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1. Introduction

As we know today, the role of fractional operators or, rather, fractional calculus, in the study and
investigation of natural phenomena is undeniable, if not irreplaceable. Certainly, the most important
reason for the stunning growth of fractional calculus in the last decade can be seen in its ability and
application in modeling biological [1–4] and physical [5–9] phenomena. As one of the most prominent
features of fractional operators, we can mention their non-locality. Based on the available results and
evidence, modeling by ordinary calculus is not capable of describing the real behavior of phenomena
and is often associated with the error of estimating the phenomenon [10]. Researchers in the fields
of science and engineering have different approaches to the non-local character of fractional calculus.
Physicists’ approach to this issue has led to interesting modeling schemes for physical phenomena such
as heat flow, hereditary polarization in dielectrics, viscoelasticity and so on [11]. Such phenomena have
been modeled with equations which are influenced by the past values of one or more variables, and
they are called equations with memory in the literature. Mathematicians have also provided the basis
for extending the existing models for different fields by generalizing the fractional operators. The
most basic fractional operator is the derivative given by Riemann and Liouville (namely, the Riemann-
Liouville derivative). With the publication of a book in 1999, Podlubny may have contributed the
most to the systematic presentation of the theory of fractional operators [12]. Taking ideas from his
works, we have witnessed the introduction of various operators, such as the Caputo, Hilfer, Atangana-
Baleanu, Hadamard, fractal fractional, Caputo-Fabrizio, fractional q-derivative and (p, q)-derivative
operators, etc., in the last two decades. For get more information about these contributions, one can
refer to [13–21]. There is a certain type of kernel dependency included in all of those definitions. That
is, we can consider a general operator from which fractional integral and derivative operators can be
extracted by selecting specific kernels [22–24].

One of the most recent generalizations of fractional operators is related to the work of the
Portuguese mathematician Ricardo Almeida. In 2017, he presented a new definition of the Caputo
derivative, namely, ψ-Caputo, with respect to another non-decreasing function, such as ψ [25]. In his
new model, the Riemann-Liouville and Hadamard fractional operators are obtained by
choosing ψ(κ) = κ and ψ(κ) = ln κ. A year later, he and colleagues investigated the existence and
uniqueness of the solution for an initial value problem with his new fractional operator, and, using it,
he presented a model for the growth of the world population and the gross domestic product growth
rate in the USA [26]. In 2019, Abdo et al. studied the existence and uniqueness of the solution for
initial and boundary value problems with the ψ-Caputo derivative [27, 28]. In 2020, Wahash et al.
investigated fractional differential equations with singularities by applying the ψ-Caputo operator
using the Picard iteration method [29]. Voyiadjis and Sumelka used this new type of fractional
operator to provide an important model of brain damage in the framework of anisotropic
hyperelasticity [30]. Also, Ahmed et al, presented a model for thermostats by using this fractional
operator [31]. For more contributions that include this new fractional operator, the reader can
see [32–35]. Here, we are going to present a model for the pantograph equation using the ψ-Caputo
fractional operator; however, we will continue this section with a discussion about the pantograph.

Considering the issues raised and the potential in fractional operators, it is not far from expected
that we also want to present a model for one of the most important and widely used equations in
applied sciences, that is, the pantograph equation. Usually, the pantograph reminds us of a device
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that is installed on the top of the roof of electric buses. The pantograph problem was first raised by
Mr. E. A. Cardwell of the British Railways Technical Center, at the Conference on Applications of
Differential Equations in 1969. Ockendon and Tayler, in 1971, presented a mathematical model for
Pantograph motion [36]. Today, the pantograph in electric trains is a tool that converts the electric
current from direct to alternating current [37]. The pantograph differential equation is widely used in
various fields, including number theory, quantum mechanics, statistics and electrodynamics [38, 39].
Many researchers have investigated the pantograph equation from different aspects. For example,
numerical solutions via Chebyshev polynomials are presented in [40], the existence of mild solutions
to pantograph equations are investigated in [41], the stability of solutions was studied in [42] and a
coupled system of pantograph problems using sequential fractional derivatives was examined in [43].
To access more information, see [44–48].

The standard mode of the pantograph equation is formulated as follows:
w′(κ) = c1w(κ) + c2w(εκ), 0 ≤ κ ≤ K,

w(0) = w0,

such that 0 < ε < 1 [49]. The fractional case of the pantograph equation investigated by Balachandran
et al. involving the Caputo operator is as follows:

CDηw(κ) = h
(
κ,w(κ),w(εκ)

)
, 0 ≤ κ ≤ K,

w(0) = w0,

where 0 < ȷ and ε < 1 [49].
To the best of our knowledge, topological degree theory for condensing maps has not been applied

to nonlinear pantograph differential equations with ψ-Caputo fractional derivatives under nonlocal
boundary conditions. Therefore, inspired by the history mentioned above and previous works, in this
paper, we investigate the existence of solutions for the following nonlinear fractional pantograph
differential equation: CDη,ψw(κ) = h(κ,w(κ),w(εκ)), κ ∈ K = [0,K],

w′(0) = 0, w(0) + χ(w) = w0,
(1.1)

where CDη,ψ is the ψ-Caputo fractional derivative of order η ∈ (1, 2), ε ∈ (0, 1), K > 0,
h ∈ C(K × R2,R), w0 ∈ R and χ is the nonlocal term that satisfies some given conditions. The
importance of the nonlocal condition, which is better than the classical initial condition, is explained
in [50]. Furthermore, in recent research in 2021, Sabatier and Farges showed, by designing some
problems and numerical analysis, that the use of fractional derivatives is problematic in some
fractional models [51]. According to the above topics, in this work, we also considered the boundary
conditions as nonlocal, although the authors, as mentioned have other works with fractional initial
conditions applied in this matter [43].

The rest of the paper is structured as follows. In Section 2, we state what we need from fractional
calculus and topological degree theory as preliminaries to prove our main results. In Section 3, we first
introduce three hypotheses, prove four auxiliary lemmas and prove the existence of solutions for the
pantograph equation given by (1.1). In Section 4, we present examples with numerical and graphical
simulations to validate our results. The last section concludes this paper.
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2. Preliminaries

This section deals with some preliminaries and notations which are used throughout this paper. For
more details, we refer the reader to [25].

Definition 2.1. [26] Assume that w is an integrable function on K = [0,K], and that ψ ∈ Cn(K ,R),
where ∀κ ∈ K , ψ′(κ) > 0. Then, the ψ-Riemann-Liouville (ψ-RL) integral and derivative of w of
fractional order ȷ is expressed as follows:

I ȷ,ψw(κ) =
1
Γ( ȷ)

∫ κ

0
ψ′(p)

(
ψ(κ) − ψ(p)

) ȷ−1w(p)dp,

and

D ȷ,ψw(κ) =
1

Γ( ȷ − n)

( 1
ψ′(κ)

d
dκ

)n
∫ κ

0
ψ′(p)

(
ψ(κ) − ψ(p)

)n− ȷ−1w(p)dp

=
( 1
ψ′(κ)

d
dκ

)n
In− ȷ,ψw(κ),

where n = [ ȷ] + 1.

Definition 2.2. [26] Suppose that w ∈ Cn−1(K ,R) and ψ ∈ Cn(K ,R) such that ∀κ ∈ K , ψ′(κ) > 0.
Then, the Ψ-Caputo operator of fractional order ȷ is formulated as follows:

CD ȷ,ψw(κ) =
1

Γ(n − ȷ)

∫ κ

0
ψ′(p)

(
ψ(κ) − ψ(p)

)n− ȷ−1w[n]
ψ (p)dp, (2.1)

where

w[n]
ψ (p) =

(
1

ψ′(p)
d

dp

)n

w(p), n = [ ȷ] + 1.

Remark 2.1. It is obvious that, with correct placement, namely, ψ(κ) = κ and ψ(κ) = ln(κ), in (2.1),
the Caputo and Caputo-Hadamard derivatives can be reached.

Remark 2.2. If 0 < ȷ < 1, then we have

CD ȷ,ψw(κ) =
1

Γ(1 − ȷ)

(
1

ψ′(p)
d

dp

)1 ∫ κ

0
(ψ(κ) − Ψ(p))− ȷw(p)dp.

Theorem 2.1. [26] If ȷ > 0 and w ∈ Cn−1(K ,R), then the following assertions hold:

1) CD ȷ,ψI ȷ,ψw(κ) = w(κ).

2) I ȷ,ψ CD ȷ,ψw(κ) = w(κ) −
n−1∑
i=0

w[i]
ψ (0)

i!
(ψ(κ) − ψ(0))i.

Theorem 2.2. [26] Let µ > ν > 0 and κ ∈ K; then, we have the following:

1) Iµ,ψ
(
ψ(κ) − ψ(0)

)ν−1
=
Γ(ν)
Γ(µ + ν)

(ψ(t) − ψ(0))µ+ν−1.
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2) Dµ,ψ(ψ(t) − ψ(0)
)ν−1
=
Γ(ν)
Γ(ν − µ)

(ψ(κ) − ψ(0))ν−µ−1.

3) Dµ,ψ(ψ(κ) − ψ(0)
)p
= 0, ∀p < n ∈ N.

Definition 2.3. [52] Suppose that X is a Banach space and BX = {Y ⊂ X : Y , ∅, Y is bounded}.
The function ρ : BX → [0,+∞) is called the Kuratowski measure of non-compactness and defined as
follows:

ρ(Y) = inf{r > 0 : Y admits a finite cover by sets of diameter ≤ r}.

Theorem 2.3. [52] The measure ρ defined above, namely, Definition 2.3, applies to the following
properties.

(1) ρ(Y) = 0 iff Y is relativity compact.
(2) ρ(aY) = |a|ρ(Y), a ∈ R .
(3) ρ(Y1 +Y2) ≤ ρ(Y1) + ρ(Y2).
(4) If Y1 ⊂ Y2, then ρ(Y1) ≤ ρ(Y2).
(5) ρ(Y1 ∪ Y2) = max{ρ(Y1), ρ(Y2)}.
(6) ρ(Y) = ρ(Y) = ρ(convY), where Y and convY denote the closure and convex hull of Y,

respectively.

Definition 2.4. [52] Assume that the function Θ : Y ⊂ X → X is a continuous and bounded map. The
function Θ is called ρ-Lipschitz if ∃ℓ ≥ 0, given that

ρ(Θ(Y∗)) ≤ ℓρ(Y∗), Y∗ ⊂ Y.

Definition 2.5. [52] The function Θ, which is defined in Definition 2.4 is called ρ-condensing if, for
every bounded subset Y∗ of Y, the following inequality holds:

ρ
(
Θ(Y∗)

)
< ρ(Y∗),

such that ρ(Y∗) > 0. Indeed,
ρ
(
Θ(Y∗)

)
≥ ρ(Y∗)⇒ ρ(Y∗) = 0.

Moreover, we denote the class of all ρ-condensing maps Θ : Y → X by Cρ(Y).

Definition 2.6. [52] The function w : Y → X is called Lipschitz if ∃ℓ > 0, given that

∥ w(y1) − w(y2) ∥≤ ℓ ∥ y1 − y2 ∥, ∀y1, y2 ∈ Y.

Lemma 2.1. [52] Suppose that w is a Lipschitz function with a constant ℓ; then, w is ρ−Lipschitz with
the same constant.

Lemma 2.2. [52] Consider the ρ-Lipschitz functions Θ,∆ : Y → X with constants ℓ1, ℓ2,respectively.
Then, the following statements are true:

• Θ + ∆ : Y → X, is ρ-Lipschitz because of the ℓ1 + ℓ2 constant.
• If Θ is compact, then ℓ1 = 0.

AIMS Mathematics Volume 8, Issue 9, 20125–20142.



20130

Theorem 2.4. [53] Let Θ : Y → X such that Y ⊂ X is open and bounded; also suppose that

T =
{
(I − Θ,Y, x) : Θ ∈ Cρ(Ȳ), x ∈ X \ (I − Θ)(∂Y)

}
is a family of the admissible triplets. Then, there exists one degree function, deg : T → Z, such that
the following properties are satisfied:

• deg(I,Y, y) = 1 for every y ∈ Y.
• For every disjoint, open set Y1,Y2 ⊂ Y, and every x < (I − Θ)(Ȳ \ (Y1 ∪ Y2)), we have

deg(I − Θ,Y, x) = deg(I − Θ,Y1, x) + deg(I − Θ,Y2, x).

• deg(I − f(t, .),Y, x(t)) is independent of t ∈ [0, 1] for every continuous, bounded map f : [0, 1] ×
Ȳ → X, which satisfies

ρ
(
f([0, 1] ×Ω)

)
< ρ(Ω), ∀Ω ⊂ Ȳ, with ρ(Ω) > 0,

and every continuous function x : [0, 1]→ X, which satisfies

x(t) , z − f(t, z), ∀t ∈ [0, 1], ∀z ∈ ∂Y.

• deg(I − Θ,Y, x) , 0 implies that x ∈ (I − Θ)(Y).
• deg(I − Θ,Y, x) = deg(I − Θ,Y1, x) for every open set Y1 ⊂ Y, and every x < (I − Θ)(Ȳ \ Y1).

Theorem 2.5. [53] Assume that the map Θ : X → X is ρ-condensing, τ ∈ [0, 1] and Eτ ⊂ X such that

Eτ = {x ∈ X : x = τΘx for some τ}.

Now, if Eτ is a bounded subset of X, then ∃q > 0, given that Eτ ⊂ Bq(0), and we have

deg(I − δΘ,Bq(0), 0) = 1, ∀δ ∈ [0, 1].

As a result, Θ has at least one fixed point and the set of the fixed points of Θ lies in Bq .

3. Main results

Here, to continue the work, we first introduce the necessary notations and three hypotheses which
play a fundamental role in providing a suitable space for using the results of fixed-point theory and
its contractions in the sequel. It is worth noting that, as a reminder, we are referring to a closed ball
centered at 0 with radius q > 0 by using Bq. Also, our Banach space C := C(K ,R) is equipped with
the supreme norm, namely, ∥ w ∥= supκ∈K | w(κ) |.

(H1) ∃Lχ > 0, where
|χ(w) − χ(s)| ≤ Lχ | w − s | for each w, s ∈ C.

(H2) ∃Nχ > 0, Mχ ≥ 0 and 0 ≤ α ≤ 1, where

|χ(w)| ≤ Nχ | w |α +Mχ for each w ∈ C.
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(H3) ∃Nh,Mh > 0 and 0 ≤ β ≤ 1, where

|h(κ,w(κ),w(εκ))| ≤ Nh | w |β +Mh for each w ∈ C.

Lemma 3.1. The solution to problem (1.1) is equivalent to the following integral equation:

w(κ) = w0 − χ(w) +
1
Γ(η)

∫ κ

0
ψ′(p)

(
ψ(κ) − Ψ(p)

)η−1h
(
t,w(p),w(εp)

)
dp. (3.1)

Proof. Suppose that w is a solution of (1.1); then, by applying operator Iη,ψ on (1.1), we obtain

Iη,ψ CDη,ψw(κ) = Iη,ψh(κ,w(κ),w(εκ)),

and by employing Proposition 2.1, we get

w(κ) = c0 + (ψ(κ) − ψ(0))c1 + I
η,ψh(κ,w(κ),w(εκ)),

where c0, c1 ∈ R. Hence,

w′(κ) = c1ψ
′(κ) +

1
Γ(η)

∫ κ

0

(
ψ′(p)(ψ(κ) − ψ(p))η−1h(p,w(p),w(εp))

)′
dp;

since w(0) + χ(w) = w0 and w′(0) = 0, then c0 = w0 − χ(w) and c1 = 0. Hence, (3.1) holds.

To show that (3.1) has at least one solution w ∈ C, we define two operators A,T : C → C as
follows:

Aw(κ) = w0 − χ(w), κ ∈ K , (3.2)

and
Tw(κ) =

1
Γ(η)

∫ κ

0
ψ′(p)

(
ψ(κ) − Ψ(p)

)η−1h
(
p,w(p),w(εp)

)
dp, κ ∈ K . (3.3)

Thus, (3.1) can be formulated as follows:

Fw(κ) = Aw(κ) + Tw(κ), κ ∈ K . (3.4)

Lemma 3.2. The operatorA is ρ- Lipschitz with the constant Lχ. Moreover, A satisfies the following
inequality:

∥Aw∥C ≤ |w0| + Nχ∥w∥α + Mχ f or every w ∈ C. (3.5)

Proof. At first, we shall show that the operator A is Lipschitz with the constant Lχ. To do this,
let w, s ∈ C; then, we have

|Aw(κ) −As(κ)| ≤ |χ(w) − χ(s)|;

the hypothesis (H1) yields that
|Aw(κ) −As(κ)| ≤ Lχ∥w − s∥,

and taking the supremum over κ implies that

∥Aw −As∥ ≤ Lχ∥w − s∥;
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hence, A is Lipschitz with Lχ. In view of Lemma 2.1, it follows that A is ρ-Lipschitz with the same
constant Lχ. Now, to prove (3.5), let w ∈ C; then, we have

|Aw(κ)| = |w0 − χ(w)| ≤ |w0| + |χ(w)|;

by using the assumption (H2), we get

∥Aw∥ ≤ |w0| + Nχ∥w∥α + Mχ.

Lemma 3.3. The operator T , which is formulated in (3.3), is continuous and satisfies the following
inequality:

∥Tw∥ ≤
1

Γ(η + 1)
(Nχ∥w∥β + Mχ)(ψ(K) − ψ(0))η, ∀w ∈ C. (3.6)

Proof. For T to be continuous, assume that wn → w in C; hence, ∃δ > 0, given that ∥wn∥ ≤ δ

and ∥w∥ ≤ δ. Now, let κ ∈ K ; we can write

|Twn(κ) − Tw(κ)|

≤
1
Γ(η)

∫ κ

0
ψ′(p)(ψ(κ) − ψ(p))η−1 |h(p,wn(p),wn(εp)) − h(p,w(p),w(εp))| dp;

since h is continuous, then

lim
n→∞

h(p,wn(p),wn(εp)) = h(p,w(p),w(εp)).

On the other hand, by using (H3), we obtain

1
Γ(η)

(ψ′(p)(ψ(κ) − ψ(p))η−1 ∥h(p,wn(p),wn(εp)) − h(p,w(p),w(εp))∥

≤
(
Nχδ

β + Mχ

)
×

1
Γ(η)

(ψ′(p)(ψ(κ) − ψ(p))η−1;

since p 7→
1
Γ(η)

(ψ′(p)(ψ(κ) − ψ(p))η−1 is an integrable function on [0, κ], then Lebesgue’s dominated

convergence theorem implies that

lim
n7→+∞

1
Γ(η)

(ψ′(p)(ψ(κ) − ψ(p))η−1 ∥h(p,wn(p),wn(εp)) − h(p,w(p),w(εp))∥ dp = 0,

which yields that
lim

n7→+∞
∥ Twn − Tw ∥= 0;

hence, T is continuous. To show (3.6), let w(κ) ∈ C; then, we have

|Tw(κ)| ≤
1
Γ(η)

∫ t

0
ψ′(p)(ψ(κ) − ψ(p))η−1 |h(p,w(p),w(εp))| dp;
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from (H3), we obtain

|Tw(κ)| ≤
(Nχ∥w∥β + Mχ)

Γ(η)

∫ κ

0
ψ′(p)(ψ(κ) − ψ(p))η−1dp.

Finally, we obtain

∥ Tw ∥≤
(Nχ∥w∥β + Mχ)(ψ(K) − ψ(0))η

Γ(η + 1)
.

Lemma 3.4. The operator T : C → C is compact.

Proof. We shall show that TBq is relatively compact in C. To do this, let w ∈ Bq; then, from (3.6), we
get

∥ Tw ∥≤
(Nχqβ + Mχ)(ψ(T ) − ψ(0))η

Γ(η + 1)
:= ξ.

It follows that TBq ⊂ Bξ. Hence, TBq is bounded. To prove that TBq is equicontinuous, let w ∈ TBq

and κ1, κ2 ∈ K such that κ1 < κ2; then, we have

|Tw(κ2) − Tw(κ1)| ≤
Nχ|w|p + Mχ

Γ(η)

∫ κ2

κ1

ψ′(p)(ψ(κ2) − ψ(p))η−1dp,

|Tw(κ2) − Tw(κ1)| ≤
Nχqβ + Mχ

Γ(η)

∫ κ2

κ1

ψ′(p)(ψ(κ2) − ψ(p))η−1dp,

|Tw(κ2) − Tw(κ1)| ≤
Nχqβ + Mχ

Γ(η + 1)
(ψ(κ2) − ψ(κ1))η.

Since Ψ is a continuous function, then we obatin

lim
κ1→κ2
|Tw(κ1) − Tw(κ2)| = 0,

which shows that TBq is equicontinuous. Hence, TBq is uniformly bounded and equicontinuous.
The Arzelà-Ascoli theorem [54] permits us to conclude that TBq is relatively compact; thus, T is
compact.

Corollary 3.1. T : C → C is ρ-Lipschitz with a zero constant.

Proof. From the compactness of the operator T , and Lemma 2.2, it follows that T is ρ-Lipschitz with
a zero constant.

Now, we have all of the tools to establish our main result.

Theorem 3.1. Suppose that the hypotheses (H1)–(H3) are true; then, the fractional pantograph
differential equation mentioned in (1.1) has at least one solution: w ∈ C. Moreover, the set of all
solutions for (1.1) is bounded in C(K ,R).
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Proof. Let A,T ,F : C → C be the operators formulated in (3.2)–(3.4), respectively. A,T ,F are
continuous and bounded. Furthermore, in view of Lemma 3.2 and Corollary 3.1, the operator A is ρ-
Lipschitz given Lχ ∈ [0, 1), and ρ-Lipschitz with a zero constant. By using Lemma 2.2, we deduce
that F is a strict ρ-contraction with a constant Lχ. Now, for some τ ∈ [0, 1], we set

Eτ = {w ∈ C : w = τFw}.

We claim that Eτ is bounded in C. To prove this claim, suppose that w ∈ Eτ; then,

w = τFw = τ(Aw + Tw),

which yields that
∥w∥ = τ∥Fw∥ ≤ τ(∥Aw∥ + ∥Tw∥);

by using Lemmas 3.2 and 3.3, we get

∥w∥ ≤
(
|w0| + Nχ∥w∥α + Mχ +

(Nh∥w∥β + Mh)(ψ(K) − ψ(0))η

Γ(η + 1)

)
. (3.7)

The above inequality, namely, (3.7), yields that Eτ is bounded in C given α < 1 and β < 1.
Suppose that our claim is not true; in this case, let ξ := ∥w∥ −→ ∞. Dividing both sides of (3.7)

by ξ, and taking ξ → ∞, then we obtain

1 ≤ lim
ξ→∞

(
|w0| + Nχξ

α + Mχ +
(Nhξ

β + Mh)(ψ(T ) − ψ(0))η

Γ(η + 1)

)
ξ

= 0,

which is a contradiction. By using Theorem 2.5, we conclude that F has at least one fixed point which
is the solution of (1.1) and the set of the fixed points of F is bounded in C.

Remark 3.1. If we set α = β = 1 in hypotheses (H2) and (H3), then the result of Theorem 3.1 will be
as follows:

Nχ +
Nh(ψ(K) − ψ(0))η

Γ(η + 1)
< 1.

4. Examples

In this section, we give two examples to illustrate the usefulness of our main result.

Example 4.1. Consider the following problem:
CD

3
2 ,e

κw(κ) =
κ2

√
77

(
w(κ) + sin2(w(κ)

)
+

1
7
√
π

cos(w(
κ
√

2
)), κ ∈ K = [0, 1]

w′(0) = 0, w(0) =
20∑
j=1
θ j|w(κ j)|, θ j > 0, 0 < κ j < 1, j = 1, 2, .., 20.

(4.1)

Here, ε = 1
√

2
, η = 3

2 , K = 1 and ψ(κ) = eκ, and, in this case, we let χ(w) =
20∑
j=1

θ j|w(κ j)| with
20∑
j=1
θ j < 1.

Clearly, (H1) and (H2) hold with Nχ = Lχ =
20∑
i= j
θ j, Mχ = 0 and q = 1.
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Indeed, we can write

|χ(w(κ))| =

∣∣∣∣∣∣∣
20∑
j=1

θ j|w(κ j)

∣∣∣∣∣∣∣ ;
hence,

|χ(w)| ≤
20∑
j=1

θ j ∥w∥ ;

thus, Nχ =
20∑
j=1
θ j, Mχ = 0 and α = 1. Alternatively, we have

|χ(w(κ)) − χ(s(κ))| =

∣∣∣∣∣∣∣
20∑
j=1

θ j|w(κ j) −
20∑
j=1

θ j|s(κ j)

∣∣∣∣∣∣∣ ;
hence,

|ω(w) − ω(s)| ≤
20∑
j=1

θ j |w − s| ;

thus, Lχ =
20∑
j=1
θ j.

To check the fulfillment of (H3), let κ ∈ K and w ∈ R; then, we have

|h(κ,w(κ),w(εκ))| =

∣∣∣∣∣∣ κ2

√
77

(
w(κ) + sin2(w(κ)

)
+

1
7
√
π

cos(w(
κ
√

2
))

∣∣∣∣∣∣ ,
which implies that

|h(κ,w(κ),w(εκ))| ≤
1
√

77
|w| + 0.1946.

Thus, (H3) holds with Nh =
1
√

77
, Mh = 0.1946 and β = 1. Consequently, Theorem 3.1 implies that

problem (4.1) has at least one solution. Moreover, from the inequality (3.7), we get

∥w∥ ≤ ξ∗ :
0.1946(e − 1)(η)

Γ(η + 1) − 1
√

77
(e − 1)(η)

=
0.1946(e − 1)(3/2)

Γ(5/2) − 1
√

77
(e − 1)(3/2)

= 0.4086. (4.2)

Thus, the set of solutions for (4.1) is bounded. To better understand this example, graphs of some
functions are provided in Figures 1 and 2. The data from Table 1 indicate that the boundedness of the
solution set for (4.1) depends on the choice of ψ(κ).
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Figure 1. The graph of h(κ,w(κ)) for Example 4.1.

Figure 2. The graph of h(κ,w(κ),w(εκ)) for Example 4.1.

Table 1. Numerical results for ξ∗ based on ψ(κ) selection in Example 4.1.

ψ(κ) ξ∗
κ 0.1601 < 1
eκ 0.4086 < 1
2κ 0.1601 < 1
3κ 0.5467 < 1
4κ 1.3721 > 1
5κ 3.7306 > 1
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Example 4.2. Consider the following problem:
CD

9
5 ,κw(κ) =

e−κ
√

11 + κ2

(
w(κ) + sin(κ) +

cos(w( κ
√

2
))

√
π + κ2

)
, κ ∈ K = [0, 1]

w′(0) = 0, w(0) =
20∑
j=1
θ j|w(κ j)|, θ j > 0, 0 < κ j < 1, j = 1, 2, .., 20.

(4.3)

In this case, ε = 1
√

2
, η = 9

5 , K = 1, ψ(κ) = κ and χ(w) =
20∑
j=1

θ j|w(κ j)| with
20∑
j=1
θ j < 1. Similar to the

previous example, hypotheses (H1) and (H2) are valid with Nχ = Lχ =
20∑
i= j
θ j, Mχ = 0, q = 1 and α = 1.

To check the fulfillment of (H3), we can write

|h(κ,w(κ),w(εκ))| =

∣∣∣∣∣∣∣ e−κ
√

11 + κ2

(
w(κ) + sin(κ) +

cos(w( κ
√

2
))

√
π + κ2

)∣∣∣∣∣∣∣ ,
which implies that

|h(κ,w(κ),w(εκ))| ≤
1
√

11
|w| + 0.4716.

Hence, (H3) holds with Nh =
1
√

11
, Mh = 0.4716 and β = 1. Consequently, Theorem 3.1 implies that

problem (4.3) has at least one solution. Moreover, from the inequality (3.7), we get

∥w∥ ≤ ξ∗ :
0.4716

Γ(η + 1) − 1
√

11

=
0.4716

Γ(14/5) − 1
√

11

= 0.3430. (4.4)

Thus the set of solutions for (4.3) is bounded. To better understand this example, graphs of some
functions are provided in Figures 3 and 4. The data from Table 2 indicate that the boundedness of the
solution set for (4.3) depends on the choice of ψ(κ).

Figure 3. The graph of h(κ,w(κ)) for Example 4.2.
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Figure 4. The graph of h(κ,w(κ),w(εκ)) for Example 4.2.

Table 2. Numerical results for ξ∗ based on ψ(κ) selection in Example 4.2.

ψ(κ) ξ∗
κ 0.3430 < 1
eκ 1.4238 > 1
2κ 0.3430 < 1
3κ 2.6209 > 1
4κ −6.7896 < 0
5κ −2.8888 < 0

5. Conclusions

Today, we see the presence of fractional calculus in the mathematical modeling of natural
phenomena. The non-locality of fractional derivatives gives it the special ability to be used to model
and describe physical phenomena. Using this capability, we presented a comprehensive analysis of
pantograph modeling by using the fractional derivative of the ψ-Caputo type. We guaranteed the
existence of the solution with the help of topological degree theory and the Arzela-Ascoli theorem.
Finally, we presented numerical and graphical simulations to validate our results. Our results show
that the boundedness of the solution set depends on the type of the ψ(κ) function.
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