Considering the uncertainty of transporting goods from numerous origins to diverse destinations is a critical task for the decision-maker (DM). The ultimate goal of the DM is to make the right decisions that optimize the profit or loss of the organization under the vagueness of the uncontrollable effects. In this paper, mathematical models are proposed using fuzzy non-linear membership functions for the transportation problem considering the parameters' uncertainty that can help the DM to optimize the multi-objective transportation problems (MOTP) and to achieve the desired goals by choosing a confidence level of the uncertain parameters. Based on DM's selection of the confidence level, a compromise solution of the uncertain multi-objective transportation (UMOTP) is obtained along with the satisfaction level in percent for the DM. Two non-linear fuzzy membership functions are considered: the exponential and the hyperbolic functions. Using both membership functions, the sensitivity analysis was implemented by considering different confidence levels. According to the experimental results, the hyperbolic membership function gives 100% DM's satisfaction in many instances. Moreover, it shows stability against the exponential and linear functions.
Citation: Md. Musa Miah, Ali AlArjani, Abdur Rashid, Aminur Rahman Khan, Md. Sharif Uddin, El-Awady Attia. Multi-objective optimization to the transportation problem considering non-linear fuzzy membership functions[J]. AIMS Mathematics, 2023, 8(5): 10397-10419. doi: 10.3934/math.2023527
Considering the uncertainty of transporting goods from numerous origins to diverse destinations is a critical task for the decision-maker (DM). The ultimate goal of the DM is to make the right decisions that optimize the profit or loss of the organization under the vagueness of the uncontrollable effects. In this paper, mathematical models are proposed using fuzzy non-linear membership functions for the transportation problem considering the parameters' uncertainty that can help the DM to optimize the multi-objective transportation problems (MOTP) and to achieve the desired goals by choosing a confidence level of the uncertain parameters. Based on DM's selection of the confidence level, a compromise solution of the uncertain multi-objective transportation (UMOTP) is obtained along with the satisfaction level in percent for the DM. Two non-linear fuzzy membership functions are considered: the exponential and the hyperbolic functions. Using both membership functions, the sensitivity analysis was implemented by considering different confidence levels. According to the experimental results, the hyperbolic membership function gives 100% DM's satisfaction in many instances. Moreover, it shows stability against the exponential and linear functions.
[1] | F. L. Hitchcock, The distribution of a product from several sources to numerous localities, J. Math. Phys., 20 (1941), 224–230. https://doi.org/10.1002/sapm1941201224 doi: 10.1002/sapm1941201224 |
[2] | T. C. Koopmans, Optimum utilization of the transportation system, Econometrica, 17 (1949), 136–146. https://doi.org/10.2307/1907301 doi: 10.2307/1907301 |
[3] | P. R. Thie, G. E. Keough, An introduction to linear programming and game theory, Hoboken: John Wiley & Sons, 2011. |
[4] | L. A. Zadeh, Fuzzy sets, Inf. Control., 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[5] | S. M. Lee, L. J. Moore, Optimizing transportation problems with multiple objectives, AIIE Trans., 5 (1973), 333–338. https://doi.org/10.1080/05695557308974920 doi: 10.1080/05695557308974920 |
[6] | H.-J. Zimmermann, Fuzzy programming and linear programming with several objective functions, Fuzzy Sets Syst., 1 (1978), 45–55. https://doi.org/10.1016/0165-0114(78)90031-3 doi: 10.1016/0165-0114(78)90031-3 |
[7] | H. Isermann, The enumeration of all efficient solutions for a linear multiple-objective transportation problem, Nav. Res. Logt., 26 (1979), 123–139. https://doi.org/10.1002/nav.3800260112 doi: 10.1002/nav.3800260112 |
[8] | H. Leberling, On finding compromise solutions in multicriteria problems using the fuzzy min-operator, Fuzzy Sets Syst., 6 (1981), 105–118. https://doi.org/10.1016/0165-0114(81)90019-1 doi: 10.1016/0165-0114(81)90019-1 |
[9] | J. L. Ringuest, D. B. Rinks, Interactive solutions for the linear multiobjective transportation problem, Eur. J. Oper. Res., 32 (1987), 96–106. https://doi.org/10.1016/0377-2217(87)90274-8 doi: 10.1016/0377-2217(87)90274-8 |
[10] | H. Arsham, A. B. Kahn, A simplex-type algorithm for general transportation problems: An alternative to stepping-stone, J. Oper. Res. Soc., 40 (1989), 581–590. https://doi.org/10.1057/jors.1989.95 doi: 10.1057/jors.1989.95 |
[11] | S. Chanas, W. Kołodziejczyk, A. Machaj, A fuzzy approach to the transportation problem, Fuzzy Sets Syst., 13 (1984), 211–221. https://doi.org/10.1016/0165-0114(84)90057-5 doi: 10.1016/0165-0114(84)90057-5 |
[12] | M. Delgado, J. L. Verdegay, M. A. Vila, A general model for fuzzy linear programming, Fuzzy Sets Syst., 29 (1989), 21–29. https://doi.org/10.1016/0165-0114(89)90133-4 doi: 10.1016/0165-0114(89)90133-4 |
[13] | A. K. Bit, M. P. Biswal, S. Alam, Fuzzy programming approach to multicriteria decision making transportation problem, Fuzzy Sets Syst., 50 (1992), 135–141. https://doi.org/10.1016/0165-0114(92)90212-M doi: 10.1016/0165-0114(92)90212-M |
[14] | R. G. Yaghin, F. Darvishi, Order allocation and procurement transport planning in apparel supply chain: A utility-based possibilistic-flexible programming approach, Fuzzy Sets Syst., 398 (2020), 1–33. https://doi.org/10.1016/j.fss.2019.09.016 doi: 10.1016/j.fss.2019.09.016 |
[15] | R. Verma, M. P. Biswal, A. Biswas, Fuzzy programming technique to solve multi-objective transportation problems with some non-linear membership functions, Fuzzy Sets Syst., 91 (1997), 37–43. https://doi.org/10.1016/S0165-0114(96)00148-0 doi: 10.1016/S0165-0114(96)00148-0 |
[16] | W. F. Abd El-Wahed, M. A. Abo-Sinna, A hybrid fuzzy-goal programming approach to multiple objective decision making problems, Fuzzy Sets Syst., 119 (2001), 71–85. https://doi.org/10.1016/S0165-0114(99)00050-0 doi: 10.1016/S0165-0114(99)00050-0 |
[17] | B. D. Liu, Uncertainty theory, Berlin: Springer, 2007. |
[18] | B. D. Liu, Fuzzy process, hybrid process and uncertain process, J. Uncertain Syst., 2 (2008), 3–16. |
[19] | B. D. Liu, Theory and practice of uncertain programming, Berlin, Heidelberg: Springer, 2009. |
[20] | B. D. Liu, Some research problems in uncertainty theory, J. Uncertain Syst., 3 (2009), 3–10. |
[21] | B. D. Liu, Uncertainty theory: A branch of mathematics for modeling human uncertainty, Berlin: Springer, 2010. |
[22] | Y. H. Liu, H. Minghu, Expected value of function of uncertain variables, J. Uncertain Syst., 4 (2010), 181–186. |
[23] | G. Maity, S. K. Roy, J. L. Verdegay, Multi-objective transportation problem with cost reliability under uncertain environment, Int. J. Comput. Intell. Syst., 9 (2016), 839–849. https://doi.org/10.1080/18756891.2016.1237184 doi: 10.1080/18756891.2016.1237184 |
[24] | I. A. Baky, Solving multi-level multi-objective linear programming problems through fuzzy goal programming approach, Appl. Math. Model., 34 (2010), 2377–2387. https://doi.org/10.1016/j.apm.2009.11.004 doi: 10.1016/j.apm.2009.11.004 |
[25] | A. Ojha, S. K. Mondal, M. Maiti, Transportation policies for single and multi-objective transportation problem using fuzzy logic, Math. Comput. Model., 53 (2011), 1637–1646. https://doi.org/10.1016/j.mcm.2010.12.029 doi: 10.1016/j.mcm.2010.12.029 |
[26] | P. Kundu, S. Kar, M. Maiti, Multi-objective multi-item solid transportation problem in fuzzy environment, Appl. Math. Model., 37 (2013), 2028–2038. https://doi.org/10.1016/j.apm.2012.04.026 doi: 10.1016/j.apm.2012.04.026 |
[27] | H. Y. Guo, X. S. Wang, S. L. Zhou, A transportation problem with uncertain costs and random supplies, e-Navi., 2 (2015), 1–11. https://doi.org/10.1016/j.enavi.2015.06.001 doi: 10.1016/j.enavi.2015.06.001 |
[28] | M. S. Uddin, S. K. Roy, M. M. Ahmed, An approach to solve multi-objective transportation problem using fuzzy goal programming and genetic algorithm, AIP Conf. Proc., 1978 (2018), 470095. https://doi.org/10.1063/1.5044165 doi: 10.1063/1.5044165 |
[29] | N. Umarusman, Fuzzy goal programming problem based on minmax approach for optimal system design, Alphanumeric J., 6 (2018), 177–192. https://doi.org/10.17093/alphanumeric.404680 doi: 10.17093/alphanumeric.404680 |
[30] | P. Singh, S. Kumari, P. Singh, Fuzzy efficient interactive goal programming approach for multi-objective transportation problems, Int. J. Appl. Comput. Math., 3 (2017), 505–525. https://doi.org/10.1007/s40819-016-0155-x doi: 10.1007/s40819-016-0155-x |
[31] | M. S. Uddin, M. Miah, Md A.-A. Khan, A. Alarjani, Goal programming tactic for uncertain multi-objective transportation problem using fuzzy linear membership function, Alex. Eng. J., 60 (2021), 2525–2533. https://doi.org/10.1016/j.aej.2020.12.039 doi: 10.1016/j.aej.2020.12.039 |
[32] | F. Darvishi, R. G. Yaghin, A. Sadeghi, Integrated fabric procurement and multi-site apparel production planning with cross-docking: A hybrid fuzzy-robust stochastic programming approach, Appl. Soft Comput., 92 (2020), 106267. https://doi.org/10.1016/j.asoc.2020.106267 doi: 10.1016/j.asoc.2020.106267 |
[33] | R. G. Yaghin, F. Darvishi, Integrated textile material and production management in a fuzzy environment: A logistics perspective, J. Text. Inst., 113 (2022), 1380–1400. https://doi.org/10.1080/00405000.2021.1929705 doi: 10.1080/00405000.2021.1929705 |
[34] | I. Ali, A. Fügenschuh, S. Gupta, U. M. Modibbo, The LR-type fuzzy multi objective vendor selection problem in supply chain management, Mathematics, 8 (2020), 1621. https://doi.org/10.3390/math8091621 doi: 10.3390/math8091621 |
[35] | M. F. Khan, U. M. Modibbo, N. Ahmad, I. Ali, Nonlinear optimization in bi-level selective maintenance allocation problem, J. King Saud Univ.-Sci., 34 (2022), 101933. https://doi.org/10.1016/j.jksus.2022.101933 doi: 10.1016/j.jksus.2022.101933 |
[36] | P. Kaliyaperumal, A. Das, A mathematical model for nonlinear optimization which attempts membership functions to address the uncertainties, Mathematics, 10 (2022), 1743. https://doi.org/10.3390/math10101743 doi: 10.3390/math10101743 |
[37] | M. Zam'An, Y. Dasril, C. Ramasamy, N. Bujang, Y. N. Ifriza, Improved segregated advancement (I-SA): A new method for solving full triangular fuzzy transportation problems, Int. J. Manag. Sci. Eng. Manag., 2022, 1–11. https://doi.org/10.1080/17509653.2022.2118885 doi: 10.1080/17509653.2022.2118885 |
[38] | M. Kamal, U. M. Modibbo, A. AlArjani, I. Ali, Neutrosophic fuzzy goal programming approach in selective maintenance allocation of system reliability, Complex Intell. Syst., 7 (2021), 1045–1059. https://doi.org/10.1007/s40747-021-00269-1 doi: 10.1007/s40747-021-00269-1 |
[39] | S. Mahajan, S. K. Gupta, On optimistic, pessimistic and mixed approaches under different membership functions for fully intuitionistic fuzzy multiobjective nonlinear programming problems, Expert Syst. Appl., 168 (2021), 114309. https://doi.org/10.1016/j.eswa.2020.114309 doi: 10.1016/j.eswa.2020.114309 |
[40] | M. F. Khan, A. Pervez, U. M. Modibbo, J. Chauhan, I. Ali, Flexible fuzzy goal programming approach in optimal mix of power generation for socio-economic sustainability: A case study, Sustainability, 13 (2021), 8256. https://doi.org/10.3390/su13158256 doi: 10.3390/su13158256 |
[41] | Y. Kacher, P. Singh, Fuzzy harmonic mean technique for solving fully fuzzy multi-objective transportation problem, J. Comput. Sci., 63 (2022), 101782. https://doi.org/10.1016/j.jocs.2022.101782 doi: 10.1016/j.jocs.2022.101782 |
[42] | Y. Kacher, P. Singh, A comprehensive literature review on transportation problems, Int. J. Appl. Comput. Math., 7 (2021), 206. https://doi.org/10.1007/s40819-021-01134-y doi: 10.1007/s40819-021-01134-y |