Research article

Global existence and stability of temporal periodic solution to non-isentropic compressible Euler equations with a source term

  • Received: 23 April 2023 Revised: 16 May 2023 Accepted: 25 May 2023 Published: 08 June 2023
  • 35Q31, 35B10, 35A01

  • In this paper, the 1-D compressible non-isentropic Euler equations with the source term $ \beta\rho|u|^ \alpha u $ in a bounded domain are considered. First, we study the existence of steady flows which can keep the upstream supersonic or subsonic state. Then, by wave decomposition and uniform prior estimations, we prove the global existence and stability of smooth solutions under small perturbations around the steady supersonic flow. Moreover, we get that the smooth supersonic solution is a temporal periodic solution with the same period as the boundary, after a certain start-up time, once the boundary conditions are temporal periodic.

    Citation: Shuyue Ma, Jiawei Sun, Huimin Yu. Global existence and stability of temporal periodic solution to non-isentropic compressible Euler equations with a source term[J]. Communications in Analysis and Mechanics, 2023, 15(2): 245-266. doi: 10.3934/cam.2023013

    Related Papers:

  • In this paper, the 1-D compressible non-isentropic Euler equations with the source term $ \beta\rho|u|^ \alpha u $ in a bounded domain are considered. First, we study the existence of steady flows which can keep the upstream supersonic or subsonic state. Then, by wave decomposition and uniform prior estimations, we prove the global existence and stability of smooth solutions under small perturbations around the steady supersonic flow. Moreover, we get that the smooth supersonic solution is a temporal periodic solution with the same period as the boundary, after a certain start-up time, once the boundary conditions are temporal periodic.



    加载中


    [1] L. Hsiao, T. P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Commun. Math. Phys., 143 (1992), 599–605. https://doi.org/10.1007/bf02099268 doi: 10.1007/bf02099268
    [2] L. Hsiao, Quasilinear hyperbolic systems and dissipative mechanisms, World Scientific Publishing Co., Inc., River Edge, NJ, 1997. https://doi.org/10.1142/3538
    [3] C. K. Lin, C. T. Lin, M. Mei, Asymptotic behavior of solution to nonlinear damped p-system with boundary effect, Int. J. Numer. Anal. Model. Ser. B, 1 (2010), 70–92.
    [4] H. L. Li, K. Saxton, Asymptotic behavior of solutions to quasilinear hyperbolic equations with nonlinear damping, Quart. Appl. Math., 61 (2003), 295–313. https://doi.org/10.1090/qam/1976371 doi: 10.1090/qam/1976371
    [5] M. Mei, Nonlinear diffusion waves for hyperbolic p-system with nonlinear damping, J. Differential Equations, 247 (2009), 1275–1296. https://doi.org/10.1016/j.jde.2009.04.004 doi: 10.1016/j.jde.2009.04.004
    [6] C. J. Zhu, Convergence rates to nonlinear diffusion waves for weak entropy solutions to p-system with damping, Sci. China Ser. A, 46 (2003), 562–575. https://doi.org/10.1007/bf02884028 doi: 10.1007/bf02884028
    [7] C. J. Zhu, M. N. Jiang, $L^{p}$-decay rates to nonlinear diffusion waves for p-system with nonlinear damping, Sci. China Ser. A, 49 (2006), 721–739. https://doi.org/10.1007/s11425-006-0721-5 doi: 10.1007/s11425-006-0721-5
    [8] F. M. Huang, R. H. Pan, Z. Wang, $L^{1}$ convergence to the Barenblatt solution for compressible Euler equations with damping, Arch. Ration. Mech. Anal., 200 (2011), 665–689. https://doi.org/10.1007/s00205-010-0355-1 doi: 10.1007/s00205-010-0355-1
    [9] S. F. Geng, F. M. Huang, X. C. Wu, $L^{1}$-Convergence to Generalized Barenblatt Solution for Compressible Euler Equations with Time-Dependent Damping, SIAM J. Math. Anal., 53 (2021), 6048–6072. https://doi.org/10.1137/20m1361043 doi: 10.1137/20m1361043
    [10] S. F. Geng, F. M. Huang, X. C. Wu, $L^{2}$-convergence to nonlinear diffusion waves for Euler equations with time-dependent damping, Acta Math. Sci. Ser. B, 42 (2022), 2505–2522. https://doi.org/10.1007/s10473-022-0618-6 doi: 10.1007/s10473-022-0618-6
    [11] F. L. Wei, J. L. Liu, H. R. Yuan, Global stability to steady supersonic solutions of the 1-D compressible Euler equations with frictions, J. Math. Anal. Appl., 495 (2021), 124761. https://doi.org/10.1016/j.jmaa.2020.124761 doi: 10.1016/j.jmaa.2020.124761
    [12] Y. Sui, H. M. Yu, Singularity formation for compressible Euler equations with time-dependent damping, Discrete Contin. Dyn. Syst., 41 (2021), 4921–4941. https://doi.org/10.3934/dcds.2021062 doi: 10.3934/dcds.2021062
    [13] Y. Sui, H. M. Yu, Vacuum and singularity formation problem for compressible Euler equations with general pressure law and time-dependent damping, Nonlinear Anal. Real World Appl., 65 (2022), 103472. https://doi.org/10.1016/j.nonrwa.2021.103472 doi: 10.1016/j.nonrwa.2021.103472
    [14] Y. Sui, W. Q. Wang, H. M. Yu, Vacuum and singularity formation for compressible Euler equations with time-dependent damping, Discrete Contin. Dyn. Syst., 43 (2023), 1905–1925. https://doi.org/10.3934/dcds.2022184 doi: 10.3934/dcds.2022184
    [15] S. H. Chen, H. T. Li, J. Y. Li, M. Mei, K. J. Zhang, Global and blow-up solutions for compressible Euler equations with time-dependent damping, J. Differential Equations, 268 (2020), 5035–5077. https://doi.org/10.1016/j.jde.2019.11.002 doi: 10.1016/j.jde.2019.11.002
    [16] J. B. Geng, N. A. Lai, M. W. Yuan, J. Zhou, Blow-up for compressible Euler system with space-dependent damping in 1-D, Adv. Nonlinear Anal., 12 (2023), 20220304, 11 pp. https://doi.org/10.1515/anona-2022-0304
    [17] H. Cai, Z. Tan, Time periodic solutions to the compressible Navier-Stokes-Poisson system with damping, Commun. Math. Sci., 15 (2017), 789–812. https://doi.org/10.4310/cms.2017.v15.n3.a10 doi: 10.4310/cms.2017.v15.n3.a10
    [18] T. Naoki, Existence of a time periodic solution for the compressible Euler equation with a time periodic outer force, Nonlinear Anal. Real World Appl., 53 (2020), 103080. https://doi.org/10.1016/j.nonrwa.2019.103080 doi: 10.1016/j.nonrwa.2019.103080
    [19] H. R. Yuan, Time-periodic isentropic supersonic Euler flows in one-dimensional ducts driving by periodic boundary conditions, Acta Math. Sci. Ser. B, 39 (2019), 403–412. https://doi.org/10.1007/s10473-019-0206-6 doi: 10.1007/s10473-019-0206-6
    [20] H. M. Yu, X. M. Zhang, J. W. Sun, Global existence and stability of time-periodic solution to isentropic compressible Euler equations with source term, preprint, arXiv: 2204.01939.
    [21] H. X. Liu, Existence of global smooth solutions for nonisentropic gas dynamics equations with dissipation, Appl. Anal., 66 (1997), 141–152. https://doi.org/10.1080/00036819708840578 doi: 10.1080/00036819708840578
    [22] L. Hsiao, D. Serre, Global existence of solutions for the system of compressible adiabatic flow through porous media, SIAM J. Math. Anal., 27 (1996), 70–77. https://doi.org/10.1137/s0036141094267078 doi: 10.1137/s0036141094267078
    [23] L. Hsiao, T. Luo, Nonlinear diffusive phenomena of solutions for the system of compressible adiabatic flow through porous media, J. Differential Equations, 125 (1996), 329–365. https://doi.org/10.1006/jdeq.1996.0034 doi: 10.1006/jdeq.1996.0034
    [24] P. Marcati, R. H. Pan, On the diffusive profiles for the system of compressible adiabatic flow through porous media, SIAM J. Math. Anal., 33 (2001), 790–826. https://doi.org/10.1137/s0036141099364401 doi: 10.1137/s0036141099364401
    [25] L. Hsiao, R. H. Pan, Initial boundary value problem for the system of compressible adiabatic flow through porous media, J. Differential Equations, 159 (1999), 280–305. https://doi.org/10.1006/jdeq.1999.3648 doi: 10.1006/jdeq.1999.3648
    [26] R. H. Pan, Boundary effects and large time behavior for the system of compressible adiabatic flow through porous media, Michigan Math. J., 49 (2001), 519–540. https://doi.org/10.1307/mmj/1012409969 doi: 10.1307/mmj/1012409969
    [27] W. C. Dong, Z. H. Guo, Stability of combination of rarefaction waves with viscous contact wave for compressible Navier-Stokes equations with temperature-dependent transport coefficients and large data, Adv. Nonlinear Anal., 12 (2023), 132–168. https://doi.org/10.1515/anona-2022-0246 doi: 10.1515/anona-2022-0246
    [28] Y. C. Geng, Y. C. Li, D. H. Wang, R. Z. Xu, Well-posedness of non-isentropic Euler equations with physical vacuum, Interfaces Free Bound., 21 (2019), 231–266. https://doi.org/10.4171/ifb/422 doi: 10.4171/ifb/422
    [29] C. Rickard, M. Hadžić, J. Jang, Global existence of the nonisentropic compressible Euler equations with vacuum boundary surrounding a variable entropy state, Nonlinearity, 34 (2021), 33–91. https://doi.org/10.1088/1361-6544/abb03b doi: 10.1088/1361-6544/abb03b
    [30] Y. Li, Relaxation time limits problem for hydrodynamic models in semiconductor science, Acta Math. Sci. Ser. B, 27 (2007), 437–448. https://doi.org/10.1016/s0252-9602(07)60044-7 doi: 10.1016/s0252-9602(07)60044-7
    [31] J. Xu, W. A. Yong, Relaxation-time limits of non-isentropic hydrodynamic models for semiconductors, J. Differential Equations, 247 (2009), 1777–1795. https://doi.org/10.1016/j.jde.2009.06.018 doi: 10.1016/j.jde.2009.06.018
    [32] F. Z. Wu, Initial layer and relaxation limit of non-isentropic compressible Euler equations with damping, J. Differential Equations, 260 (2016), 5103–5127. https://doi.org/10.1016/j.jde.2015.11.034 doi: 10.1016/j.jde.2015.11.034
    [33] P. Degond, P. A. Markowich, On a one-dimensional steady-state hydrodynamic model for semiconductors, Appl. Math. Lett., 3 (1990), 25–29. https://doi.org/10.1016/0893-9659(90)90130-4 doi: 10.1016/0893-9659(90)90130-4
    [34] T. T. Li, W. C. Yu, Boundary value problem for quasilinear hyperbolic systems, Duke University Math. Series V, 1985.
    [35] T. T. Li, Global classical solutions for quasilinear hyperbolic systems, RAM: Reasearch in App. Math., Mason, Pars; John Wiley & Sons, Ltd., Chichester, 32(1994).
    [36] T. T. Li, Y. Jin, Semi-global $C^{1}$ solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems, Chinese Annals of Mathematics, 22 (2001), 325–336. https://doi.org/10.1142/s0252959901000334 doi: 10.1142/s0252959901000334
    [37] T. T. Li, B. Rao, Local exact boundary controllability for a class of quasilinear hyperbolic systems, Chin. Ann. Math. Ser. B, 23 (2002), 209–218. https://doi.org/10.1142/s0252959902000201 doi: 10.1142/s0252959902000201
    [38] T. T. Li, Y. Zhou, D. X. Kong, Global classical solutions for general quasilinear hyperbolic systems with decay initial data, Nonlinear Anal., Theory Methods Appl., 28 (1997), 1299–1332. https://doi.org/10.1016/0362-546x(95)00228-n doi: 10.1016/0362-546x(95)00228-n
    [39] Z. Q. Wang, Exact controllability for non-autonomous first order quasilinear hyperbolic systems, Chin. Ann. Math. Ser. B, 27 (2006), 643–656. https://doi.org/10.1007/s11401-005-0520-2 doi: 10.1007/s11401-005-0520-2
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(784) PDF downloads(102) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog