We first investigate the meromorphic solutions of a class of homogeneous second-order q-difference equations and the uniqueness problem for a meromorphic function with three shared values; then we discuss the uniqueness problem for the meromorphic solutions of a class of nonhomogeneous q-difference equations and a meromorphic function with four shared values.
Citation: Zhuo Wang, Weichuan Lin. The uniqueness of meromorphic function shared values with meromorphic solutions of a class of q-difference equations[J]. AIMS Mathematics, 2024, 9(3): 5501-5522. doi: 10.3934/math.2024267
We first investigate the meromorphic solutions of a class of homogeneous second-order q-difference equations and the uniqueness problem for a meromorphic function with three shared values; then we discuss the uniqueness problem for the meromorphic solutions of a class of nonhomogeneous q-difference equations and a meromorphic function with four shared values.
[1] | W. Bergweiler, W. Ishizaki, N. Yanagihara, Meromorphic solutions of some functional equation, Methods Appl. Annl., 5 (1998), 248–258. https://doi.org/10.4310/MAA.1998.v5.n3.a2 doi: 10.4310/MAA.1998.v5.n3.a2 |
[2] | Z. X. Chen, Complex differences and difference equations, Beijing, Science Press, 2014. https://doi.org/10.1155/2014/124843 |
[3] | Z. X. Chen, K. H. Shou, On growth of meromorphic solutions for linear difference equations, Abstr. Appl., 2013, 619296. https://doi.org/10.1186/1687-1847-2013-60 |
[4] | N. Cui, Z. X. Chen, Uniqueness for meromorphic solutions sharing three values with a meromorphic function to some linear difference equations, Chinese Ann. Math., 38A (2017), 13–22. |
[5] | W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964. |
[6] | Z. B. Huang, On $q$-difference Riccati equations and second-order linear q-difference equations, J. Complex Anal., 2013, 938579. https://doi.org/10.1186/1687-1847-2013-365 |
[7] | W. C. Lin, K. Ishizaki, A "3IM+1CM" result for periodic meromorphic functions, J. Math. Anal. Appl., 466 (2018), 726–732. https://doi.org/10.1016/j.jmaa.2018.06.010 doi: 10.1016/j.jmaa.2018.06.010 |
[8] | R. Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Paris, 1929. |
[9] | Y. Yang, Y. S. Ye, Queness of meromorphic solutions of q-shift difference equations and sharing three values of any meromorphic functions, J. Jilin Univ. (Sci. Ed.), 4 (2017). |
[10] | C. C. Yang, H. X. Yi, Uniqueness theory of meromorphic function, Kluwer Academic Publishers, Dordrecht, 2003. https://doi.org/10.1007/978-94-017-3626-8 |
[11] | H. X. Yi, Some theorems on systems of meromorphic functions(III), J. Shandong Univ. (Natural Sci. Ed.), 34 (1999), 3–11. |