Graph invariants provide an amazing tool to analyze the abstract structures of graphs. Metric dimension and edge metric dimension as graph invariants have numerous applications, among them are robot navigation, pharmaceutical chemistry, etc. In this article, we compute the metric and edge metric dimension of two classes of windmill graphs such as French windmill graph and Dutch windmill graph, and also certain generalizations of these graphs.
Citation: Pradeep Singh, Sahil Sharma, Sunny Kumar Sharma, Vijay Kumar Bhat. Metric dimension and edge metric dimension of windmill graphs[J]. AIMS Mathematics, 2021, 6(9): 9138-9153. doi: 10.3934/math.2021531
Graph invariants provide an amazing tool to analyze the abstract structures of graphs. Metric dimension and edge metric dimension as graph invariants have numerous applications, among them are robot navigation, pharmaceutical chemistry, etc. In this article, we compute the metric and edge metric dimension of two classes of windmill graphs such as French windmill graph and Dutch windmill graph, and also certain generalizations of these graphs.
[1] | S. Arumugam, V. Mathew, The fractional metric dimension of graphs, Discret. Math., 312 (2012), 1584–1590. doi: 10.1016/j.disc.2011.05.039 |
[2] | Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffman, M. Mihalak, et al., Network discovery and verification, IEEE J. Sel. Area Comm., 24 (2006), 2168–2181. doi: 10.1109/JSAC.2006.884015 |
[3] | G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discret. Appl. Math., 105 (2000), 99–113. doi: 10.1016/S0166-218X(00)00198-0 |
[4] | V. Chvátal, Mastermind, Combinatorica, 3 (1983), 325–329. |
[5] | A. Estrada-Moreno, On the $(k, t)$-Metric dimension of a Graph, Ph.D. thesis, Universitat Rovira i Virgili, 2016. |
[6] | E. Estrada, When local and global clustering of networks diverge, Linear Algebra Appl., 488 (2016), 249–263. doi: 10.1016/j.laa.2015.09.048 |
[7] | F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combin., 2 (1976), 191–195. |
[8] | S. Hayat, A. Khan, M. Y. H. Malik, M. Imran, M. K. Siddiqui, Fault-Tolerant Metric Dimension of Interconnection Networks, IEEE Access, 8 (2020), 145435–145445. doi: 10.1109/ACCESS.2020.3014883 |
[9] | M. Imran, On the metric dimension of barycentric subdivision of Cayley graphs, Acta Math. Appl. Sinica, 32 (2016), 1067–1072. doi: 10.1007/s10255-016-0627-0 |
[10] | I. Javaid, M. T. Rahim, K. Ali, Families of regular graphs with constant metric dimension, Util. Math., 75 (2008), 21–33. |
[11] | A. Kelenc, D. Kuziak, A. Taranenko, I. G. Yero, On the mixed metric dimension of graphs, Appl. Math. Comput., 314 (2017), 429–438. |
[12] | A. Kelenc, N. Tratnik, I. G. Yero, Uniquely identifying the edges of a graph: the edge metric dimension, Discret. Appl. Math., 251 (2018), 204–220. doi: 10.1016/j.dam.2018.05.052 |
[13] | S. Khuller, B. Raghavachari, A. Rosenfield, Landmarks in graphs, Discret. Appl. Math., 70 (1996), 217–229. |
[14] | R. Nasir, S. Zafar, Z. Zahid, Edge metric dimension of graphs, Ars Comb., 147 (2018), 143–156. |
[15] | O. R. Oellermann, J. P. Fransen, The strong metric dimension of graphs and digraphs, Discret. Appl. Math., 155 (2007), 356–364. doi: 10.1016/j.dam.2006.06.009 |
[16] | F. Okamoto, B. Phinezy, P. Zhang, The local metric dimension of a graph, Math. Bohem., 135 (2010), 239–255. doi: 10.21136/MB.2010.140702 |
[17] | H. Raza, S. Hayat, X. F. Pan, On the fault-tolerant metric dimension of convex polytopes, Appl. Math. Comput., 339 (2018), 172–185. |
[18] | H. Raza, S. Hayat, M. Imran, X. F. Pan, Fault-tolerant resolvability and extremal structures of graphs, Mathematics, 7 (2019), 78. doi: 10.3390/math7010078 |
[19] | H. Raza, S. Hayat, X. F. Pan, On the fault-tolerant metric dimension of certain interconnection networks, J. Appl. Math. Comput., 60 (2019), 517–535. doi: 10.1007/s12190-018-01225-y |
[20] | A. Sebo, E. Tannier, On metric generators of graphs, Math. Oper. Res., 29 (2004), 383–393. doi: 10.1287/moor.1030.0070 |
[21] | H. M. A. Siddiqui, S. Hayat, A. Khan, M. Imran, A. Razzaq, J. B. Liu, Resolvability and fault-tolerant resolvability structures of convex polytopes, Theor. Comput. Sci., 796 (2019), 114-128. doi: 10.1016/j.tcs.2019.08.032 |
[22] | H. Shapiro, S. Soderberg, A combinatory detection problem, Am. Math. Mon., 70 (1963), 1066–1070. doi: 10.1080/00029890.1963.11992174 |
[23] | P. J. Slater, Leaves of trees, Congr. Numer., 14 (1975), 549–559. |
[24] | M. Wei, J. Yue, X. zhu, On the edge metric dimension of graphs, AIMS Mathematics, 5 (2020), 4459–4465. doi: 10.3934/math.2020286 |
[25] | N. Zubrilina, On the edge dimension of a graph, Discret. Math., 341 (2018), 2083–2088. doi: 10.1016/j.disc.2018.04.010 |