Research article Special Issues

Synergy of machine learning and the Einstein Choquet integral with LOPCOW and fuzzy measures for sustainable solid waste management

  • Received: 14 September 2024 Revised: 18 November 2024 Accepted: 28 November 2024 Published: 09 January 2025
  • MSC : 03E72, 90B50, 94D05

  • Solid waste management (SWM) protects public health, the environment, and limited resources in densely populated and urbanized countries such as Singapore. This work presents an advanced framework for optimizing SWM using advanced mathematical models and decision-making techniques, including the circular $ q $-rung orthopair fuzzy set (C$ q $-ROFS) for data, combined with the Choquet integral (CI) and logarithmic percentage change-driven objective weighting (LOPCOW) methods, enhanced by the aggregation operators (AOs) circular $ q $-rung orthopair fuzzy Einstein Choquet integral weighted averaging (C$ q $-ROFECIWA) and circular $ q $-rung orthopair fuzzy Einstein Choquet integral weighted geometric (C$ q $-ROFECIWG) aggregation operators. By conducting a systematic evaluation, these methods classified different alternatives to SWM, evaluating them according to criteria such as their environmental impact, cost-effectiveness, waste reduction efficiency, feasibility of implementation, health safety, and public acceptance. The operators C$ q $-ROFECIWA and C$ q $-ROFECIWG perform better than previous approaches in the effective management of multifaceted and dynamic SWM scenarios. The comparison study demonstrates that the integration of these operators with LOPCOW and the Choquet integral offers decision-making conclusions that are more reliable and sustainable. The study conducted in Singapore successfully finds the most feasible SWM alternatives and emphasizes the possibility of implementing more environmentally sustainable practices in the urban environment. This research offers practical insights for policymakers and emphasizes the need to improve and enhance these approaches to improve SWM in various urban environments.

    Citation: Yasir Yasin, Muhammad Riaz, Kholood Alsager. Synergy of machine learning and the Einstein Choquet integral with LOPCOW and fuzzy measures for sustainable solid waste management[J]. AIMS Mathematics, 2025, 10(1): 460-498. doi: 10.3934/math.2025022

    Related Papers:

  • Solid waste management (SWM) protects public health, the environment, and limited resources in densely populated and urbanized countries such as Singapore. This work presents an advanced framework for optimizing SWM using advanced mathematical models and decision-making techniques, including the circular $ q $-rung orthopair fuzzy set (C$ q $-ROFS) for data, combined with the Choquet integral (CI) and logarithmic percentage change-driven objective weighting (LOPCOW) methods, enhanced by the aggregation operators (AOs) circular $ q $-rung orthopair fuzzy Einstein Choquet integral weighted averaging (C$ q $-ROFECIWA) and circular $ q $-rung orthopair fuzzy Einstein Choquet integral weighted geometric (C$ q $-ROFECIWG) aggregation operators. By conducting a systematic evaluation, these methods classified different alternatives to SWM, evaluating them according to criteria such as their environmental impact, cost-effectiveness, waste reduction efficiency, feasibility of implementation, health safety, and public acceptance. The operators C$ q $-ROFECIWA and C$ q $-ROFECIWG perform better than previous approaches in the effective management of multifaceted and dynamic SWM scenarios. The comparison study demonstrates that the integration of these operators with LOPCOW and the Choquet integral offers decision-making conclusions that are more reliable and sustainable. The study conducted in Singapore successfully finds the most feasible SWM alternatives and emphasizes the possibility of implementing more environmentally sustainable practices in the urban environment. This research offers practical insights for policymakers and emphasizes the need to improve and enhance these approaches to improve SWM in various urban environments.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [3] K. T. Atanassov, Intuitionistic fuzzy sets: Theory and applications, New York: Physica-Verlag, 1999, 1–324. https://doi.org/10.1007/978-3-7908-1870-3
    [4] R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2017), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [5] K. T. Atanassov, Circular intuitionistic fuzzy sets, J. Intell. Fuzzy Syst., 39 (2020), 5981–5986. https://doi.org/10.3233/JIFS-189072 doi: 10.3233/JIFS-189072
    [6] B. Yusoff, A. Kilicman, D. Pratama, R. Hasni, Circular q-rung orthopair fuzzy set and its algebraic properties, Malays. J. Math. Sci., 17 (2023), 363–378. https://doi.org/10.47836/mjms.17.3.08 doi: 10.47836/mjms.17.3.08
    [7] H. L. Wang, F. M. Zhang, Interaction power Heronian mean aggregation operators for multiple attribute decision making with T-spherical fuzzy information, J. Intell. Fuzzy Syst., 42 (2022), 5715–5739. https://doi.org/10.3233/JIFS-212149 doi: 10.3233/JIFS-212149
    [8] Y. J. Xu, H. M. Wang, The induced generalized aggregation operators for intuitionistic fuzzy sets and their application in group decision making, Appl. Soft Comput., 12 (2012), 1168–1179. https://doi.org/10.1016/j.asoc.2011.11.003 doi: 10.1016/j.asoc.2011.11.003
    [9] H. Garg, D. Rani, Novel aggregation operators and ranking method for complex intuitionistic fuzzy sets and their applications to decision-making process, Artif. Intell. Rev., 53 (2020), 3595–3620. https://doi.org/10.1007/s10462-019-09772-x doi: 10.1007/s10462-019-09772-x
    [10] T. Mahmood, P. D. Liu, J. Ye, Q. Khan, Several hybrid aggregation operators for triangular intuitionistic fuzzy set and their application in multi-criteria decision making, Granul. Comput., 3 (2018), 153–168. https://doi.org/10.1007/s41066-017-0061-6 doi: 10.1007/s41066-017-0061-6
    [11] Q. Yu, J. Cao, L. Tan, Y. Liao, J. Y. Liu, Multiple attribute decision-making based on Maclaurin symmetric mean operators on q-rung orthopair cubic fuzzy sets, Soft Comput., 26 (2022), 9953–9977. https://doi.org/10.1007/s00500-022-07363-7 doi: 10.1007/s00500-022-07363-7
    [12] Y. Yasin, M. Riaz, R. Kausar, M. Aslam, Enhancing sustainability in supply chain management using softmax Schweizer-Sklar information aggregation, Eng. Appl. Artif. Intel., 133 (2024), 108181. https://doi.org/10.1016/j.engappai.2024.108181 doi: 10.1016/j.engappai.2024.108181
    [13] H. Garg, Z. Ali, T. Mahmood, Algorithms for complex interval‐valued q‐rung orthopair fuzzy sets in decision making based on aggregation operators, AHP, and TOPSIS, Expert Syst., 38 (2021), e12609. https://doi.org/10.1111/exsy.12609 doi: 10.1111/exsy.12609
    [14] A. Pinar, F. E. Boran, A novel distance measure on q-rung picture fuzzy sets and its application to decision making and classification problems, Artif. Intell. Rev., 55 (2022), 1317–1350. https://doi.org/10.1007/s10462-021-09990-2 doi: 10.1007/s10462-021-09990-2
    [15] H. M. A. Farid, M. Riaz, q-rung orthopair fuzzy Aczel-Alsina aggregation operators with multi-criteria decision-making, Eng. Appl. Artif. Intell., 122 (2023), 106105. https://doi.org/10.1016/j.engappai.2023.106105 doi: 10.1016/j.engappai.2023.106105
    [16] M. T. Hamid, M. Riaz, D. Afzal, Novel MCGDM with q-rung orthopair fuzzy soft sets and TOPSIS approach under q-Rung orthopair fuzzy soft topology, J. Intell. Fuzzy Syst., 39 (2020), 3853–3871. https://doi.org/10.3233/JIFS-192195 doi: 10.3233/JIFS-192195
    [17] T. Jameel, M. Riaz, N. Yaqoob, M. Aslam, T-spherical fuzzy interactive Dubois-Prade information aggregation approach for evaluating low-carbon technology impact and environmental mitigation, Heliyon, 10 (2024), e28963. https://doi.org/10.1016/j.heliyon.2024.e28963 doi: 10.1016/j.heliyon.2024.e28963
    [18] M. S. A. Khan, The Pythagorean fuzzy Einstein Choquet integral operators and their application in group decision making, Comp. Appl. Math., 38 (2019), 128. https://doi.org/10.1007/s40314-019-0871-z doi: 10.1007/s40314-019-0871-z
    [19] D. C. Liang, Y. R. J. Zhang, W. Cao, q‐Rung orthopair fuzzy Choquet integral aggregation and its application in heterogeneous multicriteria two‐sided matching decision making, Int. J. Intell. Syst., 34 (2019), 3275–3301. https://doi.org/10.1002/int.22194 doi: 10.1002/int.22194
    [20] S. Bektas, Evaluating the performance of the Turkish insurance sector for the period 2002-2021 with MEREC, LOPCOW, COCOSO, EDAS CKKV methods, J. BRSA Banking Financ. Markets, 16 (2022), 247–283.
    [21] X. Jia, Y. M. Wang, Choquet integral-based intuitionistic fuzzy arithmetic aggregation operators in multi-criteria decision-making, Expert Syst. Appl., 191 (2022), 116242. https://doi.org/10.1016/j.eswa.2021.116242 doi: 10.1016/j.eswa.2021.116242
    [22] F. Ecer, D. Pamucar, A novel LOPCOW‐DOBI multi‐criteria sustainability performance assessment methodology: An application in developing country banking sector, Omega, 112 (2022), 102690. https://doi.org/10.1016/j.omega.2022.102690 doi: 10.1016/j.omega.2022.102690
    [23] P. Karczmarek, Ł. Gałka, A. Kiersztyn, M. Dolecki, K. Kiersztyn, W. Pedrycz, Choquet integral-based aggregation for the analysis of anomalies occurrence in sustainable transportation systems, IEEE T. Fuzzy Syst., 31 (2022), 536–546. https://doi.org/10.1109/TFUZZ.2022.3140190 doi: 10.1109/TFUZZ.2022.3140190
    [24] T. Mahmood, Z. Ali, S. Baupradist, R. Chinram, TOPSIS method based on Hamacher Choquet-integral aggregation operators for Atanassov-intuitionistic fuzzy sets and their applications in decision-making, Axioms, 11 (2022), 715. https://doi.org/10.3390/axioms11120715 doi: 10.3390/axioms11120715
    [25] F. Ecer, H. Küçükönder, S. K. Kaya, Ö. F. Görçün, Sustainability performance analysis of micro-mobility solutions in urban transportation with a novel IVFNN-Delphi-LOPCOW-CoCoSo framework, Transport. Res. A Pol., 172 (2023), 103667. https://doi.org/10.1016/j.tra.2023.103667 doi: 10.1016/j.tra.2023.103667
    [26] H. Garg, Tehreem, G. N. Nguyen, T. Alballa, H. A. E. W. Khalifa, Choquet integral-based Aczel-Alsina aggregation operators for interval-valued intuitionistic fuzzy information and their application to human activity recognition, Symmetry, 15 (2023), 1438. https://doi.org/10.3390/sym15071438 doi: 10.3390/sym15071438
    [27] F. F. Altıntaş, Analysis of the prosperity performances of G7 countries: An application of the LOPCOW-based CRADIS method, Alphanumeric J., 11 (2023), 157–182.
    [28] M. Riaz, H. Garg, M. R. Hashmi, H. M. A. Farid, Generalized linear diophantine fuzzy Choquet integral with application to the project management and risk analysis, Comp. Appl. Math., 42 (2023), 286. https://doi.org/10.1007/s40314-023-02421-8 doi: 10.1007/s40314-023-02421-8
    [29] L. Sha, Y. B. Shao, Fermatean hesitant fuzzy Choquet integral aggregation operators. IEEE Access, 11 (2023), 38548–38562. https://doi.org/10.1109/ACCESS.2023.3267512 doi: 10.1109/ACCESS.2023.3267512
    [30] A. D. Putra, M. W. Arshad, S. Setiawansyah, S. Sintaro, Decision support system for best honorary teacher performance assessment using a combination of LOPCOW and MARCOS, J. Comput. Syst. Informatics (JoSYC), 5 (2024), 578–590. https://doi.org/10.47065/josyc.v5i3.5127 doi: 10.47065/josyc.v5i3.5127
    [31] P. Kakati, S. G. Quek, G. Selvachandran, T. Senapati, G. Y. Chen, Analysis and application of rectified complex t-spherical fuzzy Dombi-Choquet integral operators for diabetic retinopathy detection through fundus images, Expert Syst. Appl., 243 (2024), 122724. https://doi.org/10.1016/j.eswa.2023.122724 doi: 10.1016/j.eswa.2023.122724
    [32] Y. Rong, L. Y. Yu, Y. Liu, V. Simic, H. Garg, The FMEA model based on LOPCOW-ARAS methods with interval-valued Fermatean fuzzy information for risk assessment of R & D projects in industrial robot offline programming systems, Comp. Appl. Math., 43 (2024), 25. https://doi.org/10.1007/s40314-023-02532-2 doi: 10.1007/s40314-023-02532-2
    [33] H. W. Qin, Y. B. Wang, X. Q. Ma, J. H. Abawajy, A novel Choquet integral-based VIKOR approach under q-rung orthopair hesitant fuzzy environment, IEEE T. Fuzzy Syst., 32 (2024), 2890–2902. https://doi.org/10.1109/TFUZZ.2024.3364253 doi: 10.1109/TFUZZ.2024.3364253
    [34] Y. Wang, W. Z. Wang, M. Deveci, X. Y. Yu, An integrated interval-valued spherical fuzzy Choquet integral based decision making model for prioritizing risk in Fine-Kinney, Eng. Appl. Artif. Intel., 127 (2024), 107437. https://doi.org/10.1016/j.engappai.2023.107437 doi: 10.1016/j.engappai.2023.107437
    [35] J. Mallick, Municipal solid waste landfill site selection based on fuzzy-AHP and geoinformation techniques in Asir region Saudi Arabia, Sustainability, 13 (2021), 1538. https://doi.org/10.3390/su13031538 doi: 10.3390/su13031538
    [36] M. Abdallah, M. A. Talib, S. Feroz, Q. Nasir, H. Abdalla, B. Mahfood, Artificial intelligence applications in solid waste management: A systematic research review, Waste Manage., 109 (2020), 231–246. https://doi.org/10.1016/j.wasman.2020.04.057 doi: 10.1016/j.wasman.2020.04.057
    [37] H. Garg, D. Rani, An efficient intuitionistic fuzzy MULTIMOORA approach based on novel aggregation operators for the assessment of solid waste management techniques, Appl. Intell., 52 (2022), 4330–4363. https://doi.org/10.1007/s10489-021-02541-w doi: 10.1007/s10489-021-02541-w
    [38] M. Eghtesadifard, P. Afkhami, A. Bazyar, An integrated approach to the selection of municipal solid waste landfills through GIS, K-Means and multi-criteria decision analysis, Environ. Res., 185 (2020), 109348. https://doi.org/10.1016/j.envres.2020.109348 doi: 10.1016/j.envres.2020.109348
    [39] M. M. Hoque, M. T. U. Rahman, Landfill area estimation based on solid waste collection prediction using ANN model and final waste disposal options, J. Clean. Prod., 256 (2020), 120387. https://doi.org/10.1016/j.jclepro.2020.120387 doi: 10.1016/j.jclepro.2020.120387
    [40] M. H. Shanta, I. A. Choudhury, S. Salman, Municipal solid waste management: Identification and analysis of technology selection criteria using fuzzy Delphi and fuzzy DEMATEL technique, Heliyon, 10 (2024), e23236. https://doi.org/10.1016/j.heliyon.2023.e23236 doi: 10.1016/j.heliyon.2023.e23236
    [41] S. Narayanamoorthy, A. Anuja, S. Pragathi, M. Sandra, M. Ferrara, A. Ahmadian, et al., Assessment of inorganic solid waste management techniques using full consistency and extended MABAC method, Environ. Sci. Pollut. Res., 31 (2024), 9981–9991. https://doi.org/10.1007/s11356-023-29195-0 doi: 10.1007/s11356-023-29195-0
    [42] H. M. A. Farid, S. Dabic-Miletic, M. Riaz, V. Simic, D. Pamucar, Prioritization of sustainable approaches for smart waste management of automotive fuel cells of road freight vehicles using the q-rung orthopair fuzzy CRITIC-EDAS method, Inform. Sciences, 661 (2024), 120162. https://doi.org/10.1016/j.ins.2024.120162 doi: 10.1016/j.ins.2024.120162
    [43] Z. Y. Wang, G. J. Klir, Fuzzy measure theory, Springer Science & Business Media, 2013. https://doi.org/10.1007/978-1-4757-5303-5
    [44] H. Garg, Generalized intuitionistic fuzzy interactive geometric interaction operators using Einstein t-norm and t-conorm and their application to decision making, Comput. Ind. Eng., 101 (2016), 53–69. https://doi.org/10.1016/j.cie.2016.08.017 doi: 10.1016/j.cie.2016.08.017
    [45] Z. Ali, T. Mahmood, Some Dombi aggregation operators based on complex q-rung orthopair fuzzy sets and their application to multi-attribute decision making, Comp. Appl. Math., 41 (2022), 18. https://doi.org/10.1007/s40314-021-01696-z doi: 10.1007/s40314-021-01696-z
    [46] P. D. Liu, M. Akram, A. Sattar, Extensions of prioritized weighted aggregation operators for decision-making under complex q-rung orthopair fuzzy information, J. Intell. Fuzzy Syst., 39 (2020), 7469–7493. https://doi.org/10.3233/JIFS-200789 doi: 10.3233/JIFS-200789
    [47] I. Otay, C. Kahraman, A novel circular intuitionistic fuzzy AHP & VIKOR methodology: An application to a multi-expert supplier evaluation problem, Pamukkale Üniv. Müh. Bilim. Derg., 28 (2022), 194–207. https://doi.org/10.5505/pajes.2021.90023 doi: 10.5505/pajes.2021.90023
    [48] T. Y. Chen, An advanced approach to multiple criteria optimization and compromise solutions under circular intuitionistic fuzzy uncertainty, Adv. Eng. Inform., 57 (2023), 102112. https://doi.org/10.1016/j.aei.2023.102112 doi: 10.1016/j.aei.2023.102112
    [49] S. Alinejad, M. Alimohammadlou, A. Abbasi, S. H. Mirghaderi, Smart-circular strategies for managing biomass resource challenges: A novel approach using circular intuitionistic fuzzy methods, Energy Convers. Manage., 314 (2024), 118690. https://doi.org/10.1016/j.enconman.2024.118690 doi: 10.1016/j.enconman.2024.118690
    [50] A. Hussain, H. L. Wang, K. Ullah, D. Pamucar, Novel intuitionistic fuzzy Aczel Alsina Hamy mean operators and their applications in the assessment of construction material, Complex Intell. Syst., 10 (2024), 1061–1086. https://doi.org/10.1007/s40747-023-01116-1 doi: 10.1007/s40747-023-01116-1
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(428) PDF downloads(75) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(18)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog