Research article Special Issues

The uniqueness of meromorphic function shared values with meromorphic solutions of a class of q-difference equations

  • Received: 21 November 2023 Revised: 14 January 2024 Accepted: 23 January 2024 Published: 29 January 2024
  • MSC : 30D35, 30D30, 39A10

  • We first investigate the meromorphic solutions of a class of homogeneous second-order q-difference equations and the uniqueness problem for a meromorphic function with three shared values; then we discuss the uniqueness problem for the meromorphic solutions of a class of nonhomogeneous q-difference equations and a meromorphic function with four shared values.

    Citation: Zhuo Wang, Weichuan Lin. The uniqueness of meromorphic function shared values with meromorphic solutions of a class of q-difference equations[J]. AIMS Mathematics, 2024, 9(3): 5501-5522. doi: 10.3934/math.2024267

    Related Papers:

  • We first investigate the meromorphic solutions of a class of homogeneous second-order q-difference equations and the uniqueness problem for a meromorphic function with three shared values; then we discuss the uniqueness problem for the meromorphic solutions of a class of nonhomogeneous q-difference equations and a meromorphic function with four shared values.



    加载中


    [1] W. Bergweiler, W. Ishizaki, N. Yanagihara, Meromorphic solutions of some functional equation, Methods Appl. Annl., 5 (1998), 248–258. https://doi.org/10.4310/MAA.1998.v5.n3.a2 doi: 10.4310/MAA.1998.v5.n3.a2
    [2] Z. X. Chen, Complex differences and difference equations, Beijing, Science Press, 2014. https://doi.org/10.1155/2014/124843
    [3] Z. X. Chen, K. H. Shou, On growth of meromorphic solutions for linear difference equations, Abstr. Appl., 2013, 619296. https://doi.org/10.1186/1687-1847-2013-60
    [4] N. Cui, Z. X. Chen, Uniqueness for meromorphic solutions sharing three values with a meromorphic function to some linear difference equations, Chinese Ann. Math., 38A (2017), 13–22.
    [5] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
    [6] Z. B. Huang, On $q$-difference Riccati equations and second-order linear q-difference equations, J. Complex Anal., 2013, 938579. https://doi.org/10.1186/1687-1847-2013-365
    [7] W. C. Lin, K. Ishizaki, A "3IM+1CM" result for periodic meromorphic functions, J. Math. Anal. Appl., 466 (2018), 726–732. https://doi.org/10.1016/j.jmaa.2018.06.010 doi: 10.1016/j.jmaa.2018.06.010
    [8] R. Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Paris, 1929.
    [9] Y. Yang, Y. S. Ye, Queness of meromorphic solutions of q-shift difference equations and sharing three values of any meromorphic functions, J. Jilin Univ. (Sci. Ed.), 4 (2017).
    [10] C. C. Yang, H. X. Yi, Uniqueness theory of meromorphic function, Kluwer Academic Publishers, Dordrecht, 2003. https://doi.org/10.1007/978-94-017-3626-8
    [11] H. X. Yi, Some theorems on systems of meromorphic functions(III), J. Shandong Univ. (Natural Sci. Ed.), 34 (1999), 3–11.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(842) PDF downloads(82) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog