMS. A nonempty subset A of O is called bounded from below if
there exists ¢ € C,, such that £ <;, p, for all p € A.

=i
Definition 2.3. Let (O, k) be a bi-CVMS. A mapping £ : O — 2 is said to be bounded from below if
for o € O, if there exists ¢, € C such that

ty <i, p, forallpe L,.

Definition 2.4. Let (O, k) be a bi-CVMS. A mapping = : O — CB(O) is said to have lower bound (1.b)
property on (O, k), if for any o € O, the multi-valued mapping £, : O — 2% defined by,

LO’(:Q) = W(T(:Q)
is bounded from below, that is, for o, 0 € O, there exists /,(Jo) € C such that;
l(T(:Q) 5i2 p

for all p € W,(20), where [,(Jo) is called the lower bound of 3 associated with (o, 0).

Definition 2.5. Let (O, k) be a bi-CVMS. A mapping 2 : O — CB(O) is said to satisfy greatest lower
bound (g.1.b) property on (O, k) if a greatest lower bound of W,(Jp) exists in C,, for all 0,0 € O. We
represent by (o, Jo) the g.1.b. of W,(Jp), that is,

(o, 3o) = inf{x(o, 1) : u € Jo}.
3. Main result

Throughout this section, we consider (O, k) as a complete bi-CVMS, and the mappings 3J;, 3, :
O — CB(O) satisfy the g.1.b. property.

Theorem 3.1. Let (O, k) be a complete bi-CVMS, and let 3,3, : (O, k) — CB(O) be such that

k (o, 310) k (0, 20) N k (0, 310) k (0, 2r0)

Nik(o,0) +Roe——2 1+«(0,0)

€ p(d10, 220) (3.1

forall 0,0 € O and 8, 8,,8; € [0, 1) with 8; + V28, + V285 < 1. Then, there exists w € O such
that w € Jyow N J,w.
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Proof. Let oy € O be an arbitrary point and oy € J,07. From (3.1), we have

k(00, 2100) k (071, F2071) k(o1 3100) k (070, F2071)
N +N +N | = .
1k(00, 01) + Ry T+ k(00,00 3 T+ k(00,00 € p(J100, =2071)

This implies that

k (0o, A100) Kk (01, Tr01) k (o1, 3100) Kk (00, A2071)
N , N N N |
IK(O-O 0-1) MR 1+ K(O'(),O']) RS 1+ K(O'o,O'l) € oedioyp 80(0- 20-1)

k(00, 3100) kK (071, 22071) k(o1,3100) k (070, 22071)
|
Nik(oo,01) + X T+ k(00,00 + N3 T+ k(00,00 € 9 (o, d0)

for o € 3,07. Since o7 € 2,07, we have

| | 3 |
N1K(00,01)+NZK(O-O’ 100) k (071, 20'1)+N3K(0'1, 1070) K (079, J2071) A
1+« (09, 01) 1+« (09, 01)
This implies that
| 3 | |
le(ao,01)+NzK(ao’ 100) K (071, 201)+N3K(m’ 100) K (070, zm)e U oo,
1+ «k(0g,0) 1+« (0, 0) oedyoy

So, there exists o, € J,0; and we have

Kk (09, 3100) k (071, F201) k(oy,3100) k (070, 22071)
N +N +N .
1K(09, 01) + Ry T+ x @000 3 T4 k(00,00 € p (k(o1,07))

Therefore,

k(0g, 2100) k (071, Jp071) k(oy,3100) k (079, F2071)

k(o1,02) <i, Rik(oo,01) + R,

- 1 +«k(og,01) : I+« (og,01)
Since the pair (3, 3,) satisfies g.1.b. property, we get
(o1, 3) <o, Nuk(oro, o) + NZK(GO’ o) k(o,0) 3K(0'1,0'1)K(0'0,0'2)
1+ «k(0g,0) 1+ k(09,01)

k (0o, 01)k(071,07)

=N +N
1k(0g, 01) 2 1+ k(0g.01)

This implies

k (oo, 01) Kk (01,07)

IA

N lk(oo, oIl + R

lIk(or, o)

1 +«(og,01)
llx (07, o)

N ) ZN ]
k(oo oIl + V2 T+ koo @02

IA

N1 k(oo oIl + V2R, Ik (07, o)

IA

lix(oo,0 DIl PR
because 7o~ < 1. This yields

N
ko1, )| £ ———— lIk(cro, DIl (3.2)

1 - V28,
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Similarly, for o, € J,07; and from (3.1), we have

k (02, 3102) k (071, F201)

Nik(o1,02) + 8 T4 K@ 00)
2,U1

k (o1, 3102) k (03, D0
s = 1 -:-Kz()a(;) 271) € P(2102, Dho)) = (o, 310).
2,071

This implies that

k(02, 2102) k (071, Jp071) k(o1,2102) k (02, p071)
N , N N N s =
1K(O-l 0-2) MR 1+ K(O'z,O']) 0 1+ K(O'z,O'l) < oedro 80(0— 10_2)

k(0, 3100) k(01,0 k(o,3109) k (0, o
Nik(o1,02) + Ny ( 21_1’_;()0_(01)2 1)'H’% ( 11_1|_K2()O_((72)2 I)G 9 (o, 3102)
2:U1 2,U1

for oo € 2,07;. Since o, € 2,07;, we have

K(0'2,310'2)K(0'1,320'1) K(0'1,310'2)K(0'2,320'1)
N , N N , 3 )
1K(01,02) + Ry 1+ k(0. 0) + N3 1+ k(0. 01) € 9 (02,3107)

This implies that

k(02, 3102) k (071, 22071) k(01,3102) k (072, 22071)
N +N +N e U .
1K(0-1,O-2) 2 1 +K(O'2,0'1) 3 1 +K(O'2,0'1) oedjo KJ(O-Z’O-)

So, there exists o3 € J;05, and we have

k(05,3105)k(0, Tro k(o,3105) k(03, Do
Nik(o1,07) + N ( 21-:-K2()(72(011) 2 1)4‘?'43 ( IIJ_KZ()UZ(;) 2 1)6 9 (k(02,03)) .

Therefore,

k(02, 3102) k (071, F2071) k(o1,3102) k (02, Jp071)

B ﬁl' N 2 + N
k(02,03) =i, Nik(01,02) + 8, T+ k(0. 00) 3 1+ (0, 01)

Since the pair (3, 3,) satisfies g.1.b. property, we get

k(02,03)k (071, 07) k(o1,03)k(02,07)
3

k(02,03) <i, Nik(oy,02) + R

1+«k(0,07) 1 +«(0o2,00)

= Nik(oy,07) + 82K(02’03)K(0'1’0'2)

1+«k(oq,07)

This implies

k (02, 03)k (071, 07)

lk(o2, 03)ll < Ryllk(or, o)l + 8y

1+«k(oq,07)
llx (o1, o)

N1 ||k(oy, o + V28 k(0,0
1 Ik(om1, o)l TIPS llx (072, o3)|

N1 lIk(ory, o)l + V2R, Ik (0, 073))|

IA

IA
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since AWMLl | This yields

IT+x(o 1,02l
Ny
llk(o2, 03)| £ ————— lIk(071, 02)] - (3.3)
1 - V2K,
Let —L_— = N < 1. Then, from (3.2) and (3.3), we have

1- \/§N2

2
llk(o2, o3I < Nlk(om1, o)l < N7 [[k(0m1, o)l -
Thus, we can generate a sequence {o,} in O such that
Oons1 € 3102, and 02,42 € Jp0 041,

and
k(T , T DIl £ R lk(0 -1, TN < oo < N |k(070, 01| -

for n € N. Now, for m > n and by the triangle inequality, we have

@l < R [k (o, o)l

+R" ik (o, o)

+ ... N1 ||k (o9, 01|

[Nn LRy N’”_]] |k (09, 01|

IA

Now, by taking n — oo, we get
llk (0 T)ll = 0.

Thus, {0} is a Cauchy sequence in O by Lemma 2.2. Therefore there exists @ € O such that lim o, =

n—oo

w. Then, also, lim 0, = @, and lim 0»,,; = @. Now, we show that w € J;w and w € J,@.
n—00 n—->oo

From (3.1), we have

> =10 2 , = , 21072, n> =
Nik(o2, @) + Nzk(o-2 1020) K (@, Jy) + N3K(w 1T20) K (T 202 $2) € p(J109, @),
1 + k (0, @) 1 + k (0y,, @)
which implies that
ns = n ’ m ’ | n ns |
R ik(0ay. ) + NzK(O-z 102,) K (@, Do) N NgK(w 102) K (072, o) € N 9 D)
1+ k (0, @) 1+ k (0, @) cediom
ns : n ’ : . : n ns :
N1K(O'2n,w')+NzK(O-2 102,) K (@, Do) +N3K(w 102) K (072, o) ¢ ¢ (0.2
1 + k (05, @) 1 + k (05, @)

for o € 3,0,. Since 07,,.1 € 3107, we have

K (O 2n, 3102,) K (w7, D) Kk (@, 3102,) K (02, @)
N )+ N +N nals = .
1K(O 2, @) + Ny [+ (0. 0) 3 T+ k(00 @) € 9 (Oont1, @)

By definition
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K (02, B1072,) K (@, @)

Nik(o2, @) + Ry 1+ k(0. @)
2ns

Kk (w, 3102,) kK (072, A )
+83 =2 w2 e 9 (Ope1, @) = U @(K(Uzn+1,0/))-
1+ k(0o @) oledhw

There exists o, € J,w such that

> =102 , = , 2102, n> =
N k(0 @) + Ry T2 2T K@, D) | K@ 2102) KT 20T 1 0)
1+« (0yy,, @) 1 + k (02, @)
By definition
k(O on, A102,) K (@, @) Kk (@, 3102,) K (02, @)

K(O 241, @) Siy R1K(0 20, @) + Ry 3
(O on+ n) i (20, @) 1 + k(02,, @) 1 + k (02, @)

Since the pair (3;, 3,) satisfies g.1.b. property, we get

+ NgK (W, 0-2n+1) K (O-Zn’ ID'”) ) (34)

1 + k(02,, @) 1 + k (02, @)

K (0-2n, 0-2n+1) K (ID', wn)

K(O2p41, @) Ziy N1k(02,, @) + Ny

By the triangle inequality, we have
K(@, @,) <), K(@, Oani1) + K(T2ni1, Tn).

Now, using (3.4), we have

k(w, @,) X, K@, 02p11) + K(O 2441, @n)

=i, K(@, 02n41) + Nik(020, @)

N NzK(GZ"’ Oons1) K (@, @y) N N3K(w’ Oon+1) K (020, @)
1 + k (02, @) 1 + k (02, @)
which implies
llk(@, @)l < k(@ 02ns1)l] + Ny [[K(020, D)
N K (O 2n, Oons1) K (@, @)) N K (@, 02p11) K (020, @)

1 + k (02, @) 1 + k (02, @)

K (T 2n, O2n41)
< (@, Tane )l + Ny k(02 @] + V2R, || 2220 ‘ Ik (@, @)l

1+ k (0y,, @)

K (@, O2p41)
1+ k (0, @)

+ ‘/5&3

‘ e (@, @]

Taking the limit as n — oo, we have ||k(@, @, )|| = 0 as n — oco. Thus, @, — @ as n — oo. Since J,@
is closed, we have @w € J,w. Similarly, we can prove that @ € J,@. Therefore, @ is a common fixed
point of J; and 2. O

Corollary 3.1. Let (O,k) be a complete bi-CVMS and let 2 : (O,x) — CB(O) be a multi-valued
mapping with g.1.b. property such that

k (o, Aor) k (0, 2o) LR k (0, 30) k (0, 2o)
1 +«(0,0) 1+ k(0,0

Nik(o,0) + X, € p(do, o) (3.5

forall 0,0 € O and 8;,8,,8; € [0, 1) with 8; + V28, + V285 < 1. Then, there exists w € O such
that w € Jw.
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Proof. Take 3, = 3, = Jin Theorem 3.1. O
Corollary 3.2. Let (O, k) be a complete bi-CVMS and let 3,3, : (O, k) = CB(O) be such that

K(O-, :10-) K(Qa :29)

Nik(o,0) + N, 1+ %00

€ p(d10, 220) (3.6)

for all o0 € O and 8,8, € [0,1) with 8, + V28, < 1. Then, there exists w € O such that
w e 1o N Hho.

Proof. Take 83 = 0 in Theorem 3.1. O
Corollary 3.3. Let (O, ) be a complete bi-CVMS and 3 : (O, k) — CB(O) be such that

k (o, o) k (0, 2o)

NIK(O-a Q) + 82 1 T K(O' Q)

€ p(do, o) (3.7)

forall o,0 € O and N1, R, € [0, 1) with N; + V2R, < 1. Then, there exists @ € O such that w € Jw.
Proof. Take J; = 3, = Jin Corollary 3.2. O
Corollary 3.4. Let (O, k) be a complete bi-CVMS and 2,3, : O — CB(O) be such that

k (0, 310) k (0, 220)
1 +«(0,0)

Nik(o,0) + N3 € p(d10, 220) (3.8)

for all o,0 € O and 8,83 € [0,1) with 8| + V2R3 < 1. Then, there exists @ € O such that
w e o N .

Proof. Take N8, = 0 in Theorem 3.1. O
Corollary 3.5. Let (O, k) be a complete bi-CVMS and let 3 : (O, k) — CB(O) be such that

k (0, d0) k (07, 2o)
1+ «(0,0)

Nik(o,0) + N3 € p(3Jo, Jo) (3.9

forall 0,0 € O and 81,85 € [0, 1) with 8, + V285 < 1. Then, there exists @ € O such that @ € Jw.
Proof. Set 3, = J, = Jin Corollary 3.4. O
Corollary 3.6. Let (O, ) be a complete bi-CVMS and let 31,3, : (O, k) — CB(O) be such that

Rik(o, 0) € p(3107, 220) (3.10)

forall 0,0 € O and 8y € [0, 1) with 8; < 1. Then, there exists w € O such that w € Jyw N I, @.
Proof. Choose X, = N3 = 0in Theorem 3.1. O
Corollary 3.7. Let (O, k) be a complete bi-CVMS and let 3 : (O, k) — CB(O) be such that

Nik(0,0) € p(3o, o) (3.11)

forall 0,0 € O and X € [0, 1). Then, there exists w € O such that w € Jw.
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Proof. Take 3, = 2, = Jin Corollary 3.6. O

Example 3.1. Let O = [0, 1]. Define xk : O X O — C, by
k(o,0) = (1 +i)lo —ol.
Then, (O, «) is a complete bi-CVMS. Consider the mappings 3y, 3, : O — CB(O) defined by
Ji0 =0, 10'] and Z,0 = [0, i0'].
5 10

If o = o = 0, then obviously the contractive condition is satisfied. Now, we assume that o < o Then,
we have

k(o,0) = (I1+i)lo—ol,
k(o,J10) = (1+i2)0'—%|,
k(0,220) = (1+iz)@—£',
12
) o
«(0.310) = <1+z2)p—g',
(0, Do) = <1+iz>a—3|,
12
and
o
00T = (1 + )| - 2).
Consider,
Kk (o, 310) k (0, 220) k(0,310) k (0, 2r0)
N ,0) + N +N
i« (o0) 2 1 +«(0,0) 3 1+«(0,0)
o= %llo-5| . lo-¢llo-5
= N — +N6— - s =
e R A P e
Then, for any values of 8, and 8; and 8; = £, we have
o 1 o-%lloe-5 o-¢llo-5
'——QS—|Q—O'|+N2| 6|| 12 3| 6|| 12
6 12176 1+o— ol 1+o0o—- o

Hence,

k (o, 310) k (0, 30) e k(0,310) k (0, 3r0)

N N
1K(0,0) + 8, 1+« (o, 0) 3 1+« (o, 0)

€ p(3,0, 20).
Thus, all the axioms of Theorem 3.1 hold, and the pair (2;, 3,) has a fixed point 0.

Now, if we consider J;(0) = {0} and J,(0) = {0} in Theorem 3.1, then we can derive the key result
of Gnanaprakasam et al. [11] in this manner.
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Corollary 3.8. [11] Let (O, k) be a complete bi-CVMS and let 3,3, : (O, k) — (O, k) be such that

K(O-?JIO-)K(Q,JZQ) +N K(Q,:]O')K(O',JZQ)
1 +«(0,0) : 1 +«(o,0)

/<(310', :2@) 5,’2 le(O', Q) + Nz

for all 0,0 € O and K{,N,,83 € [0, 1) with X, + V2R, + V285 < 1. Then, there exists @ € O such
that w = Jyw = .

Corollary 3.9. Let (O, k) be a complete bi-CVMS and let 3 : (O, k) — (O, k) be such that

k (o, o) k (0, 20) L (0, 30) k (07, 30)

: : <i N s N
k(dor, 30) =i, Nik(0,0) + Ry 1+ (o, 0) 1 +k(o,0)

forall 0,0 € O and 8;,8,,8; € [0, 1) with 8; + V28, + V285 < 1. Then, there exists w € O such
that w = Jw.

Proof. Take 3, = 2, = Jin Corollary 3.8. O
Corollary 3.10. Let (O, k) be a complete bi-CVMS and let 31,2, : (O, k) — (O, k) be such that

k (o, 310) k (0, 220)

K310, 20) =i, Nix(o,0) + Mo —— =2

for all o,0 € O and K,8, € [0,1) with 8 + V2R, < 1. Then, there exists @ € O such that
w= 31T = .

Proof. Take 83 = 0 in Corollary 3.8. O
Corollary 3.11. [10] Let (O, k) be a complete bi-CVMS and let 3 : (O, k) — (O, k) be such that

k (o, Jor) k (0, o)
1+«(0,0)

k(Jo, o) <i, Nik(o,0) + N,
forall 0,0 € O and 81, X, € [0, 1) with N, + V2K, < 1. Then, there exists @ € O such that w = Jw.
Proof. Take J; = J, = d in the above Corollary. O
4. Conclusions

In this paper, we have introduced a generalized Hausdorff distance function in the setting of bi-
CVMS and obtained common fixed point results for rational contractions. We hope that the established
theorems in this paper will form contemporary associations for researchers who are working in bi-
CVMS. As an application of our main results, we have derived some results for self mappings in the
context of bi-CVMS, including the leading results of [Demonstr. Math., 54 (2021), 474-487] and [Int.
J. Nonlinear Anal. Appl., 12 (2021), 717-7217].

Use of Al tools declaration

The author declares she has not used Artificial Intelligence (Al) tools in the creation of this article.

AIMS Mathematics Volume 8, Issue 9, 20154-20168.



20166

Acknowledgments

This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under grant No. (UJ-21-
DR-68). The author, therefore, thanks the University of Jeddah for its technical and financial support.

Conflict of interest

The author declares that she has no conflict of interest.

References

1. C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici, Math. Ann., 40
(1892), 413-467. https://doi.org/10.1007/BF01443559

2. G. B. Price, An introduction to multicomplex spaces and functions, Boca Raton: CRC Press, 1991.
https://doi.org/10.1201/9781315137278

3. L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J.
Math. Anal. Appl., 332 (2007), 1468—1476. https://doi.org/10.1016/j.jmaa.2005.03.087

4. A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces,
Numer. Funct. Anal. Optim., 32 (2011), 243-253. https://doi.org/10.1080/01630563.2011.533046

5. A. A. Mebawondu, H. A. Abass, M. O. Aibinu, O. K. Narain, Existence of solution of differential
equation via fixed point in complex valued b-metric spaces, Nonlinear Funct. Anal. Appl., 26
(2021), 303-322. https://doi.org/10.22771/nfaa.2021.26.02.05

6. V. Vairaperumal, J. Carmel Pushpa Raj, J. Maria Joseph, M. Marudai, Common fixed point
theorems under rational contractions in complex valued extended b-metric spaces, Nonlinear
Funct. Anal. Appl., 26 (2021), 685-700. https://doi.org/10.22771/nfaa.2021.26.04.03

7. G. A. Okeke, S. H. Khan, J. K. Kim, Fixed point theorems in complex valued convex metric spaces,
Nonlinear Funct. Anal. Appl., 26 (2021), 117-135. https://doi.org/10.22771/nfaa.2021.26.01.09

8. J. Choi, S. K. Datta, T. Biswas, M. N. Islam, Some fixed point theorems in connection with two
weakly compatible mappings in bicomplex valued metric spaces, Honam Math. J., 39 (2017), 115—
126. https://doi.org/10.5831/HMJ.2017.39.1.115

9. L. H. Jebril, S. K. Datta, R. Sarkar, N. Biswas, Common fixed point theorems under rational
contractions for a pair of mappings in bicomplex valued metric spaces, J. Interdiscip. Math., 22
(2019), 1071-1082. https://doi.org/10.1080/09720502.2019.1709318

10. I. Beg, S. K. Datta, D. Pal, Fixed point in bicomplex valued metric spaces, Int. J. Nonlinear Anal.
Appl., 12 (2021), 717-727. https://doi.org/10.22075/ijnaa.2019.19003.2049

11. A. J. Gnanaprakasam, S. M. Boulaaras, G. Mani, B. Cherif, S. A. Idris, Solving system of
linear equations via bicomplex valued metric space, Demonstr. Math., 54 (2021), 474-487.
https://doi.org/10.1515/dema-2021-0046

AIMS Mathematics Volume 8, Issue 9, 20154-20168.


http://dx.doi.org/https://doi.org/10.1007/BF01443559
http://dx.doi.org/https://doi.org/10.1201/9781315137278
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2005.03.087
http://dx.doi.org/https://doi.org/10.1080/01630563.2011.533046
http://dx.doi.org/https://doi.org/10.22771/nfaa.2021.26.02.05
http://dx.doi.org/https://doi.org/10.22771/nfaa.2021.26.04.03
http://dx.doi.org/https://doi.org/10.22771/nfaa.2021.26.01.09
http://dx.doi.org/https://doi.org/10.5831/HMJ.2017.39.1.115
http://dx.doi.org/https://doi.org/10.1080/09720502.2019.1709318
http://dx.doi.org/https://doi.org/10.22075/ijnaa.2019.19003.2049
http://dx.doi.org/https://doi.org/10.1515/dema-2021-0046

20167

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

A. Tassaddiq, J. Ahmad, A. E. Al-Mazrooei, D. Lateef, F. Lakhani, On common fixed point results
in bicomplex valued metric spaces with application, AIMS Mathematics, 8 (2023), 5522-5539.
https://doi.org/10.3934/math.2023278

A. H. Albargi, A. E. Shammaky, J. Ahmad, Common fixed point results in bicomplex valued metric
spaces with application, Mathematics, 11 (2023), 1207. https://doi.org/10.3390/math11051207

N. Mlaiki, J. Ahmad, A. E. Al-Mazrooei, D. Santina, Common fixed points of locally contractive
mappings in bicomplex valued metric spaces with application to Urysohn integral equation, AIMS
Mathematics, 8 (2023), 3897-3912. https://doi.org/10.3934/math.2023194

Z. Mitrovic, G. Mani, A. J. Gnanaprakasam, R. George, The existence of a solution of a nonlinear
Fredholm integral equations over bicomplex b-metric spaces, Gulf J. Math., 14 (2022), 69-83.
https://doi.org/10.56947/gjom.v14i1.984

G. Mani, A. J. Gnanaprakasam, O. Ege, N. Fatima, N. Mlaiki, Solution of Fredholm integral
equation via common fixed point theorem on bicomplex valued b-metric space, Symmetry, 15
(2023), 297. https://doi.org/10.3390/sym15020297

Z. H. Gu, G. Mani, A. J. Gnanaprakasam, Y. J. Li, Solving a system of nonlinear integral equations
via common fixed point theorems on bicomplex partial metric space, Mathematics, 9 (2021), 1584.
https://doi.org/10.3390/math9141584

C. Klin-eam, C. Suanoom, Some common fixed point theorems for generalized contractive
type mappings on complex valued metric spaces, Abstr. Appl. Anal., 2013 (2013), 604215.
https://doi.org/10.1155/2013/604215

F. Rouzkard, M. Imdad, Some common fixed point theorems on complex valued metric spaces,
Comput. Math. Appl., 64 (2012), 1866—1874. https://doi.org/10.1016/j.camwa.2012.02.063

W. Sintunavarat, P. Kumam, Generalized common fixed point theorems in complex valued metric
spaces and applications, J. Inequal. Appl., 2012 (2012), 84. https://doi.org/10.1186/1029-242X-
2012-84

K. Sitthikul, S. Saejung, Some fixed point theorems in complex valued metric spaces, Fixed Point
Theory Appl., 2012 (2012), 189. https://doi.org/10.1186/1687-1812-2012-189

J. Ahmad, C. Klin-eam, A. Azam, Common fixed points for multivalued mappings in
complex valued metric spaces with applications, Abstr. Appl. Anal., 2013 (2013), 854965.
https://doi.org/10.1155/2013/854965

M. S. Abdullahi, A. Azam, Multivalued fixed points results via rational type contractive
conditions in complex valued metric spaces, J. Int. Math. Virtual Inst., 7 (2017), 119-146.
https://doi.org/10.7251/JIMVI1701119A

A. Azam, J. Ahmad, P. Kumam, Common fixed point theorems for multi-valued mappings in
complex-valued metric spaces, J. Inequal. Appl., 2013 (2013), 578. https://doi.org/10.1186/1029-
242X-2013-578

M. A. Kutbi, J. Ahmad, A. Azam, N. Hussain, On fuzzy fixed points for fuzzy
maps with generalized weak property, J. Appl. Math., 2014 (2014), 549504.
https://doi.org/10.1155/2014/549504

AIMS Mathematics Volume 8, Issue 9, 20154-20168.


http://dx.doi.org/https://doi.org/10.3934/math.2023278
http://dx.doi.org/https://doi.org/10.3390/math11051207
http://dx.doi.org/https://doi.org/10.3934/math.2023194
http://dx.doi.org/https://doi.org/10.56947/gjom.v14i1.984
http://dx.doi.org/https://doi.org/10.3390/sym15020297
http://dx.doi.org/https://doi.org/10.3390/math9141584
http://dx.doi.org/https://doi.org/10.1155/2013/604215
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2012.02.063
http://dx.doi.org/https://doi.org/10.1186/1029-242X-2012-84
http://dx.doi.org/https://doi.org/10.1186/1029-242X-2012-84
http://dx.doi.org/https://doi.org/10.1186/1687-1812-2012-189
http://dx.doi.org/https://doi.org/10.1155/2013/854965
http://dx.doi.org/https://doi.org/10.7251/JIMVI1701119A
http://dx.doi.org/https://doi.org/10.1186/1029-242X-2013-578
http://dx.doi.org/https://doi.org/10.1186/1029-242X-2013-578
http://dx.doi.org/https://doi.org/10.1155/2014/549504

20168

26. M. Humaira, G. N. V. Kishore, Fuzzy fixed point results for ¢ contractive mapping with
applications, Complexity, 2018 (2018), 5303815. https://doi.org/10.1155/2018/5303815

27. J. Carmel Pushpa Raj, A. Arul Xavier, J. Maria Joseph, M. Marudai, Common fixed point theorems
under rational contractions in complex valued extended b-metric spaces, Int. J. Nonlinear Anal.
Appl., 13 (2022), 3479-3490. https://doi.org/10.22771/nfaa.2021.26.04.03

28.L. C. Ceng, N. J. Huang, C. F. Wen, On generalized global fractional-order composite
dynamical systems with set-valued perturbations, J. Nonlinear Var. Anal., 6 (2022), 149-163.
https://doi.org/10.23952/jnva.6.2022.1.09

@ AIMS Press

AIMS Mathematics

©2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Volume 8, Issue 9, 20154-20168.


http://dx.doi.org/https://doi.org/10.1155/2018/5303815
http://dx.doi.org/https://doi.org/10.22771/nfaa.2021.26.04.03
http://dx.doi.org/https://doi.org/10.23952/jnva.6.2022.1.09
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main result
	Conclusions

