Research article

Quantization of Hamiltonian and non-Hamiltonian systems

  • Received: 15 April 2023 Revised: 05 June 2023 Accepted: 05 June 2023 Published: 16 June 2023
  • 81Sxx, 81P10, 81Q80

  • The quantization process was always tightly connected to the Hamiltonian formulation of classical mechanics. For non-Hamiltonian systems, traditional quantization algorithms turn out to be unsuitable. Numerous attempts to quantize non-Hamiltonian systems have shown that this problem is nontrivial and requires the development of new approaches. In this paper, we present the quantization methods that do not depend upon the Hamiltonian formulation of classical mechanics. Two approaches to the quantization of mechanical systems are considered: axiomatic and hydrodynamic. It is shown that the formal application of these approaches to the classical Hamilton-Jacobi theory allows obtaining the wave equation for the corresponding quantum system in natural way. Examples are considered that show the effectiveness of the proposed approaches, both for Hamiltonian and non-Hamiltonian systems. The spinor form of the relativistic Hamilton-Jacobi theory for classical particles is considered. It is shown that it naturally leads to the Dirac equation for the corresponding quantum particle and to its non-Hamiltonian generalization, the bispinor relativistic Kostin equation.

    Citation: Sergey A. Rashkovskiy. Quantization of Hamiltonian and non-Hamiltonian systems[J]. Communications in Analysis and Mechanics, 2023, 15(2): 267-288. doi: 10.3934/cam.2023014

    Related Papers:

  • The quantization process was always tightly connected to the Hamiltonian formulation of classical mechanics. For non-Hamiltonian systems, traditional quantization algorithms turn out to be unsuitable. Numerous attempts to quantize non-Hamiltonian systems have shown that this problem is nontrivial and requires the development of new approaches. In this paper, we present the quantization methods that do not depend upon the Hamiltonian formulation of classical mechanics. Two approaches to the quantization of mechanical systems are considered: axiomatic and hydrodynamic. It is shown that the formal application of these approaches to the classical Hamilton-Jacobi theory allows obtaining the wave equation for the corresponding quantum system in natural way. Examples are considered that show the effectiveness of the proposed approaches, both for Hamiltonian and non-Hamiltonian systems. The spinor form of the relativistic Hamilton-Jacobi theory for classical particles is considered. It is shown that it naturally leads to the Dirac equation for the corresponding quantum particle and to its non-Hamiltonian generalization, the bispinor relativistic Kostin equation.



    加载中


    [1] L. D. Landau, E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Vol. 3 (3rd ed.), Pergamon Press, 1977.
    [2] A. Messiah, Quantum Mechanics, Dover Publications Inc., New York, 1999.
    [3] E. Nelson, Derivation of the Schrödinger equation from Newtonian mechanics, Phys. Rev., 150 (1966), 1079–1085. https://doi.org/10.1103/PhysRev.150.1079 doi: 10.1103/PhysRev.150.1079
    [4] M. J. W. Hall, M. Reginatto, Schrödinger equation from an exact uncertainty principle, J. Phys. A, 35 (2002), 3289–3303. https://doi.org/10.1088/0305-4470/35/14/310 doi: 10.1088/0305-4470/35/14/310
    [5] L. Fritsche, M. Haugk, A new look at the derivation of the Schrödinger equation from Newtonian mechanics, Ann. Phys. (Leipzig), 12 (2003), 371–403. https://doi.org/10.1002/andp.200310017 doi: 10.1002/andp.200310017
    [6] G. Grössing, Sub-Quantum Thermodynamics as a Basis of Emergent Quantum Mechanics, Entropy, 12 (2010), 1975–2044. https://doi.org/10.3390/e12091975 doi: 10.3390/e12091975
    [7] S. A. Rashkovskiy, Eulerian and Newtonian dynamics of quantum particles, Progr. Theor. Exp. Phys., 2013 (2013), 063A02. https://doi.org/10.1093/ptep/ptt036 doi: 10.1093/ptep/ptt036
    [8] A. O. Bolivar, Quantization of non-Hamiltonian physical systems, Phys. Rev. A, 58 (1998), 4330–4335. https://doi.org/10.1103/PhysRevA.58.4330 doi: 10.1103/PhysRevA.58.4330
    [9] V. E. Tarasov, Quantization of non-Hamiltonian and dissipative systems. Phys. Let. A, 288 (2001), 173–182. https://doi.org/10.1016/S0375-9601(01)00548-5 doi: 10.1016/S0375-9601(01)00548-5
    [10] L. A. Gonçalves, L. S. F. Olavo, Foundations of Quantum Mechanics: Derivation of a dissipative Schrödinger equation from first principles, Ann. Phys., 380 (2017), 59–70. https://doi.org/10.1016/j.aop.2017.03.002 doi: 10.1016/j.aop.2017.03.002
    [11] L. Gonçalves, L. S. F. Olavo, Schrödinger equation for general linear velocity-dependent forces, Phys. Rev. A, 97 (2018), 022102. https://doi.org/10.1103/PhysRevA.97.022102 doi: 10.1103/PhysRevA.97.022102
    [12] S. A. Rashkovskiy, Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems, J Geom. Mech., 12 (2020), 563–583. https://doi.org/10.3934/jgm.2020024 doi: 10.3934/jgm.2020024
    [13] M. O. Scully, The time-dependent Schrödinger equation revisited. I: Quantum field and classical Hamilton-Jacobi routes to Schrödinger wave equation, J. Phys. Conf. Ser., 99 (2008), 012019. https://doi.org/10.1088/1742-6596/99/1/012019 doi: 10.1088/1742-6596/99/1/012019
    [14] L. Nottale, Generalized quantum potentials, J Phys. A: Math. Theor., 42 (2009), 275306. https://doi.org/10.1088/1751-8113/42/27/275306 doi: 10.1088/1751-8113/42/27/275306
    [15] W. P. Schleich, D. M. Greenberger, D. H. Kobe, M. O. Scully, Schrödinger equation revisited, PNAS 110 (2013), 5374–5379. https://doi.org/10.1073/pnas.1302475110 doi: 10.1073/pnas.1302475110
    [16] L. D. Landau, E. M. Lifshitz, Mechanics, Vol. 1 (3rd ed.), Butterworth-Heinemann, 1976.
    [17] M. D. Kostin, On the Schrödinger-Langevin equation, J. Chem. Phys., 57 (1972), 3589–3591. https://doi.org/10.1063/1.1678812 doi: 10.1063/1.1678812
    [18] M. D. Kostin, Friction and dissipative phenomena in quantum mechanics, J. Stat. Phys., 12 (1975), 145–151. https://doi.org/10.1007/BF01010029 doi: 10.1007/BF01010029
    [19] H. J. Wagner, Schrödinger quantization and variational principles in dissipative quantum theory, Z Physik B - Condensed Matter, 95 (1994), 261–273. https://doi.org/10.1007/BF01312199 doi: 10.1007/BF01312199
    [20] R. J. Wysocki, Hydrodynamic quantization of mechanical systems, Phys. Rev. A, 72 (2005), 032113. https://doi.org/10.1103/PhysRevA.72.032113 doi: 10.1103/PhysRevA.72.032113
    [21] S. G. Rajeev, A canonical formulation of dissipative mechanics using complex-valued hamiltonians, Ann. Phys., 322 (2007), 1541–1555. https://doi.org/10.1016/j.aop.2007.02.004 doi: 10.1016/j.aop.2007.02.004
    [22] H. Majima, A. Suzuki, Quantization and instability of the damped harmonic oscillator subject to a time-dependent force, Ann. Phys., 326 (2011), 3000–3012. https://doi.org/10.1016/j.aop.2011.08.002 doi: 10.1016/j.aop.2011.08.002
    [23] H. E. Moses, A spinor representation of Maxwell's equations, Nuovo. Cim., 7 (1958), 1–18. https://doi.org/10.1007/BF02725084 doi: 10.1007/BF02725084
    [24] A. A. Campolattaro, New spinor representation of Maxwell's equations. I. Generalities, Int. J Theor. Phys., 19 (1980), 99–126. https://doi.org/10.1007/BF00669764 doi: 10.1007/BF00669764
    [25] L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields. Vol. 2 (4th ed.), Butterworth-Heinemann, 1975.
    [26] V. B. Berestetskii, E. M. Lifshitz, L. P. Pitaevskii, Quantum Electrodynamics. Vol. 4 (2nd ed.), Butterworth-Heinemann, 1982.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(968) PDF downloads(84) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog