Research article

Continuous dependence on initial data and high energy blowup time estimate for porous elastic system

  • Received: 10 April 2023 Revised: 22 May 2023 Accepted: 22 May 2023 Published: 01 June 2023
  • 35L53, 35B30, 35B44

  • In this paper, we establish two conclusions about the continuous dependence on the initial data of the global solution to the initial boundary value problem of a porous elastic system for the linear damping case and the nonlinear damping case, respectively, which reflect the decay property of the dissipative system. Additionally, we estimate the lower bound of the blowup time at the arbitrary positive initial energy for nonlinear damping case.

    Citation: Jiangbo Han, Runzhang Xu, Chao Yang. Continuous dependence on initial data and high energy blowup time estimate for porous elastic system[J]. Communications in Analysis and Mechanics, 2023, 15(2): 214-244. doi: 10.3934/cam.2023012

    Related Papers:

  • In this paper, we establish two conclusions about the continuous dependence on the initial data of the global solution to the initial boundary value problem of a porous elastic system for the linear damping case and the nonlinear damping case, respectively, which reflect the decay property of the dissipative system. Additionally, we estimate the lower bound of the blowup time at the arbitrary positive initial energy for nonlinear damping case.



    加载中


    [1] T. A. Apalara, A general decay for a weakly nonlinearly damped porous system, J. Dyn. Control Syst., 25 (2019), 311–322. https://doi.org/10.1007/s10883-018-9407-x doi: 10.1007/s10883-018-9407-x
    [2] S. C. Cowin, M. A. Goodman, A variational principle for granular materials, ZAMM Z. Angew. Math. Mech., 56 (1976), 281–286. https://doi.org/10.1002/zamm.19760560702 doi: 10.1002/zamm.19760560702
    [3] S. C. Cowin, J. W. Nunziato, Linear elastic materials with voids, J. Elasticity, 13 (1983), 125–147. https://doi.org/10.1007/BF00041230 doi: 10.1007/BF00041230
    [4] L. C. Evans, Partial Differential Equations, 2nd edn, American Mathematical Society, Providence, 2010. https://doi.org/10.1090/gsm/019
    [5] M. M. Freitas, M. L. Santos, J. A. Langa, Porous elastic system with nonlinear damping and sources terms, J. Differential Equations, 264 (2018), 2970–3051. https://doi.org/10.1016/j.jde.2017.11.006 doi: 10.1016/j.jde.2017.11.006
    [6] B. W. Feng, On the decay rates for a one-dimensional porous elasticity system with past history, Commun. Pure Appl. Anal., 18 (2019), 2905–2921. https://doi.org/10.3934/cpaa.2019130 doi: 10.3934/cpaa.2019130
    [7] B. W. Feng, L. Yan, D. S. Almeida Júnior, Stabilization for an inhomogeneous porous-elastic system with temperature and microtemperature, ZAMM Z. Angew. Math. Mech., 101 (2021), 202000058. https://doi.org/10.1002/zamm.202000058 doi: 10.1002/zamm.202000058
    [8] M. A. Goodman, S. C. Cowin, A continuum theory for granular materials, Arch. Ration. Mech. Anal., 44 (1972), 249–266. https://doi.org/10.1007/BF00284326 doi: 10.1007/BF00284326
    [9] F. Gazzola, T. Weth, Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Differential Integral Equations, 18 (2005), 961–990. https://doi.org/10.57262/die/1356060117 doi: 10.57262/die/1356060117
    [10] F. Gazzola, M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 185-207. https://doi.org/10.1016/j.anihpc.2005.02.007 doi: 10.1016/j.anihpc.2005.02.007
    [11] J. B. Han, R. Z. Xu, Y. B. Yang, Asymptotic behavior and finite time blow up for damped fourth order nonlinear evolution equation, Asymptot. Anal., 122 (2021), 349–369. https://doi.org/10.3233/ASY-201621 doi: 10.3233/ASY-201621
    [12] H. E. Khochemane, A. Djebabla, S. Zitouni, L. Bouzettouta, Well-posedness and general decay of a nonlinear damping porous-elastic system with infinite memory, J. Math. Phys., 61 (2020), 021505. https://doi.org/10.1063/1.5131031 doi: 10.1063/1.5131031
    [13] T. Louis, A localized nonstandard stabilizer for the Timoshenko beam, C. R. Math. Acad. Sci. Paris, 353 (2015), 247–253. https://doi.org/10.1016/j.crma.2015.01.004 doi: 10.1016/j.crma.2015.01.004
    [14] W. Lian, R. Z. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613–632. https://doi.org/10.1515/anona-2020-0016 doi: 10.1515/anona-2020-0016
    [15] W. Lian, V. D. Rădulescu, R. Z. Xu, Y. B. Yang, N. Zhao, Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations, Adv. Calc. Var., 14 (2021), 589–611. https://doi.org/10.1515/acv-2019-0039 doi: 10.1515/acv-2019-0039
    [16] A. Magaña, R. Quintanilla, On the time decay of solutions in one-dimensional theories of porous materials, Internat. J. Solids Structures, 43 (2006), 3414–3427. https://doi.org/10.1016/j.ijsolstr.2005.06.077 doi: 10.1016/j.ijsolstr.2005.06.077
    [17] J. Muñoz-Rivera, R. Quintanilla, On the time polynomial decay in elastic solids with voids, J. Math. Anal. Appl., 338 (2008), 1296–1309. https://doi.org/10.1016/j.jmaa.2007.06.005 doi: 10.1016/j.jmaa.2007.06.005
    [18] J. W. Nunziato, S. C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Ration. Mech. Anal., 72 (1979), 175–201. https://doi.org/10.1007/BF00249363 doi: 10.1007/BF00249363
    [19] R. Quintanilla, Slow decay for one-dimensional porous dissipation elasticity, Appl. Math. Lett., 16 (2003), 487–491. https://doi.org/10.1016/S0893-9659(03)00025-9 doi: 10.1016/S0893-9659(03)00025-9
    [20] M. L. Santos, D. S. Almeida Júnior, On porous-elastic system with localized damping, Z. Angew. Math. Phys., 67 (2016), 63. https://doi.org/10.1007/s00033-016-0622-6 doi: 10.1007/s00033-016-0622-6
    [21] M. L. Santos, D. S. Almeida Júnior, S. M. Cordeiro, Energy decay for a porous-elastic system with nonlinear localized damping, Z. Angew. Math. Phys., 73 (2022), 7. https://doi.org/10.1007/s00033-021-01636-1 doi: 10.1007/s00033-021-01636-1
    [22] Q. M. Tran, T. T. Vu, M. M. Freitas, Blow-up of weak solutions for a porous elastic system with nonlinear damping and source terms, J. Math. Anal. Appl., 512 (2022), 126132. https://doi.org/10.1016/j.jmaa.2022.126132 doi: 10.1016/j.jmaa.2022.126132
    [23] R. Z. Xu, J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732–2763. https://doi.org/10.1016/j.jfa.2013.03.010 doi: 10.1016/j.jfa.2013.03.010
    [24] H. Y. Xu, Existence and blow-up of solutions for finitely degenerate semilinear parabolic equations with singular potentials, Commun. Anal. Mech., 15 (2023), 132–161. https://doi.org/10.3934/cam.2023008 doi: 10.3934/cam.2023008
    [25] Y. B. Yang, R. Z. Xu, Nonlinear wave equation with both strongly and weakly damped terms: supercritical initial energy finite time blow up, Commun. Pure Appl. Anal., 18 (2019), 1351–1358. https://doi.org/10.3934/cpaa.2019065 doi: 10.3934/cpaa.2019065
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1641) PDF downloads(182) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog