In this paper, we establish two conclusions about the continuous dependence on the initial data of the global solution to the initial boundary value problem of a porous elastic system for the linear damping case and the nonlinear damping case, respectively, which reflect the decay property of the dissipative system. Additionally, we estimate the lower bound of the blowup time at the arbitrary positive initial energy for nonlinear damping case.
Citation: Jiangbo Han, Runzhang Xu, Chao Yang. Continuous dependence on initial data and high energy blowup time estimate for porous elastic system[J]. Communications in Analysis and Mechanics, 2023, 15(2): 214-244. doi: 10.3934/cam.2023012
[1] | Qaiser Khan, Muhammad Arif, Bakhtiar Ahmad, Huo Tang . On analytic multivalent functions associated with lemniscate of Bernoulli. AIMS Mathematics, 2020, 5(3): 2261-2271. doi: 10.3934/math.2020149 |
[2] | Zhuo Wang, Weichuan Lin . The uniqueness of meromorphic function shared values with meromorphic solutions of a class of q-difference equations. AIMS Mathematics, 2024, 9(3): 5501-5522. doi: 10.3934/math.2024267 |
[3] | Shuhai Li, Lina Ma, Huo Tang . Meromorphic harmonic univalent functions related with generalized (p, q)-post quantum calculus operators. AIMS Mathematics, 2021, 6(1): 223-234. doi: 10.3934/math.2021015 |
[4] | Syed Ghoos Ali Shah, Shahbaz Khan, Saqib Hussain, Maslina Darus . q-Noor integral operator associated with starlike functions and q-conic domains. AIMS Mathematics, 2022, 7(6): 10842-10859. doi: 10.3934/math.2022606 |
[5] | Bo Wang, Rekha Srivastava, Jin-Lin Liu . Certain properties of multivalent analytic functions defined by q-difference operator involving the Janowski function. AIMS Mathematics, 2021, 6(8): 8497-8508. doi: 10.3934/math.2021493 |
[6] | Tao He, Shu-Hai Li, Li-Na Ma, Huo Tang . Closure properties for second-order λ-Hadamard product of a class of meromorphic Janowski function. AIMS Mathematics, 2023, 8(5): 12133-12142. doi: 10.3934/math.2023611 |
[7] | Hari Mohan Srivastava, Muhammad Arif, Mohsan Raza . Convolution properties of meromorphically harmonic functions defined by a generalized convolution q-derivative operator. AIMS Mathematics, 2021, 6(6): 5869-5885. doi: 10.3934/math.2021347 |
[8] | Da Wei Meng, San Yang Liu, Nan Lu . On the uniqueness of meromorphic functions that share small functions on annuli. AIMS Mathematics, 2020, 5(4): 3223-3230. doi: 10.3934/math.2020207 |
[9] | Wei-Mao Qian, Miao-Kun Wang . Sharp bounds for Gauss Lemniscate functions and Lemniscatic means. AIMS Mathematics, 2021, 6(7): 7479-7493. doi: 10.3934/math.2021437 |
[10] | Huo Tang, Kadhavoor Ragavan Karthikeyan, Gangadharan Murugusundaramoorthy . Certain subclass of analytic functions with respect to symmetric points associated with conic region. AIMS Mathematics, 2021, 6(11): 12863-12877. doi: 10.3934/math.2021742 |
In this paper, we establish two conclusions about the continuous dependence on the initial data of the global solution to the initial boundary value problem of a porous elastic system for the linear damping case and the nonlinear damping case, respectively, which reflect the decay property of the dissipative system. Additionally, we estimate the lower bound of the blowup time at the arbitrary positive initial energy for nonlinear damping case.
The q-calculus (Quantum Calculus) is a branch of mathematics related to calculus in which the concept of limit is replaced by the parameter q. This field of study has motivated the researchers in the recent past with its numerous applications in applied sciences like Physics and Mathematics, e.g., optimal control problems, the field of ordinary fractional calculus, q-transform analysis, q-difference and q-integral equations. The applications of q-generalization in special functions and quantum physics are of high value which makes the study pertinent and interesting in these fields. While the q-difference operator has a vital importance in the theory of special functions and quantum theory, number theory, statistical mechanics, etc. The q-generalization of the concepts of differentiation and integrations were introduced and studied by Jackson [1]. Similarly, Aral and Gupta [2,3] used some what similar concept by introducing the q-analogue of operator of Baskakov Durrmeyer by using q-beta function. Later, Aral and Anastassiu et. al. in [4,5] generalized some complex operators, q-Gauss-Weierstrass singular integral and q-Picard operators. For more details on the topic one can see, for example [6,7,8,9,10,11,12,13,14,15,16,17]. Some of latest inovations in the field can be seen in the work of Arif et al. [18] in which they investigated the q-generalization of Harmonic starlike functions. While Srivastava with his co-authors in [19,20] investigated some general families in q-analogue related to Janowski functions and obatained some interesting results. Later, Shafiq et al. [21] extended this idea of generalization to close to convex functions. Recently, more research seem to have diversified this field with the introduction of operator theory. Some of the details of such work can be seen in the work of Shi and co-authors [22]. Also some new domains have been explored such as Sine domain in the recent work [23]. Motivated from the discussion above we utilize the concepts of q-calculus and introduce a subclass of p-valent meromorphic functions and investigate some of their nice geometric properties.
Before going into our main results we give some basic concepts relating to our work.
Let Mp represents the class of meromorphic multivalent functions which are analytic in D∗={z∈C:0<|z|<1} with the representation
f(z)=1zp+∞∑k=p+1akzk, (z∈D∗). | (1.1) |
Let f(z) and g(z) be analytic in D={z∈C:|z|<1}. Then the function f(z) is subordinated to g(z) in D, written as f(z)≺g(z), z∈D, if there exist a Schwarz function ω(z) such that f(z)=g(ω(z)), where ω(z) is analytic in D, with w(0)=0 and w(z)<1, z∈D.
Let P denote the class of analytic function l(z) normalized by
l(z)=1+∞∑n=1pnzn | (1.2) |
such that Re(z)>0.
We now consider a class of functions in the domain of lemniscate of Bernoulli. All functions l(z) will belong to such a class if it satisfy;
h(z)≺√1+z. | (1.3) |
These functions lie in the right-half of the lemniscate of Bernoulli and with this geometrical representation is the reason behind this name.
With simple calculations the above can be written as
|(h(z))2−1|<1. |
Similarly SL∗, in parallel comparison to starlike functions, for analytic functions is
SL∗={f(z)∈A:zf′(z)f(z)≺√1+z}, | (1.4) |
where A represents the class of analytic functions and z∈D. Alternatively
SL∗={f(z)∈A:|(zf′(z)f(z))2−1|<1}, |
Sokol and Stankiewicz [24] introduced this alongwith some properties. Further study on this was made by different authors in [25,26,27]. Upper bounds for the coefficients of this class are evaluated in [28].
An important problem in the field of analytic functions is to study a functional |a3−va22| called the Fekete-Szegö functional. Where a2 and a3 the coefficients of the original function with a parameter v over which the extremal value of the functional is evaluated. The problem of obtaining the upper bound of this functional for subclasses of normalized functions is called the Fekete-Szegö problem or inequality. M. Fekete and G. Szegö [29], were the first to estimate this classical functional for the class S. While Pfluger [30] utilized Jenkin's method to prove that this result holds for complex μ such that Reμ1−μ≥0. For other related material on the topic reader is reffered to [31,32,33].
Similarly the class of Janowski functions is defined for the function J(z) with −1≤B<A≤1
J(z)≺1+Az1+Bz |
equivalently the functions of this class satisfies
|J(z)−1A−BJ(z)|<1 |
more details on Janowski functions can be seen in [34].
The q-derivative, also known as the q-difference operator, for a function is
Dqf(z)=f(qz)−f(z)z(q−1), | (1.5) |
with z≠0 and 0<q<1. With simple calculations for n∈N and z∈D∗, one can see that
Dq{∞∑n=1anzn}=∞∑n=1[n]qanzn−1, | (1.6) |
with
[n]q=1−qn1−q=1+n−1∑l=1ql and [0]q=0. |
Now we define our new class and we discuss the problem of Fekete-Szegö for this class. Some geometric properties of this class related to subordinations are discussed in connection with Janowski functions.
We introduce MSL∗p,q, a family of meromorphic multivalent functions associated with the domain of lemniscate of Bernoulli in q-analogue as:
If f(z)∈Mp, then it will be in the class MSL∗p,q if the following holds
−qpzDqf(z)[p]qf(z)≺√1+z, | (1.7) |
we note that limq→1−MSL∗p,q=MSL∗p, where
MSL∗p={f(z)∈Mp:−zf′(z)pf(z)≺√1+z, z∈D∗}. |
In this research article we investigate some properties of meromorphic multivalent functions in association with lemniscate of Bernoulli in q-analogue. The important inequality of Fekete-Szegö is evaluated in the beginning of main results. Then we evaluate some bounds of ξ which associate 1+ξzp+1Dqf(z)[p]q,1+ξzDqf(z)[p]qf(z),1+ξz1−pDqf(z)[p]q(f(z))2 and 1+ξz1−2pDqf(z)[p]q(f(z))3 with Janowski functions and zpf(z)≺√1+z. Utilizing these theorems along with some conditions we prove that a function may be a member of MSL∗p,q.
The following Lemmas are important as they help in our main results.
[35]. If l(z) is in P given by (1.2), then
|p2−λp21|≤2 max{1;|2λ−1|}, ν∈C. |
[35]. If l(z) is in P given by (1.2), then
|p2−νp21|≤{−4ν+2 (ν≤0),2 (0≤ν≤1)4ν−2 (ν≥1). |
[36]. (q-Jack's lemma) For an analytic function ω(z) in U={z∈C:|z|<1} with ω(0)=0. If |ω(z)| attains its maximum value on the circle |z|=r at a point z0=reiθ, for θ∈[−π,π], we can write that for 0<q<1
z0Dqω(z0)=mω(z0), |
with m is real and m≥1.
In this section we start with Fekete-Szegö problem in the first two theorems. Then some important results relating to subordination are proved using q-Jack's Lemma and with the help of these results the functions are shown to be in the class of MSL∗p,q in the form of some corollaries.
Let f∈MSL∗p,q and are of the form (1.1), then
|ap+2−λa2p+1|≤[p]q2([p+2]q−[p]q)max{1,|μ|}, |
where
μ=(qp([p+1]q)2+3qp([p]q)2−2λ([p]q)2+2λ[p+2]q[p]q−4qp[p+1]q[p]q)4qp([p+2]q−[p]q). |
Proof. Let f ∈MSL∗p,q, then we have
−qpzDqf(z)[p]qf(z)=√1+ω(z), | (3.1) |
where |ω(z)|≤1 and ω(0)=0.Let
Φ(ω(z))=√1+ω(z). |
Thus for
l(z)=1+p1z+p2z2+⋯=1+ω(z)1−ω(z), | (3.2) |
we have l(z) is in P and
ω(z)=p1z+p2z2+p3z3+⋯2+p1z+p2z2+p3z3+⋯=l(z)−1l(z)+1. |
Now as
√2l(z)l(z)+1=1+14p1z+(14p2−532p21)z2+⋯. |
So from (3.1), we get
−qpzDqf(z)=[p]q√2l(z)l(z)+1 f(z), |
thus
[p]qzp−qp∞∑k=p+1[k]qakzk= |
[p]q(1+14p1z+(14p2−532p21)z2+⋯)([p]qzp+∞∑k=p+1akzk) |
By comparing of coefficients of zk+p, we get
ap+1=−[p]q4qp([p+1]q−[p]q)p1, | (3.3) |
ap+2=−[p]qqp([p+2]q−[p]q)(14p2−5[p+1]q−7[p]q32([p+1]q−[p]q)p21). | (3.4) |
Form (3.3) and (3.4)
|ap+2−λa2p+1|= |
[p]q4qp([p+2]q−[p]q)|p2−5qp([p+1]q)2−12qp[p+1]q[p]q+7qp([p]q)2−2λ([p]q)2+2[p+2]q[p]qλ8qp([p+1]q−[p]q)2p21|, |
Using Lemma 2.1
|ap+2−λa2p+1|≤[p]q2([p+2]q−[p]q)max{1,|μ|}, |
with μ is defined as above.
If f∈MSL∗p,q and of the form (1.1), then
|ap+2−λa2p+1|≤ |
{γ4qp(α−γ)−qpβ2+4qpβγ−3qpγ22qp(β−γ)2+γ4qp(α−γ)2αγ−2γ22qp(β−γ)2λ, 5qpβ2−12qpβγ+7qpγ2−2λγ2+2αγλ8qp(β−γ)2≤0γ2qp(α−γ), 0≤5qpβ2−12qpβγ+7qpγ2−2λγ2+2αγλ8qp(β−γ)2≤1γ4qp(α−γ)qpβ2−4qpβγ+3qpγ22qp(β−γ)2−γ4qp(α−γ)2αγ−2γ22qp(β−γ)2λ, 5qpβ2−12qpβγ+7qpγ2−2λγ2+2αγλ8qp(β−γ)2≥1, |
where λ∈R,α=[p+2]q,β=[p+1]q and γ=[p]q.
Proof. From (3.3) and (3.4) it follows that
ap+2−λa2p+1=[p]q4qp([p+2]q−[p]q)(p2− |
(5qp([p+1]q)2−12qp[p+1]q[p]q+7qp([p]q)2−2λ([p]q)2+2[p+2]q[p]qλ8qp([p+1]q−[p]q)2)p21), |
using above notations, we get
ap+2−λa2p+1=γ4qp(α−γ)(p2−5qpβ2−12qpβγ+7qpγ2−2λγ2+2αγλ8qp(β−γ)2p21). |
Let v=5qpβ2−12qpβγ+7qpγ2−2λγ2+2αγλ8qp(β−γ)2≤0, using Lemma 2.2, we have
|ap+2−λa2p+1|≤γ4qp(α−γ)[−4(5qpβ2−12qpβγ+7qpγ2−2λγ2+2αγλ8qp(β−γ)2)+2]≤γ4qp(α−γ)−qpβ2+4qpβγ−3qpγ22qp(β−γ)2+γ4(α−γ)2αγ−2γ22qp(β−γ)2λ. |
Let v=5qpβ2−12qpβγ+7qpγ2−2λγ2+2αγλ8qp(β−γ)2, where v∈[0,1] using Lemma 2.2, we get the second inequality. Now for v=5qpβ2−12qpβγ+7qpγ2−2λγ2+2αγλ8qp(β−γ)2≥1, using Lemma 2.2, we have
|ap+2−λa2p+1|≤γ4qp(α−γ)[4(5β2−12βγ+7γ2−λγ28(β−γ)2)−2] |
≤γ4qp(α−γ)qpβ2−4qpβγ+3qpγ22qp(β−γ)2−γ4qp(α−γ)2αγ−2γ22qp(β−γ)2λ, |
and hence the proof.
If f(z)∈Mp, then for −1≤B<A≤1 with
|ξ|≥232(A−B)[p]q1−|B|−4p(1+|B|), | (3.5) |
and if
1+ξzp+1Dqf(z)[p]q≺1+Az1+Bz, | (3.6) |
holds, then
zpf(z)≺√1+z. |
Proof. Suppose that
J(z)=1+ξzp+1Dqf(z)[p]q | (3.7) |
and consider
zpf(z)=√1+ω(z). | (3.8) |
Now to prove the required result it will be enough if we prove that |ω(z)|<1.
Using (3.7) and (3.8)
J(z)=1+ξ[p]q(zDqω(z)2√1+ω(z)−p√1+ω(z)) |
and so
|J(z)−1A−BJ(z)|=|ξ[p]q(zDqω(z)2√1+ω(z)−p√1+ω(z))A−B(1+ξ[p]q(zDqω(z)2√1+ω(z)−p√1+ω(z)))| |
=|ξzDqω(z)−2pξ(1+ω(z))2[p]q(A−B)√1+ω(z)−B(ξzDqω(z)−2pξ(1+ω(z)))| |
Now if ω(z) attains its maximum value at some z=z0, which is |ω(z0)|=1. Then by Lemma 2.3, with m≥1 we have,ω(z0)=eiθ and z0Dqω(z0)=mω(z0), with θ∈[−π,π] so
|J(z0)−1A−BJ(z0)|=|ξ(mω(z0)−2p(1+ω(z0)))2(A−B)[p]q√1+ω(z0)−B(ξ(mω(z0)−2p(1+ω(z0))))|≥|ξ|(m−2p(|1+eiθ|))2(A−B)[p]q√|1+eiθ|+|B|(|ξ|(m−2p(|1+eiθ|)))=|ξ|(m−2p√2+2cosθ)2(A−B)[p]q(2+2cosθ)14+|B|(|ξ|(m−2p√2+2cosθ))≥|ξ|(m−4p)|B||ξ|(m+4p)+232(A−B)[p]q. |
Consider
ϕ(m)=|ξ|(m−4p)|B||ξ|(m+4p)+232(A−B)[p]q⇒ϕ′(m)=8p|ξ|2|B|+232|ξ|(A−B)[p]q(|B||ξ|(m+4p)+232(A−B)[p]q)2>0, |
showing the increasing behavior of ϕ(m) so minimum of ϕ(m) will be at m=1 with
|J(z0)−1A−BJ(z0)|≥|ξ|(1−4p)232(A−B)[p]q+|B||ξ|(1+4p), |
so from(3.5)
|J(z0)−1A−BJ(z0)|≥1 |
contradicting (3.6), thus |ω(z)|<1 and so we get the desired result.
Let −1≤B<A≤1 and f(z)∈Mp. If
|ξ|≥232[p]q(A−B)1−|B|−4(1+|B|)p, |
and
1−(1−p+zD2qf(z)Dqf(z)−zDqf(z)f(z))ξzDqf(z)[p]2qf(z)≺1+Az1+Bz, | (3.9) |
then f(z)∈MSL∗p,q.
Proof. Suppose that
l(z)=qpz1−pDqf(z)[p]qf(z). | (3.10) |
From (3.10) it follows that
zp+1Dql(z)=(1−p+zD2qf(z)Dqf(z)−zDqf(z)f(z))zDqf(z)[p]2qf(z), |
Using the condition (3.9),we have
1−ξzp+1Dql(z)≺1+Az1+Bz. |
Now using Theorem 3.3, we get
−zpl(z)=−qpzDqf(z)[p]qf(z)≺√1+z, |
thus f(z)∈MSL∗p.
Let −1≤B<A≤1 and f(z)∈Mp. If
|ξ|≥4[p]q(A−B)1−|B|−4(1+|B|)p | (3.11) |
and
1+ξzDqf(z)[p]qf(z)≺1+Az1+Bz, | (3.12) |
then
zpf(z)≺√1+z. |
Proof. We define a function
J(z)=1+ξzDqf(z)[p]qf(z). | (3.13) |
Now as
zpf(z)=√1+ω(z) | (3.14) |
Using Logarithmic differentiation on (3.14), from (3.13) we obtain that
J(z)=1+ξ[p]q(zDqω(z)2(1+ω(z))−p) |
and so
|J(z)−1A−BJ(z)|=|ξ[p]q(zDqω(z)2(1+ω(z))−p)A−B(1+ξ[p]q(zDqω(z)2(1+ω(z))−p))| |
=|ξ(zDqω(z)−2p(1+ω(z)))2(A−B)[p]q(1+ω(z))−B(ξzDqω(z)−2pξ(1+ω(z)))|. |
If at some z=z0,ω(z) attains its maximum value i.e. |ω(z0)|=1. Then using Lemma 2.3, we have
|J(z0)−1A−BJ(z0)|=|ξ(mω(z0)−2p(1+ω(z0)))2(A−B)[p]q(1+ω(z0))−B(ξmω(z0)−2pξ(1+ω(z0)))|≥|ξ|(m−2p|1+eiθ|)2(A−B)[p]q|1+eiθ|+|ξ||B|(m+2p|1+eiθ|)=|ξ|m−2p|ξ|√2+2cosθ2((A−B)[p]q+p|B||ξ|)√2+2cosθ+|ξ||B|m≥|ξ|(m−4p)4((A−B)[p]q+p|B||ξ|)+|ξ||B|m. |
Now let
ϕ(m)=|ξ|(m−4p)4((A−B)[p]q+p |ξ||B|)+|B||ξ|m⇒ϕ′(m)=|ξ|(8p|B|+4(A−B)[p]q)(4((A−B)[p]q+p|B||ξ|)+|B||ξ|m)2>0, |
which shows that the increasing nature of ϕ(m) and so its minimum value will be at m=1 thus
|J(z0)−1A−BJ(z0)|≥(1−4p)|ξ|4(p|ξ||B|+(A−B)[p]q)+|B||ξ|, |
hence by(3.11)
|J(z0)−1A−BJ(z0)|≥1, |
which contradicts (3.12), therefore |ω(z)|<1 and so the desired result.
Let −1≤B<A≤1 and f(z)∈Mp. If
|ξ|≥4[p]q(A−B)1−|B|−4(1+|B|p), |
and
1−(1−p+zD2qf(z)Dqf(z)−zDqf(z)f(z))ξ[p]q≺1+Az1+Bz, |
then f(z)∈MSL∗p,q.
Let −1≤B<A≤1 and f(z)∈Mp. If
|ξ|≥252[p]q(A−B)1−|B|−4(1+|B|)p | (3.15) |
and
1+ξz1−pDqf(z)[p]q(f(z))2≺1+Az1+Bz, |
then zpf(z)≺√1+z.
Proof. Here we define a function
J(z)=1+ξz1−pDqf(z)[p]qf2(z). |
So if
zpf(z)=√1+ω(z), |
using some simplification we obtain that
J(z)=1+ξ[p]q(zDqω(z)2(1+ω(z))32−p√1+ω(z)), |
and so
|J(z)−1A−BJ(z)|=|ξ[p]q(zDqω(z)2(1+ω(z))32−p√1+ω(z))A−B(1+ξ[p]q(zDqω(z)2(1+ω(z))32−p√1+ω(z)))| |
=|ξ(zDqω(z)−2p(1+ω(z)))2(A−B)[p]q(1+ω(z))32+2pξB(1+ω(z))−BξzDqω(z)|. |
Now if ω(z) attains, at some z=z0, its maximum value which is |ω(z0)|=1. Then by Lemma 2.3, with m≥1 we have,ω(z0)=eiθ and z0Dqω(z0)=mω(z0), with θ∈[−π,π] so
|J(z0)−1A−BJ(z0)|=|ξ(mω(z0)−2p(1+ω(z0)))2(A−B)[p]q(1+ω(z0))32+2pξB(1+ω(z0))−Bξmω(z0)|≥|ξ|m−2p|ξ||1+eiθ|2(A−B)[p]q|1+eiθ|32+|B||ξ|m+2p|ξ||B||1+eiθ|=|ξ|m−2p|ξ|√2+2cosθ2(A−B)[p]q(2+2cosθ)34+|B||ξ|m+2p|ξ||B|√2+2cosθ≥(m−4p)|ξ|252(A−B)[p]q+4p|ξ||B|+|B||ξ|m. |
Now let
ϕ(m)=|ξ|(m−4p)252(A−B)[p]q+|B||ξ|(m+4p)⇒ϕ′(m)=|ξ|(252(A−B)+8p|ξ||B|)(252(A−B)[p]q+4p|ξ||B|+|B||ξ|m)2>0, |
this shows ϕ(m) an increasing function which implies that at m=1 it will have its minimum value and
|J(z0)−1A−BJ(z0)|≥(1−4p)|ξ|252(A−B)[p]q+|B||ξ|+4p|ξ||B|, |
now by (3.15) we have
|J(z0)−1A−BJ(z0)|≥1, |
this is a contradiction as J(z)≺1+Az1+Bz, thus |ω(z)|<1 and so the result.
Let −1≤B<A≤1 and f(z)∈Mp. If
|ξ|≥252[p]q(A−B)1−|B|−4(1+|B|)p, |
and
1−(1−p+zD2qf(z)Dqf(z)−zDqf(z)f(z))ξf(z)zDqf(z)≺1+Az1+Bz, |
then f(z)∈MSL∗p,q.
Let −1≤B<A≤1 and f(z)∈Mp. If
|ξ|≥8[p]q(A−B)1−|B|−4(1+|B|)p | (3.16) |
and
1+ξz1−2pDqf(z)[p]q(f(z))3≺1+Az1+Bz, | (3.17) |
then zpf(z)≺√1+z.
Proof. Suppose that
J(z)=1+ξz1−2pDqf(z)[p]q(f(z))3. |
Now if
zpf(z)=√1+ω(z), |
with simple calculations we can easily obtain
J(z)=1+ξ[p]q(1+ω(z))(zDqω(z)2[p]q(1+ω(z))−p), |
and so
|J(z)−1A−BJ(z)|=|ξ[p]q(1+ω(z))(zDqω(z)2[p]q(1+ω(z))−p)A−B(1+ξ[p]q(1+ω(z))(zDqω(z)2[p]q(1+ω(z))−p))| |
=|ξ(zDqω(z)−2p(1+ω(z)))2(A−B)[p]q(1+ω(z))2+2pξB(1+ω(z))−BξzDqω(z)|, |
if at some z=z0,ω(z) attains its maximum value i.e. |ω(z0)|=1. Then using Lemma 2.3,
|J(z0)−1A−BJ(z0)|=|ξ(mω(z0)−2p(1+ω(z0)))2(A−B)[p]q(1+ω(z0))2−2pξB(1+ω(z0))+Bξmω(z0)|≥|ξ|(m−2p|1+eiθ|)2(A−B)[p]q|1+eiθ|2+2p|ξ||B||1+eiθ|+|B||ξ|m=|ξ|(m−2p√2+2cosθ)2(A−B)[p]q(2+2cosθ)+2p|ξ||B|√2+2cosθ+|B||ξ|m≥(m−4p)|ξ|8(A−B)[p]q+|B||ξ|(m+4p). |
Now let
ϕ(m)=(m−4p)|ξ|8(A−B)[p]q+|B||ξ|(m+4p)⇒ϕ′(m)=8|ξ|(A−B)[p]q+8p|ξ|2|B|(8(A−B)[p]q+|B||ξ|m+4p|ξ||B|)2>0 |
which shows that the increasing nature of ϕ(m) and so its minimum value will be at m=1 thus
|J(z0)−1A−BJ(z0)|≥(1−4p)|ξ|8(A−B)[p]q+|B||ξ|(1+8p), |
and hence
|J(z0)−1A−BJ(z0)|≥1, |
thus a contradiction by (3.17), so |ω(z)|<1 and so we get the desired proof.
Let −1≤B<A≤1 and f(z)∈Mp. If
|ξ|≥8(A−B)[p]q1−|B|−4p(1+|B|) |
and
1−ξ[p]q(1−p+zD2qf(z)Dqf(z)−zDqf(z)f(z))(f(z)zDqf(z))2≺1+Az1+Bz, |
then f(z)∈MSL∗p,q.
Letting q→1− in our results we obtain results for the class MSL∗p.
The main purpose of this article is to seek some applications of the q-calculus in Geometric Function theory, which is the recent attraction for many researchers these days. The methods and ideas of q-calculus are used in the introduction of a new subclass of p-valent meromorphic functions with the help of subordinations. The domain of lemniscate of Bernoulli is considered in defining this class. Working on the coefficients of these functions we obtained a very important result of Fekete-Szegö for this class. Furthermore the functionals 1+ξzp+1Dqf(z)[p]q,1+ξzDqf(z)[p]qf(z),1+ξz1−pDqf(z)[p]q(f(z))2 and 1+ξz1−2pDqf(z)[p]q(f(z))3 are connected with Janowski functions with the help of some conditions on ξ which ensures that a function to be a member of the class MSL∗p,q.
The authors are grateful to the editor and anonymous referees for their comments and remarks to improve this manuscript. The author Thabet Abdeljawad would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Method in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.
The authors declare that they have no competing interests.
[1] |
T. A. Apalara, A general decay for a weakly nonlinearly damped porous system, J. Dyn. Control Syst., 25 (2019), 311–322. https://doi.org/10.1007/s10883-018-9407-x doi: 10.1007/s10883-018-9407-x
![]() |
[2] |
S. C. Cowin, M. A. Goodman, A variational principle for granular materials, ZAMM Z. Angew. Math. Mech., 56 (1976), 281–286. https://doi.org/10.1002/zamm.19760560702 doi: 10.1002/zamm.19760560702
![]() |
[3] |
S. C. Cowin, J. W. Nunziato, Linear elastic materials with voids, J. Elasticity, 13 (1983), 125–147. https://doi.org/10.1007/BF00041230 doi: 10.1007/BF00041230
![]() |
[4] | L. C. Evans, Partial Differential Equations, 2nd edn, American Mathematical Society, Providence, 2010. https://doi.org/10.1090/gsm/019 |
[5] |
M. M. Freitas, M. L. Santos, J. A. Langa, Porous elastic system with nonlinear damping and sources terms, J. Differential Equations, 264 (2018), 2970–3051. https://doi.org/10.1016/j.jde.2017.11.006 doi: 10.1016/j.jde.2017.11.006
![]() |
[6] |
B. W. Feng, On the decay rates for a one-dimensional porous elasticity system with past history, Commun. Pure Appl. Anal., 18 (2019), 2905–2921. https://doi.org/10.3934/cpaa.2019130 doi: 10.3934/cpaa.2019130
![]() |
[7] |
B. W. Feng, L. Yan, D. S. Almeida Júnior, Stabilization for an inhomogeneous porous-elastic system with temperature and microtemperature, ZAMM Z. Angew. Math. Mech., 101 (2021), 202000058. https://doi.org/10.1002/zamm.202000058 doi: 10.1002/zamm.202000058
![]() |
[8] |
M. A. Goodman, S. C. Cowin, A continuum theory for granular materials, Arch. Ration. Mech. Anal., 44 (1972), 249–266. https://doi.org/10.1007/BF00284326 doi: 10.1007/BF00284326
![]() |
[9] |
F. Gazzola, T. Weth, Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Differential Integral Equations, 18 (2005), 961–990. https://doi.org/10.57262/die/1356060117 doi: 10.57262/die/1356060117
![]() |
[10] |
F. Gazzola, M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 185-207. https://doi.org/10.1016/j.anihpc.2005.02.007 doi: 10.1016/j.anihpc.2005.02.007
![]() |
[11] |
J. B. Han, R. Z. Xu, Y. B. Yang, Asymptotic behavior and finite time blow up for damped fourth order nonlinear evolution equation, Asymptot. Anal., 122 (2021), 349–369. https://doi.org/10.3233/ASY-201621 doi: 10.3233/ASY-201621
![]() |
[12] |
H. E. Khochemane, A. Djebabla, S. Zitouni, L. Bouzettouta, Well-posedness and general decay of a nonlinear damping porous-elastic system with infinite memory, J. Math. Phys., 61 (2020), 021505. https://doi.org/10.1063/1.5131031 doi: 10.1063/1.5131031
![]() |
[13] |
T. Louis, A localized nonstandard stabilizer for the Timoshenko beam, C. R. Math. Acad. Sci. Paris, 353 (2015), 247–253. https://doi.org/10.1016/j.crma.2015.01.004 doi: 10.1016/j.crma.2015.01.004
![]() |
[14] |
W. Lian, R. Z. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613–632. https://doi.org/10.1515/anona-2020-0016 doi: 10.1515/anona-2020-0016
![]() |
[15] |
W. Lian, V. D. Rădulescu, R. Z. Xu, Y. B. Yang, N. Zhao, Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations, Adv. Calc. Var., 14 (2021), 589–611. https://doi.org/10.1515/acv-2019-0039 doi: 10.1515/acv-2019-0039
![]() |
[16] |
A. Magaña, R. Quintanilla, On the time decay of solutions in one-dimensional theories of porous materials, Internat. J. Solids Structures, 43 (2006), 3414–3427. https://doi.org/10.1016/j.ijsolstr.2005.06.077 doi: 10.1016/j.ijsolstr.2005.06.077
![]() |
[17] |
J. Muñoz-Rivera, R. Quintanilla, On the time polynomial decay in elastic solids with voids, J. Math. Anal. Appl., 338 (2008), 1296–1309. https://doi.org/10.1016/j.jmaa.2007.06.005 doi: 10.1016/j.jmaa.2007.06.005
![]() |
[18] |
J. W. Nunziato, S. C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Ration. Mech. Anal., 72 (1979), 175–201. https://doi.org/10.1007/BF00249363 doi: 10.1007/BF00249363
![]() |
[19] |
R. Quintanilla, Slow decay for one-dimensional porous dissipation elasticity, Appl. Math. Lett., 16 (2003), 487–491. https://doi.org/10.1016/S0893-9659(03)00025-9 doi: 10.1016/S0893-9659(03)00025-9
![]() |
[20] |
M. L. Santos, D. S. Almeida Júnior, On porous-elastic system with localized damping, Z. Angew. Math. Phys., 67 (2016), 63. https://doi.org/10.1007/s00033-016-0622-6 doi: 10.1007/s00033-016-0622-6
![]() |
[21] |
M. L. Santos, D. S. Almeida Júnior, S. M. Cordeiro, Energy decay for a porous-elastic system with nonlinear localized damping, Z. Angew. Math. Phys., 73 (2022), 7. https://doi.org/10.1007/s00033-021-01636-1 doi: 10.1007/s00033-021-01636-1
![]() |
[22] |
Q. M. Tran, T. T. Vu, M. M. Freitas, Blow-up of weak solutions for a porous elastic system with nonlinear damping and source terms, J. Math. Anal. Appl., 512 (2022), 126132. https://doi.org/10.1016/j.jmaa.2022.126132 doi: 10.1016/j.jmaa.2022.126132
![]() |
[23] |
R. Z. Xu, J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732–2763. https://doi.org/10.1016/j.jfa.2013.03.010 doi: 10.1016/j.jfa.2013.03.010
![]() |
[24] |
H. Y. Xu, Existence and blow-up of solutions for finitely degenerate semilinear parabolic equations with singular potentials, Commun. Anal. Mech., 15 (2023), 132–161. https://doi.org/10.3934/cam.2023008 doi: 10.3934/cam.2023008
![]() |
[25] |
Y. B. Yang, R. Z. Xu, Nonlinear wave equation with both strongly and weakly damped terms: supercritical initial energy finite time blow up, Commun. Pure Appl. Anal., 18 (2019), 1351–1358. https://doi.org/10.3934/cpaa.2019065 doi: 10.3934/cpaa.2019065
![]() |
1. | Muhammad Ghaffar Khan, Bakhtiar Ahmad, Raees Khan, Muhammad Zubair, Zabidin Salleh, On q-analogue of Janowski-type starlike functions with respect to symmetric points, 2021, 54, 2391-4661, 37, 10.1515/dema-2021-0008 | |
2. | M. K. Aouf, S.M. Madian, Certain Classes of Analytic Functions Associated With q-Analogue of p-Valent Cătaş Operator, 2021, 7, 2351-8227, 430, 10.2478/mjpaa-2021-0029 | |
3. | Qiuxia Hu, Timilehin Gideon Shaba, Jihad Younis, Bilal Khan, Wali Khan Mashwani, Murat Çağlar, Applications of q-derivative operator to subclasses of bi-univalent functions involving Gegenbauer polynomials, 2022, 30, 2769-0911, 501, 10.1080/27690911.2022.2088743 | |
4. | A.I.K. Butt, W. Ahmad, M. Rafiq, D. Baleanu, Numerical analysis of Atangana-Baleanu fractional model to understand the propagation of a novel corona virus pandemic, 2022, 61, 11100168, 7007, 10.1016/j.aej.2021.12.042 | |
5. | Lei Shi, Bakhtiar Ahmad, Nazar Khan, Muhammad Ghaffar Khan, Serkan Araci, Wali Khan Mashwani, Bilal Khan, Coefficient Estimates for a Subclass of Meromorphic Multivalent q-Close-to-Convex Functions, 2021, 13, 2073-8994, 1840, 10.3390/sym13101840 | |
6. | Lei Shi, Hari M. Srivastava, Muhammad Ghaffar Khan, Nazar Khan, Bakhtiar Ahmad, Bilal Khan, Wali Khan Mashwani, Certain Subclasses of Analytic Multivalent Functions Associated with Petal-Shape Domain, 2021, 10, 2075-1680, 291, 10.3390/axioms10040291 | |
7. | Mohammad Faisal Khan, Nazar Khan, Serkan Araci, Shahid Khan, Bilal Khan, Xiaolong Qin, Coefficient Inequalities for a Subclass of Symmetric q -Starlike Functions Involving Certain Conic Domains, 2022, 2022, 2314-4785, 1, 10.1155/2022/9446672 | |
8. | Cai-Mei Yan, Rekha Srivastava, Jin-Lin Liu, Properties of Certain Subclass of Meromorphic Multivalent Functions Associated with q-Difference Operator, 2021, 13, 2073-8994, 1035, 10.3390/sym13061035 | |
9. | Saira Zainab, Mohsan Raza, Qin Xin, Mehwish Jabeen, Sarfraz Nawaz Malik, Sadia Riaz, On q-Starlike Functions Defined by q-Ruscheweyh Differential Operator in Symmetric Conic Domain, 2021, 13, 2073-8994, 1947, 10.3390/sym13101947 | |
10. | SH NAJAFZADEH, ZABIDIN SALLEH, GEOMETRIC PROPERTIES OF MULTIVALENT FUNCTIONS ASSOCIATED WITH PARABOLIC REGIONS, 2022, 2, 2948-3697, 59, 10.46754/jmsi.2022.06.006 | |
11. | Sarah Ahmed, Maslina Darus, Georgia Irina Oros, Subordination Results for the Second-Order Differential Polynomials of Meromorphic Functions, 2022, 14, 2073-8994, 2587, 10.3390/sym14122587 | |
12. | Khalida Inayat Noor, Alina Alb Lupas, Shujaat Ali Shah, Alanod M. Sibih, S. Abdel-Khalek, Teodor Bulboaca, Study of Generalized q -Close-to-Convex Functions Related to Parabolic Domain, 2023, 2023, 2314-8888, 1, 10.1155/2023/2608060 | |
13. | Samar Madian, Properties of neighborhood for certain classes associated with complex order and m-q-p-valent functions with higher order, 2022, 30, 2090-9128, 10.1186/s42787-022-00149-8 | |
14. | Shahid Khan, Nazar Khan, Aftab Hussain, Serkan Araci, Bilal Khan, Hamed H. Al-Sulami, Applications of Symmetric Conic Domains to a Subclass of q-Starlike Functions, 2022, 14, 2073-8994, 803, 10.3390/sym14040803 | |
15. | Irfan Ali, Yousaf Ali Khan Malghani, Sardar Muhammad Hussain, Nazar Khan, Jong-Suk Ro, Generalization of k-Uniformly Starlike and Convex Functions Using q-Difference Operator, 2022, 6, 2504-3110, 216, 10.3390/fractalfract6040216 | |
16. | S. Pashayi, S. Shahmorad, M.S. Hashemi, M. Inc, Lie symmetry analysis of two dimensional weakly singular integral equations, 2021, 170, 03930440, 104385, 10.1016/j.geomphys.2021.104385 | |
17. | S. M. Madian, Some properties for certain class of bi-univalent functions defined by q-Cătaş operator with bounded boundary rotation, 2021, 7, 2473-6988, 903, 10.3934/math.2022053 | |
18. | Bakhtiar Ahmad, Muhammad Ghaffar Khan, Maslina Darus, Wali Khan Mashwani, Muhammad Arif, Ming-Sheng Liu, Applications of Some Generalized Janowski Meromorphic Multivalent Functions, 2021, 2021, 2314-4785, 1, 10.1155/2021/6622748 | |
19. | Likai Liu, Rekha Srivastava, Jin-Lin Liu, Applications of Higher-Order q-Derivative to Meromorphic q-Starlike Function Related to Janowski Function, 2022, 11, 2075-1680, 509, 10.3390/axioms11100509 | |
20. | Norah Saud Almutairi, Awatef Shahen, Adriana Cătaş, Hanan Darwish, Convolution Properties of Meromorphic P-Valent Functions with Coefficients of Alternating Type Defined Using q-Difference Operator, 2024, 12, 2227-7390, 2104, 10.3390/math12132104 | |
21. | Ahmad A. Abubaker, Khaled Matarneh, Mohammad Faisal Khan, Suha B. Al-Shaikh, Mustafa Kamal, Study of quantum calculus for a new subclass of q-starlike bi-univalent functions connected with vertical strip domain, 2024, 9, 2473-6988, 11789, 10.3934/math.2024577 | |
22. | Jianhua Gong, Muhammad Ghaffar Khan, Hala Alaqad, Bilal Khan, Sharp inequalities for q-starlike functions associated with differential subordination and q-calculus, 2024, 9, 2473-6988, 28421, 10.3934/math.20241379 | |
23. | V. Malathi, K. Vijaya, Coefficient Bounds for q-Noshiro Starlike Functions in Conic Region, 2024, 2024, 2314-8896, 1, 10.1155/2024/4829276 |