Research article

Some new results in $ \mathcal{F} $-metric spaces with applications

  • Received: 04 January 2023 Revised: 15 February 2023 Accepted: 21 February 2023 Published: 01 March 2023
  • MSC : 46S40, 47H10, 54H25

  • In this research article, we give the notion of graphic $ F $-contraction in the setting of $ \mathcal{F} $-metric space and establish some fixed point results. We also supply some examples to demonstrate the brilliance of the established results. We also establish some fixed point results for orbitally continuous and orbitally $ G $ -continuous graphic $ F $-contractions as applications of our main results. Also, we discuss the existence and the uniqueness of solutions of functional equations involving in dynamic programming.

    Citation: Amer Hassan Albargi. Some new results in $ \mathcal{F} $-metric spaces with applications[J]. AIMS Mathematics, 2023, 8(5): 10420-10434. doi: 10.3934/math.2023528

    Related Papers:

  • In this research article, we give the notion of graphic $ F $-contraction in the setting of $ \mathcal{F} $-metric space and establish some fixed point results. We also supply some examples to demonstrate the brilliance of the established results. We also establish some fixed point results for orbitally continuous and orbitally $ G $ -continuous graphic $ F $-contractions as applications of our main results. Also, we discuss the existence and the uniqueness of solutions of functional equations involving in dynamic programming.



    加载中


    [1] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math., 3 (1922), 133–181.
    [2] S. Nadler, Multi-valued contraction mappings, Pacidic Journal of Mathematics, 30 (1969), 475–488. http://dx.doi.org/10.2140/pjm.1969.30.475 doi: 10.2140/pjm.1969.30.475
    [3] M. Kikkawa, T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal.-Theor., 69 (2008), 2942–2949. http://dx.doi.org/10.1016/j.na.2007.08.064 doi: 10.1016/j.na.2007.08.064
    [4] J. Ahmad, A. Al-Mazrooei, Y. Cho, Y. Yang, Fixed point results for generalized $\Theta $-contractions, J. Nonlinear Sci. Appl., 10 (2017), 2350–2358. http://dx.doi.org/10.22436/jnsa.010.05.07 doi: 10.22436/jnsa.010.05.07
    [5] P. Proinov, Fixed point theorems for generalized contractive mappings in metric spaces, J. Fixed Point Theory Appl., 22 (2020), 21. http://dx.doi.org/10.1007/s11784-020-0756-1 doi: 10.1007/s11784-020-0756-1
    [6] R. Espinola, W. Kirk, Fixed point theorems in R-trees with applications to graph theory, Topol. Appl., 153 (2006), 1046–1055. http://dx.doi.org/10.1016/j.topol.2005.03.001 doi: 10.1016/j.topol.2005.03.001
    [7] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Am. Math. Soc., 136 (2008), 1359–1373.
    [8] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. http://dx.doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94
    [9] R. Batra, S. Vashistha, Fixed points of an $F$-contraction on metric spaces with a graph, Int. J. Comput. Math., 91, (2014), 2483–2490. http://dx.doi.org/10.1080/00207160.2014.887700 doi: 10.1080/00207160.2014.887700
    [10] N. Secelean, Iterated function system consisting of $F$ -contarctions, Fixed Point Theory Appl., 2013 (2013), 277. http://dx.doi.org/10.1186/1687-1812-2013-277 doi: 10.1186/1687-1812-2013-277
    [11] H. Piri, P. Kumam, Some fixed point theorems concerning $F$ -contraction in complete metic spaces, Fixed Point Theory Appl., 2014 (2014), 210. http://dx.doi.org/10.1186/1687-1812-2014-210 doi: 10.1186/1687-1812-2014-210
    [12] O. Popescu, G. Stan, Two new fixed point theorems concerning $ F$-contractions in complete metric spaces, Symmetry, 12 (2020), 58. http://dx.doi.org/10.3390/sym12010058 doi: 10.3390/sym12010058
    [13] M. Abbas, B. Ali, S. Romaguera, Coincidence points of generalized multivalued $(f, L)$-almost $F$-contraction with applications, J. Nonlinear Sci. Appl., 8 (2015), 919–934. http://dx.doi.org/10.22436/jnsa.008.06.03 doi: 10.22436/jnsa.008.06.03
    [14] M. Cosentino, M. Jleli, B. Samet, C. Vetro, Solvability of integrodifferential problems via fixed point theory in $b$-metric spaces, Fixed Point Theory Appl., 2015 (2015), 70. http://dx.doi.org/10.1186/s13663-015-0317-2 doi: 10.1186/s13663-015-0317-2
    [15] J. Ahmad, A. Al-Rawashdeh, A. Azam, New fixed point theorems for generalized $F$-contractions in complete metric spaces, Fixed Point Theory Appl., 2015 (2015), 80. http://dx.doi.org/10.1186/s13663-015-0333-2 doi: 10.1186/s13663-015-0333-2
    [16] N. Hussain, J. Ahmad, A. Azam, On Suzuki-Wardowski type fixed point theorems, J. Nonlinear Sci. Appl., 8 (2015), 1095–1111. http://dx.doi.org/10.22436/jnsa.008.06.19 doi: 10.22436/jnsa.008.06.19
    [17] N. Hussain, P. Salimi, Suzuki-Wardowski type fixed point theorems for $\alpha $-$GF$-contractions, Taiwan. J. Math., 18 (2014), 1879–1895. http://dx.doi.org/10.11650/tjm.18.2014.4462 doi: 10.11650/tjm.18.2014.4462
    [18] H. Nashine, D. Gopal, D. Jain, A. Al-Rawashdeh, Solutions of initial and boundary value problems via $F$-contraction mappings in metric-like space, Int. J. Nonlinear Anal. Appl., 9 (2018), 129–145. http://dx.doi.org/10.22075/IJNAA.2017.1725.1452 doi: 10.22075/IJNAA.2017.1725.1452
    [19] H. Nashine, Z. Kadelburg, R. Agarwal, Existence of solutions of integral and fractional differential equations using $\alpha $ -type rational $F$-contractions in metric-like spaces, Kyungpook Math. J., 58 (2018), 651–675. http://dx.doi.org/10.5666/KMJ.2018.58.4.651 doi: 10.5666/KMJ.2018.58.4.651
    [20] M. Nazam, M. Arshad, M. Abbas, Existence of common fixed points of improved $F$-contraction on partial metric spaces, Appl. Gen. Topol., 18 (2017), 277–287. http://dx.doi.org/10.4995/agt.2017.6776 doi: 10.4995/agt.2017.6776
    [21] A. Asif, M. Nazam, M. Arshad, S. Kim, $\mathcal{F}$-metric, $ F$-contraction and common fixed point theorems with applications, Mathematics, 7 (2019), 586. http://dx.doi.org/10.3390/math7070586 doi: 10.3390/math7070586
    [22] G. Mani, A. Gnanaprakasam, N. Kausar, M. Munir, Salahuddin, Orthogonal $F$-contraction mapping on 0-complete metric space with applications, Int. J. Fuzzy Log. Inte., 21 (2021), 243–250. http://dx.doi.org/10.5391/IJFIS.2021.21.3.243 doi: 10.5391/IJFIS.2021.21.3.243
    [23] M. Maurice Fréchet, Sur quelques points du calcul fonctionnel, Rend. Circ. Matem. Palermo, 22 (1906), 1–72. http://dx.doi.org/10.1007/BF03018603 doi: 10.1007/BF03018603
    [24] S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5–11.
    [25] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalizedmetric spaces, Publ. Math. Debrecen, 57 (2000), 31–37. http://dx.doi.org/10.5486/pmd.2000.2133 doi: 10.5486/pmd.2000.2133
    [26] M. Jleli, B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl., 2015 (2015), 61. http://dx.doi.org/10.1186/s13663-015-0312-7 doi: 10.1186/s13663-015-0312-7
    [27] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 38. http://dx.doi.org/10.1186/1029-242X-2014-38 doi: 10.1186/1029-242X-2014-38
    [28] L. Alnaser, D. Lateef, H. Fouad, J. Ahmad, Relation theoretic contraction results in $\mathcal{F}$-metric spaces, J. Nonlinear Sci. Appl., 12 (2019), 337–344.
    [29] S. Al-Mezel, J. Ahmad, G. Marino, Fixed point theorems for generalized ($\alpha \beta $-$\psi $)-contractions in $\mathcal{F}$-metric spaces with applications, Mathematics, 8 (2020), 584. http://dx.doi.org/10.3390/math8040584 doi: 10.3390/math8040584
    [30] M. Alansari, S. Mohammed, A. Azam, Fuzzy fixed point results in $\mathcal{F}$-metric spaces with applications, J. Funct. Space., 2020 (2020), 5142815. http://dx.doi.org/10.1155/2020/5142815 doi: 10.1155/2020/5142815
    [31] D. Lateef, J. Ahmad, Dass and Gupta's Fixed point theorem in $ \mathcal{F}$-metric spaces, J. Nonlinear Sci. Appl., 12 (2019), 405–411. http://dx.doi.org/10.22436/jnsa.012.06.06 doi: 10.22436/jnsa.012.06.06
    [32] A. Hussain, T. Kanwal, Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, Trans. A. Razmadze Math. In., 172 (2018), 481–490. http://dx.doi.org/10.1016/j.trmi.2018.08.006 doi: 10.1016/j.trmi.2018.08.006
    [33] T. Kanwal, A. Hussain, H. Baghani, M. De La Sen, New fixed point theorems in orthogonal $\mathcal{F}$-metric spaces with application to fractional differential equation, Symmetry, 12 (2020), 832. http://dx.doi.org/10.3390/sym12050832 doi: 10.3390/sym12050832
    [34] A. Petrusel, I. Rus, Fixed point theorems in ordered $L$ -spaces, Proc. Amer. Math. Soc., 134 (2006), 411–418.
    [35] H. Faraji, S. Radenović, Some fixed point results for $F$- $G$-contraction in $\mathcal{F}$-metric spaces endowed with a graph, J. Math. Ext., 16 (2022), 1–13.
    [36] F. Vetro, $F$-contractions of Hardy-Rogers type and application to multistage decision processes, Nonlinear Anal.-Mdel., 21 (2016), 531–546. http://dx.doi.org/10.15388/NA.2016.4.7 doi: 10.15388/NA.2016.4.7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1269) PDF downloads(77) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog