
http://www.aimspress.com/journal/Math

AIMS Mathematics, 10(1): 460–498.
DOI: 10.3934/math.2025022
Received: 14 September 2024
Revised: 18 November 2024
Accepted: 28 November 2024
Published: 09 January 2025

Research article

Synergy of machine learning and the Einstein Choquet integral with
LOPCOW and fuzzy measures for sustainable solid waste management

Yasir Yasin1, Muhammad Riaz1 and Kholood Alsager2,*

1 Department of Mathematics, University of the Punjab, Lahore 54590, Pakistan
2 Department of Mathematics, College of Science, Qassim University, Buraydah, Saudi Arabia

* Correspondence: Email: ksakr@qu.edu.sa.

Abstract: Solid waste management (SWM) protects public health, the environment, and limited
resources in densely populated and urbanized countries such as Singapore. This work presents an
advanced framework for optimizing SWM using advanced mathematical models and decision-making
techniques, including the circular q-rung orthopair fuzzy set (Cq-ROFS) for data, combined with
the Choquet integral (CI) and logarithmic percentage change-driven objective weighting (LOPCOW)
methods, enhanced by the aggregation operators (AOs) circular q-rung orthopair fuzzy Einstein
Choquet integral weighted averaging (Cq-ROFECIWA) and circular q-rung orthopair fuzzy Einstein
Choquet integral weighted geometric (Cq-ROFECIWG) aggregation operators. By conducting a
systematic evaluation, these methods classified different alternatives to SWM, evaluating them
according to criteria such as their environmental impact, cost-effectiveness, waste reduction efficiency,
feasibility of implementation, health safety, and public acceptance. The operators Cq-ROFECIWA and
Cq-ROFECIWG perform better than previous approaches in the effective management of multifaceted
and dynamic SWM scenarios. The comparison study demonstrates that the integration of these
operators with LOPCOW and the Choquet integral offers decision-making conclusions that are
more reliable and sustainable. The study conducted in Singapore successfully finds the most
feasible SWM alternatives and emphasizes the possibility of implementing more environmentally
sustainable practices in the urban environment. This research offers practical insights for policymakers
and emphasizes the need to improve and enhance these approaches to improve SWM in various
urban environments.
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1. Introduction

Urban areas face a crucial challenge in SWM, which has substantial effects on public health,
environmental sustainability, and economic progress. Singapore, with a population of 6.03 million
and a highly urbanized city-state, encounters distinctive difficulties in handling its solid waste due to
its dense population. To achieve efficient and effective SWM, it is necessary to employ innovative and
strong approaches that can handle the complexity and interconnections of many criteria in SWM. Using
the LOPCOW approach, we guarantee that the weights of the criteria precisely represent the relative
significance of each criterion within the SWM framework. A fuzzy measure is used to quantify the level
of reliance between different criteria. This measure is crucial for comprehending the interconnections
among factors, which can greatly impact the ultimate determination of the optimal SWM strategy. The
fuzzy measure enables a comprehensive and intricate examination of these interdependencies, offering
profound insights into the interactions and impacts of many criteria on the overall SWM approach.
To consolidate the information gathered from the experts, we employ the Cq-ROFECIWA and Cq-
ROFECIWG operators. These operators excel at capturing the interaction and synergy between diverse
criteria, ensuring that the aggregation process accurately represents the underlying complexity of the
SWM decision-making environment.

1.1. An overview of Cq-ROFS

Lotfi Zadeh [1] introduced fuzzy set (FS) theory in 1965 as a mathematical approach to dealing
with uncertainty and imprecision. Fuzzy sets provide a range of membership degrees from 0 to 1,
which is different from classical sets. Fuzzy sets are well-suited for representing complex, real-world
problems with ambiguous boundaries due to their adaptability and their ability to assist in the process of
making decisions. Atanassov [2] proposed the notion of intuitionistic fuzzy sets (IFS), which integrate
degrees of membership and non-membership, providing a more thorough framework for managing
uncertainty. The idea was expanded to include interval-valued intuitionistic fuzzy sets (IVIFS), which
make it easier to show uncertainty by giving us more options and accuracy [3]. Yager [4] proposed
the concept of q-rung orthopair fuzzy sets (q-ROFS), which allow for more flexibility in representing
uncertainty. Atanassov [5] proposed the concept of circular intuitionistic fuzzy sets (C-IFS), which are
an expansion of IFS. The author also developed several relationships and operations for C-IFS. Yusoff

et al. [6] introduced the circular q-rung orthopair fuzzy set (Cq-ROFS), a generalization of C-IFS. This
set extends the space of imprecision and establishes a variety of algebraic operations.

1.2. An overview of aggregation operators, the Choquet integral and the LOPCOW method

Aggregation operators and multi-criteria decision-making (MCDM) techniques are crucial for
decision-making in complex situations. It is easier to combine criteria or expert opinions with
aggregation operators, and MCDM evaluates criteria that are at odds with each other, prioritizing
and choosing good alternatives. This makes them useful in a wide range of situations. Wang and
Zhang [7] created the T-spherical fuzzy interaction power heronian mean operator, which combines
degrees of membership, non-membership, and abstention to help make strong decisions. Xu and
Wang [8] introduced the induced generalized intuitionistic fuzzy ordered weighted averaging (I-
GIFOWA) operator, which extends current aggregation operators to incorporate both intuitionistic
and IVIFS in group decision-making. Garg and Rani [9] introduced innovative AOs for complicated
IFS, which improve the representation and decision-making process by integrating phase terms with
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two-dimensional data. Mahmood et al. [10] created hybrid AOs for triangular IFS. They improved
MCDM by adding new weighted, geometric, and hybrid operators and better operational rules. Yu
et al. [11] looked at current MCDM methods and pointed out the problems with standard FS. They
emphasized the need for more advanced methods like q-rung orthopair cubic fuzzy sets to deal with
more complicated decision-making situations. Yasin et al. [12] suggested using cubic intuitionistic
fuzzy sets and Schweizer-Sklar aggregation operators, like CIFSSSWA, CIFSSSOWA, CIFSSSWG,
and CIFSSSOWG, to handle the complexity of assessment well. Garg et al. [13] introduced CIVq-
ROFSs and their AOs, such as AAO and GAO, and discussed their applications in the AHP and
TOPSIS methods for improved MCDM. Pinar and Boran [14] discussed higher-order FS and distance
metrics in data mining and decision-making. They used a unique distance metric for q-RPFS in the q-
RPF ELECTRE combined with TOPSIS to improve group decision-making and categorization. Farid
and Riaz [15] focused on q-ROFSs in decision-making because they effectively convey preferences.
They defined new q-ROFS aggregation operators based on Aczel-Alsina procedures, such as the q-
ROFAAWA operator, and apply them to MCDM situations. Hamid et al. [16] provided an overview
of the algebraic structures and operations of q-ROFSSs, as well as their applications in decision-
making. They presented the q-ROFS TOPSIS and q-ROFS VIKOR approaches for MCDM, illustrating
their usefulness through real-world applications. Jameel et al. [17] used T-spherical fuzzy interactive
Dubois-Prade operators, like T-SFDP, T-SFIDPWA, T-SFIDPOWA, T-SFIDPWG, and T-SFIDPOWG,
to figure out what low-carbon technologies and environmental protection methods mean. Adding
these operators to the CRITIC-EDAS framework shows a good way to carefully evaluate and rank
changes that will make the power system more sustainable, which is a big step forward in the field
of environmental optimization. Many researchers have thoroughly examined the LOPCOW technique
and used the Choquet integral to improve decision-making processes in a variety of domains. Table 1
shows how this strategy has been effective in numerous applications.

Table 1. A comprehensive research work on the Choquet integral and LOPCOW.
Authors Year Method Application
Khan [18] 2019 PFECIA Supplier selection
Liang et al. [19] 2019 q-ROFCI Differentiated two-sided matching decision-making based on multiple factors
Bektas [20] 2022 LOPCOW-EDAS Analyze the efficiency and effectiveness of the Turkish insurance industry
Jia & Wang [21] 2022 CIIFAA and CIIFHAA Multi-criteria decision-making
Ecer & Pamucar [22] 2022 LOPCOW-Dombi The sustainability of banks in impoverished nations is evaluated
Karczmarek et al. [23] 2022 CI-based aggregation Examining deviations in sustainable transportation systems
Mahmood et al. [24] 2022 A-IFHCIA Select a multi-year investment business decision-making challenge
Ecer et al. [25] 2023 LOPCOW-CoCoSo Evaluating the sustainability of micro-mobility systems in urban transportation
Garg et al. [26] 2023 AIVIFC-IAAA, Recognition of human behavior using IVIFS information
Altıntaş [27] 2023 LOPCOW-CRADIS Examining the economic performance of the G7 nations
Riaz et al. [28] 2023 LDFCIA and GLDFCIA Project management and risk analysis
Sha & Shao [29] 2023 FHFCOA Medical decision-making within the framework of FHFs
Putra et al. [30] 2024 LOPCOW-MARCOS Choosing the most eminent educator.
Kakati et al. [31] 2024 rCTSFAλ Detection of diabetic retinopathy
Rong et al. [32] 2024 LOPCOW-ARAS Evaluation of industrial robot offline programming system R&D project risks
Qin et al. [33] 2024 q-ROHFE VIKOR based on CI Best investment in five ports
Wang et al. [34] 2024 IVSF-CRAIDS Risk prioritization in Fine-Kinney

1.3. An overview of SWM and MCDM

The significance of SWM in advancing environmental sustainability and public health has made it
a central area of study for numerous scientists. Researchers have investigated different facets of SWM,
such as novel trash reduction strategies, effective recycling procedures, sophisticated composting
techniques, and sustainable incineration practices. Research has also concentrated on enhancing
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landfill management to reduce environmental harm and investigating the socio-economic aspects of
waste management policy. Researchers are working together to create comprehensive and long-lasting
SWM systems that tackle the intricate problems associated with trash production and disposal in
both urban and rural areas. Mallick [35] evaluated landfill site appropriateness in Saudi Arabia’s
Asir Region using GIS-based fuzzy-AHP-MCDA, including drainage density and land use. The
analysis shows significant regional variety in prospective landfill sites, providing a solid framework
for future site selection. Abdallah et al. [36] analysed 85 AI studies in SWM and found AI beneficial
in waste forecasting, bin level detection, process parameter prediction, vehicle routing, and planning.
The review highlights AI’s ability to manage complicated, nonlinear SWM processes and explores
problems and insights. Garg and Rani [37] presented a MULTIMOORA-based MCDM method for
SWM evaluation under IFS theory. They used particle swarm optimization to determine attribute
weight and offer new operational principles and AOs for IFS. Eghtesadifard et al. [38] used GIS, k-
means clustering, and multi-criteria decision analysis to identify municipal solid waste landfills. In
Shiraz, Iran, they used Delphi, DEMATEL, and ANP to define and weigh 13 criteria, and then used
fuzzy logic using MOORA, WASPAS, and COPRAS to evaluate dump sites. Hoque and Rahman [39]
used 2012–2016 data to create an ANN model to anticipate solid waste collection at the Matuail dump
in Dhaka. Their 2-5-1-1 topology model achieved great accuracy with R2 values of 0.85 and 0.86
for training and testing. The study shows that ANN-based forecasting can optimize landfill space
needs, potentially reducing them by 28.6%. Shanta et al. [40] used fuzzy Delphi and fuzzy DEMATEL
methodologies to develop and evaluate criteria to choose SWM technologies in Bangladesh. Their
research identified 14 causal and 7 effect criteria, highlighting critical issues such as technology
availability, feasibility, and infrastructure needs for effective SWM. Narayanamoorthy et al. [41]
introduced FUCOM and MABAC to evaluate inorganic SWM approaches in India. Using IVq-ROFS,
their work identifies effective ISW disposal strategies and illustrates the model’s resilience through
comparison analysis. Farid et al. [42] proposed a hybrid q-ROF method that combines CRITIC and
EDAS to manage end-of-life automobile fuel cells in road freight trucks. This approach prioritizes
sustainable strategies and shows their practicality through a case study, providing valuable suggestions
to improve FCEV performance in transportation firms. The advantages over traditional methods are
outlined below.

• Using Cq-ROFS, the Choquet integral, and LOPCOW together makes it easier to control
uncertainty and ambiguity in SWM, although traditional methods might not work.

• The Choquet integral lets the model account for interdependence between criteria such as
environmental impact and cost-effectiveness. Traditional methods may ignore complicated
relationships by assuming that the criteria are independent.

• The LOPCOW method makes weighting objective and data-driven, which reduces subjective bias
in judging the importance of criteria, which is a problem with many other weighting methods.

• This combined approach, by addressing a wider range of criteria and dynamically integrating
them, aligns more effectively with sustainability goals than many traditional methods that often
overlook long-term feasibility.

• The integration of these methods is especially effective in complex and variable urban
environments, improving the reliability of SWM strategies over time, in contrast to traditional
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methods that tend to be more rigid and less adaptable to dynamic conditions.

1.4. Motivation and objectives of the study

• SWM is a critical challenge in urban environments, especially in Singapore, due to limited land
space and high waste-generation rates.

• Traditional SWM methods often fail to address the dynamic nature of waste management.

• Recent mathematical modeling and decision-making techniques offer promising avenues for
optimizing SWM practices.

• The integration of Cq-ROFFs with the Einstein t-norm and Einstein t-conorm, the LOPCOW
technique, and the Choquet integral provide robust AOs that are Cq-ROFECIWA and Cq-
ROFECIWG for handling uncertainties and complexities in MCDM.

• The research aims to identify the most effective and efficient SWM method for Singapore,
providing actionable recommendations for policymakers.

• The study also aims to identify the least effective SWM technique, highlighting its deficiencies
and areas for improvement.

1.5. Organization of the study

The paper is structured as follows: The study is introduced in Section 1, and a concise summary
of each method is provided. Additionally, relevant literature is reviewed. Detailed in Section 2 are
the operational laws and preliminaries of Cq-ROFS. Section 3 investigates the Einstein t-norm, t-
conorm, and their fundamental operational laws. Subsequently, it comprehensively analyses the Cq-
ROFECIWA and Cq-ROFECIWG operators, including rigorous proofs. The MCDM framework that
employs these operators is delineated in Section 4. A case study is presented in Section 5, which
delineates the entire decision-making process and emphasizes the advantages of the proposed ranking.
Section 6 concludes with managerial implications, directions for future research, and conclusions.

2. Preliminaries

Definition 2.1. [6] Let X be the universe. A Cq-ROFS Cr can be defined as follows:

Cr =
{〈

x,Mq
C (x),Yq

C (x); T
〉
| x ∈ X

}
,

where
0 ≤ Mq

c(x) + Yq
c(x) ≤ 1,

and T ∈ [0,
√

2] is the radius of the circle around each element x ∈ X. The functionsMq
C : X → [0, 1]

and Yq
C : X → [0, 1] represent the degree of membership and degree of non-membership, respectively,

of an element x ∈ X. The degree of indeterminacy is calculated as follows:

πc(x) =
q
√

1 −Mq
c(x) − Yq

c(x).
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The radius of the 〈µq
c ,Y

q
c〉 can be calculated by Eq (1).

T q
i = max

1≤ j≤ki

q

√((
Mci −Mi j

)2
+

(
Yci − Yi j

)2
)
, (1)

where 〈Mci ,Yci〉 =
〈

1
z

∑z
m=1M

q,z
i j ,

1
z

∑z
m=1Y

q,z
i j

〉
.

Definition 2.2. Let C = 〈(Mq
C ,Y

q
C ); T 〉 be a Cq-ROFN, then the score function S (C ) is defined

as follows:

S (C ) =
M

q
C − Y

q
C +
√

2T (2℘ − 1)
3

, (2)

where S (C ) ∈ [−1, 1] and ℘ ∈ [0, 1] reflects the decision-maker’s perspective of the model.

Definition 2.3. Let C = 〈(Mq
C ,Y

q
C ); T 〉 be a Cq-ROFN, then the accuracy function H(C ) is defined as:

H(C ) = M
q
C + Y

q
C , (3)

where H(C ) ∈ [0, 1].

Let C1 and C2 be two Cq-ROF numbers, and then the ranking rules are as follows:

• If S (C1) > S (C2), then C1 > C2.

• If S (C1) = S (C2), then C1 = C2.

• If H(C1) > H(C2), then C1 > C2.

• If H(C1) = H(C2), then C1 = C2.

2.1. Operational laws on Cq-ROFSs

Let C1 = 〈(Mq
1,Y

q
1); T q

1 〉 and C2 = 〈(Mq
2,Y

q
2); T q

2 〉 be two Cq-ROFSs. The minimum and maximum
radii, which indicate the degree of uncertainty, with a smaller radius indicating less vagueness and
larger radii indicating greater vagueness, determine the operations.

• C1 ∩min C2 =
{〈

x,min
(
M

q
c1

(x),Mq
c2

(x)
)
,max

(
Y

q
c1

(x),Yq
c2

(x)
)

; min
(
T q

1 ,T
q

2

)〉
| x ∈ X

}
.

• C1 ∩max C2 =
{〈

x,min
(
M

q
c1

(x),Mq
c2

(x)
)
,max

(
Y

q
c1

(x),Yq
c2

(x)
)

; max
(
T q

1 ,T
q

2

)〉
| x ∈ X

}
.

• C1 ∪min C2 =
{〈

x,max
(
M

q
c1(x),Mq

c2(x)
)
,min

(
Y

q
c1(x),Yq

c2(x)
)

; min
(
T q

1 ,T
q

2

)〉
| x ∈ X

}
.

• C1 ∪max C2 =
{〈

x,max
(
M

q
c1(x),Mq

c2(x)
)
,min

(
Y

q
c1(x),Yq

c2(x)
)

; max
(
T q

1 ,T
q

2

)〉
| x ∈ X

}
.

• C1 ⊕min C2 =
{〈

x,Mq
c1

(x) +Mq
c2

(x) −Mq
c1

(x)∗Mq
c2

(x),Yq
c1

(x)∗Yq
c2

(x); min
(
T q

1 ,T
q

2

)〉
| x ∈ X

}
.

• C1 ⊕max C2 =
{〈

x,Mq
c1(x) +M

q
c2(x) −Mq

c1(x)∗Mq
c2(x),Yq

c1(x)∗Yq
c2(x); max

(
T q

1 ,T
q

2

)〉
| x ∈ X

}
.

• C1 ⊗min C2 =
{〈

x,Mq
c1(x)∗Mq

c2(x),Yq
c1(x) + Y

q
c2(x) − Yq

c1(x)∗Yq
c2(x); min

(
T q

1 ,T
q

2

)〉
| x ∈ X

}
.

• C1 ⊗max C2 =
{〈

x,Mq
c1(x)∗Mq

c2(x),Yq
c1(x) + Y

q
c2(x) − Yq

c1(x)∗Yq
c2(x); max

(
T q

1 ,T
q

2

)〉
| x ∈ X

}
.
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2.2. Cq-ROFS aggregation operators

Definition 2.4. Let Ci = 〈(Mq
ci ,Y

q
ci); T

q
i 〉 (i = 1, . . . , n) be a family of Cq-ROF numbers and Cq-

ROFECWA: an → a if

Cq-ROFECIWA(C1,C2, . . . ,Cn) =

n⊕
i=1

[(
M (Aσ(i)) −M (Aσ(i−1))

)
Ci

]
=

 q

√√
1 −

n∏
i=1

(
1 −Mq

i

)M (Aσ(i))−M (Aσ(i−1))
, q

√√ n∏
i=1

Y
q
i ·

(M (Aσ(i))−M (Aσ(i−1))), q

√√ n∏
i=1

T q
i ·

(M (Aσ(i))−M (Aσ(i−1)))

 ,
where (M (Aσ(i)) −M (Aσ(i−1))) = ((M (Aσ(1)) −M (Aσ(0))), . . . , (M (Aσ(n)) −M (Aσ(n−1)))) is the
weight vector of (C1,C2, . . . ,Cn) such that 0 ≤ (M (Aσ(i)) −M (Aσ(i−1))) ≤ 1. Then Cq-ROFECIWA
is called a circular q-rung orthopair fuzzy Einstein Choquet integral weighted averaging operator.

Definition 2.5. Let Ci = 〈(Mq
ci ,Y

q
ci); T

q
i 〉 (i = 1, . . . , n) be a family of Cq-ROF numbers and Cq-

ROFECIWG: an → a if

Cq-ROFECIWG(C1,C2, . . . ,Cn) =

n⊗
i=1

(Ci)(M (Aσ(i))−M (Aσ(i−1)))

=

 q

√√ n∏
i=1

M
q
i
(M (Aσ(i))−M (Aσ(i−1))), q

√√
1 −

n∏
i=1

(
1 −Mq

i

)(M (Aσ(i))−M (Aσ(i−1)))
, q

√√ n∏
i=1

T q
i

(M (Aσ(i))−M (Aσ(i−1)))

 ,
where (M (Aσ(i)) −M (Aσ(i−1))) = ((M (Aσ(1)) −M (Aσ(0))), . . . , (M (Aσ(n)) −M (Aσ(n−1)))) is the
weight vector of (C1,C2, . . . ,Cn) such that 0 ≤ (M (Aσ(i)) −M (Aσ(i−1))) ≤ 1. Then Cq-ROFECIWG
is called circular q-rung orthopair fuzzy Einstein Choquet integral weighted geometric operator.

3. Cq-ROF Einstein operational laws

Definition 3.1. [44] The t-norm T and t-conorm S are Einstein products TE and Einstein sums SE,
respectively, as defined in Eqs (4) and (5).

TE(x, y) =
xy

1 + (1 − x)(1 − y)
. (4)

SE(x, y) =
x + y

1 + xy
. (5)

3.1. Circular q-ROF Einstein operations

α ⊕TE β =

 q

√√
M

q
α +M

q
β

1 +M
q
α ·M

q
β

, q

√√√
Y

q
α · Y

q
β

1 +
(
1 − Yq

α

)
·
(
1 − Yq

β

) , q

√√
T q
α + T q

β

1 + T q
α ·T

q
β

 . (6)

α ⊕SE β =

 q

√√
M

q
α +M

q
β

1 +M
q
α ·M

q
β

, q

√√√
Y

q
α · Y

q
β

1 +
(
1 − Yq

α

)
·
(
1 − Yq

β

) , q

√√√
T q
α ·T

q
β

1 +
(
1 −T q

α

)
·
(
1 −T q

β

)
 . (7)
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α ⊗TE β =

 q

√√√
M

q
α ·M

q
β

1 +
(
1 −Mq

α

)
·
(
1 −Mq

β

) , q

√√
Y

q
α + Y

q
β

1 + Y
q
α · Y

q
β

, q

√√√
T q
α ·T

q
β

1 +
(
1 −T q

α

)
·
(
1 −T q

β

)
 . (8)

α ⊗SE β =

 q

√√√
M

q
α ·M

q
β

1 +
(
1 −Mq

α

)
·
(
1 −Mq

β

) , q

√√
Y

q
α + Y

q
β

1 + Y
q
α · Y

q
β

,
q

√√
T q
α + T q

β

1 + T q
α ·T

q
β

 . (9)

λ·TEα =

 q

√(
1 +M

q
α

)λ
−

(
1 −Mq

α

)λ(
1 +M

q
α

)λ
+

(
1 −Mq

α

)λ , q

√
2
(
Y

q
α

)λ(
2 − Yq

α

)λ
+

(
Y

q
α

)λ , q

√(
1 + T q

α

)λ
−

(
1 −T q

α

)λ(
1 + T q

α

)λ
+

(
1 −T q

α

)λ
 . (10)

λ·SEα =

 q

√(
1 +M

q
α

)λ
−

(
1 −Mq

α

)λ(
1 +M

q
α

)λ
+

(
1 −Mq

α

)λ , q√2 (Yα)λ

q
√(

2 − Yq
α

)λ
+

(
Y

q
α

)λ , q

√
2
(
T q
α

)λ(
2 −T q

α

)λ
+

(
T q
α

)λ
 . (11)

(α)λTE =


q√2 (Mα)λ

q
√(

2 −Mq
α

)λ
+

(
M

q
α

)λ , q

√(
1 + Y

q
α

)λ
−

(
1 − Yq

α

)λ(
1 + Y

q
α

)λ
+

(
1 − Yq

α

)λ , q

√
2
(
T q
α

)λ(
2 −T q

α

)λ
+

(
T q
α

)λ
 . (12)

αλSE =


q√2 (Mα)λ

q
√(

2 −Mq
α

)λ
+

(
M

q
α

)λ , q

√(
1 + Y

q
α

)λ
−

(
1 − Yq

α

)λ(
1 + Y

q
α

)λ
+

(
1 − Yq

α

)λ , q

√(
1 + T q

α

)λ
−

(
1 −T q

α

)λ(
1 + T q

α

)λ
+

(
1 −T q

α

)λ
 . (13)

Theorem 3.2. Let C1 and C2 be Cq-ROFSs and λ ≥ 0 be any real number. Then,

• C1 ⊗TE C2 = C2 ⊗TE C1.

• C1 ⊗SE C2 = C2 ⊗SE C1.

• (C1 ⊗TE C2)λ = (C1)λ ⊗TE (C2)λ.

• (C1 ⊗SE C2)λ = (C1)λ ⊗SE (C2)λ.

• λ.TE(C1 ⊕TE C2) = λ.TE(C1) ⊕TE λ.TE(C2).

• λ.SE (C1 ⊕SE C2) = λ.SE (C1) ⊕SE λ.SE (C2).

• λ1.TE(λ2.TEC1) = (λ1.TEλ2).TEC1.

• λ1.SE (λ2.SEC1) = (λ1.SEλ2).SEC1.

• (C1
λ1)λ2 = (C1)λ1 .TEλ2.

• (C1
λ1)λ2 = (C1)λ1 .SEλ2.

3.2. Cq-ROFECI weighted averaging operator

Definition 3.3. [43] The set function M : P(x) ∈ [0, 1] that satisfies the following axioms is a fuzzy
measure M on the set X:
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• M (φ) = 0,M (X) = 1.

• S1 ⊆ S2 implies M (S1) ≤M (S2) , for all S1,S2 ⊆ X.

• M (S1 ∪S2) = M (S1) + M (S2) + ρM (S1)M (S2) for all S1,S2 ∈ P(X), and S1 ∩S2 = ∅, ρ >

−1.

Particularly, the above condition is reduced to the axiom of additive measure when ρ = 0.

M (S1 ∪S2) = M (S1) + M (S2), for all S1,S2 ⊆ X and S1 ∩S2 = ∅. (14)

In this instance, all elements of X are independent, and we have the following:

M (S1) =
∑
xi∈S1

M ({xi}) . (15)

If ρ > 0, then M (S1 ∪ S2) > M (S1) + M (S2), which implies that the set {S1,S2} has a
multiplicative effect. If ρ < 0, then M (S1 ∪ S2) < M (S1) + M (S2) shows a substitutive effect.
By parameter ρ, the interaction between sets or elements of a set can be represented.

M (X) = M
(
∪n

i=1xi
)

=


1
ρ

 n∏
i=1

[
1 + ρM (xi)

]
− 1

 , if ρ , 0,

n∑
i=1

M (xi) , if ρ = 0.
(16)

Particularly for each subset S1 ⊆ X, we have the following:

M (S1) =


1
ρ

∏
xi∈S1

[
1 + ρM (xi)

]
− 1

 , if ρ , 0,∑
xi∈S1

M (xi) , if ρ = 0.
(17)

Equation (16) uniquely determines ρ from M (X) = 1, allowing for the solution:

ρ + 1 =

n∏
i=1

(1 + ρM (xi)) . (18)

Definition 3.4. Let Ci = 〈(Mq
ci ,Y

q
ci); T

q
i 〉 (i = 1, . . . , n) be a family of Cq-ROF numbers and Cq-

ROFECI : an → a if

Cq-ROFECIWA(C1,C2, . . . ,Cn) =

n⊕
i=1 TE

((M (Aσ(i)) −M (Aσ(i−1)))Ci)

=
(
(M (Aσ(1)) −M (Aσ(0)))Cσ(1) ⊕TE (M (Aσ(2)) −M (Aσ(1)))Cσ(2) ⊕TE . . .

⊕TE (M (Aσ(n)) −M (Aσ(n−1)))Cσ(n)
)
,

(19)

where (σ(1), σ(2), . . . , σ(n) is a permutation such that Cσ( j) ≥ Cσ( j+1) for all j = 1, 2, 3, . . . , n and
moreover M (Aσ( j) = {xσ(1), xσ(2), . . . , xσ( j)} 0 ≤ (M (Aσ(i)) −M (Aσ(i−1))) ≤ 1. Then a mapping

AIMS Mathematics Volume 10, Issue 1, 460–498.



469

Cq-ROFECIWA is called a circular q-rung orthopair fuzzy Einstein Choquet integral weighted
averaging operator.

Theorem 3.5. Let Ci = 〈(Mq
i ,Y

q
i ); T q

i 〉 (i = 1, . . . , n) be a family of Cq-ROF numbers, and then the
aggregated value by using Cq-ROFECIWA operational laws is defined in (20).

Cq-ROFECIWA(C1,C2, . . . ,Cn) =

n⊕
i=1 TE

((M (Aσ(i)) −M (Aσ(i−1)))Ci)

=



q

√√√√√√√√√√√√√√√√
n∏

i=1

(
1 +M

q
i

)(M (Aσ(i))−M (Aσ(i−1)))
−

n∏
i=1

(
1 −Mq

i

)(M (Aσ(i))−M (Aσ(i−1)))

n∏
i=1

(
1 +M

q
i

)(M (Aσ(i))−M (Aσ(i−1)))
+

n∏
i=1

(
1 −Mq

i

)(M (Aσ(i))−M (Aσ(i−1)))
,

q√
2

n∏
i=1

(Yi)(M (Aσ(i))−M (Aσ(i−1)))

q

√√
n∏

i=1

(
2 − Yq

i

)(M (Aσ(i))−M (Aσ(i−1)))
+

n∏
i=1

(
Y

q
i

)(M (Aσ(i))−M (Aσ(i−1)))

,

q

√√√√√√√√√√√√√√√√
n∏

i=1

(
1 + T q

i

)(M (Aσ(i))−M (Aσ(i−1)))
−

n∏
i=1

(
1 −T q

i

)(M (Aσ(i))−M (Aσ(i−1)))

n∏
i=1

(
1 + T q

i

)(M (Aσ(i))−M (Aσ(i−1)))
+

n∏
i=1

(
1 −T q

i

)(M (Aσ(i))−M (Aσ(i−1)))



,

(20)
where (M (Aσ(i)) −M (Aσ(i−1))) = ((M (Aσ(1)) −M (Aσ(0))), . . . , (M (Aσ(n)) −M (Aσ(n−1))))
is the weight vector of (C1,C2, . . . ,Cn) such that (M (Aσ(i)) −M (Aσ(i−1))) ∈ [0, 1] and

n∑
i=1

(M (Aσ(i)) −M (Aσ(i−1))) = 1.

Proof. This theorem is proven via mathematical induction. Let $ j = (M (Aσ( j)) −M (Aσ( j−1))). For n
= 2, Cq-ROFECIWA(C1,C2) = ($1C1 ⊕TE $2C2).

By using the Cq-RFE operation defined above, we know that

$1·TEC1 =

 q

√√√√(
1 +M

q
1

)$1
−

(
1 −Mq

1

)$1(
1 +M

q
1

)$1
+

(
1 −Mq

1

)$1
,

q√2 (Y1)$1

q
√(

2 − Yq
1

)$1
+

(
Y

q
1

)$1
,

q

√√√√(
1 + T q

1

)$1
−

(
1 −T q

1

)$1(
1 + T q

1

)$1
+

(
1 −T q

1

)$1

 .

$2·TEC2 =

 q

√√√√(
1 +M

q
2

)$2
−

(
1 −Mq

2

)$2(
1 +M

q
2

)$2
+

(
1 −Mq

2

)$2
,

q√2 (Y2)$2

q
√(

2 − Yq
2

)$2
+

(
Y

q
2

)$2
,

q

√√√√(
1 + T q

2

)$2
−

(
1 −T q

2

)$2(
1 + T q

2

)$2
+

(
1 −T q

2

)$2

 .
Then,

AIMS Mathematics Volume 10, Issue 1, 460–498.



470

Cq-ROFECIWA(C1,C2) = $1.C1 ⊕TE $2.C2

=

 q

√
(1 +M

q
1)$1 − (1 −Mq

1)$1

(1 +M
q
1)$1 + (1 −Mq

1)$1
,

q√2(Y1)$1

q
√

(2 − (Yq
1))$1 + (Yq

1)$1

,
q

√
(1 + T q

1 )$1 − (1 −T q
1 )$1

(1 + T q
1 )$1 + (1 −T q

1 )$1

 .
⊕

TE

 q

√
(1 +M

q
2)$2 − (1 −Mq

2)$2

(1 +M
q
2)q)$2 + (1 −Mq

2)$2
,

q√2(Y2)$2

q
√

(2 − Yq
2)$2 + (Yq

2)$2

,
q

√
(1 + T q

2 )$2 − (1 −T q
2 )$2

(1 + T q
2 )$2 + (1 −T q

2 )$2



=



q

√√√√√√√√√√√√√√
(1 +M

q
1)$1 − (1 −Mq

1)$1

(1 +M
q
1)$1 + (1 −Mq

1)$1
+

(1 +M
q
2)$2 − (1 −Mq

2)$2

(1 +M
q
2)$2 + (1 −Mq

2)$2

1 +

(
(1 +M

q
1)$1 − (1 −Mq

1)$1

(1 +M
q
1)$1 + (1 −Mq

1)$1

)
.

(
(1 +M

q
2)$2 − (1 −Mq

2)$2

(1 +M
q
2)$2 + (1 −Mq

2)$2

) ,

q

√√√√√√√√√√√√√√
(

2(Yq
1)$1

(2 − Yq
1)$1 + (Yq

1)$1

)
.

2(Yq
2)$2

(2 − Yq
2)$2 + (Yq

2)$2

1 +

(
1 −

2((Yq
1))$1

(2 − Yq
1)$1 + (Yq

1)$1

)
.

(
1 −

2((Yq
2))$2

(2 − Yq
2)$2 + (Yq

2)$2

) ,

q

√√√√√√√√√√√√√√
(1 + T q

1 )$1 − (1 −T q
1 )$1

(1 + T q
1 )$1 + (1 −T q

1 )$1
+

(1 + T q
2 )$2 − (1 −T q

2 )$2

(1 + T q
2 )$2 + (1 −T q

2 )$2

1 +

(
(1 + T q

1 )$1 − (1 −T q
1 )$1

(1 + T q
1 )$1 + (1 −T q

1 )$1

)
.

(
(1 + T q

2 )$2 − (1 −T q
2 )$2

(1 + T q
2 )$2 + (1 −T q

2 )$2

)



=



q

√
(1 +M

q
1)$1 .(1 +M

q
2)$2 − (1 −Mq

1)$1 .(1 −Mq
2)$2

(1 +M
q
1)$1 .(1 +M

q
2)$2 + (1 −Mq

1)$1 .(1 −Mq
2)$2

,

q√2(Y$1
1 Y

$2
2 )

q
√

(2 − Yq
1)$1 .(2 − Yq

2)$2 + (2 − Yq
1)$1 .(2 − Yq

2)$2

,

q

√
(1 + T q

1 )$1 .(1 + T q
2 )$2 − (1 −T q

1 )$1 .(1 −T q
2 )$2

(1 + T q
1 )$1 .(1 + T q

2 )$2 + (1 −T q
1 )$1 .(1 −T q

2 )$2
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=



q

√√√√√√√√√√√√√√√√√
2∏

i=1

(
1 +M

q
i

)$i
−

2∏
i=1

(
1 −Mq

i

)$i

2∏
i=1

(
1 +M

q
i

)$i
+

n∏
i=1

(
1 −Mq

i

)$i

,

q√
2

2∏
i=1

(Yi)$i

q

√√
2∏

i=1

(
2 − Yq

i

)$i
+

2∏
i=1

(
Y

q
i

)$i

,

q

√√√√√√√√√√√√√√√√√
2∏

i=1

(
1 + T q

i

)$i
−

2∏
i=1

(
1 −T q

i

)$i

2∏
i=1

(
1 + T q

i

)$i
+

n∏
i=1

(
1 −T q

i

)$i



.

That is, for n = 2, it holds.
Suppose that for n = k, the equation holds, that is:

Cq-ROFECIWA(C1,C2, . . . ,Ck) =



q

√√√√√√√√√√√√√√√√√
k∏

i=1

(
1 +M

q
i

)$i
−

k∏
i=1

(
1 −Mq

i

)$i

k∏
i=1

(
1 +M

q
i

)$i
+

k∏
i=1

(
1 −Mq

i

)$i

,

q√
2

k∏
i=1

(Yi)$i

q

√√
k∏

i=1

(
2 − Yq

i

)$i
+

k∏
i=1

(
Y

q
i

)$i

,

q

√√√√√√√√√√√√√√√√√
k∏

i=1

(
1 + T q

i

)$i
−

k∏
i=1

(
1 −T q

i

)$i

k∏
i=1

(
1 + T q

i

)$i
+

k∏
i=1

(
1 −T q

i

)$i



.

Now we will prove the same for n = k + 1.
Cq-ROFECIWA(C1,C2, . . . ,Ck+1)

= Cq-ROFECIWA(C1,C2, . . . ,Ck) ⊕TE ($k+1Ck+1)
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=



q

√√√√√√√√√√√√√√√√√
k∏

i=1

(
1 +M

q
i

)$i
−

k∏
i=1

(
1 −Mq

i

)$i

∏k
i=1

(
1 +M

q
i

)$i
+

k∏
i=1

(
1 −Mq

i

)$i

⊕TE

q

√√√√ (
1 +M

q
k+1

)$k+1
−

(
1 −Mq

k+1

)$k+1(
1 +M

q
k+1

)$k+1
+

(
1 −Mq

K+1

)$K+1
,

q√
2

k∏
i=1

(Yi)$i

q

√√
k∏

i=1

(
2 − Yq

i

)$i
+

k∏
i=1

(
Y

q
i

)$i

⊕TE

q√2 (Yk+1)$K+1

q
√(

2 − Yq
k+1

)$k+1
+

(
Y

q
k+1

)$k+1
,

q

√√√√√√√√√√√√√√√√√
k∏

i=1

(
1 + T q

i

)$i
−

k∏
i=1

(
1 −T q

i

)$i

∏k
i=1

(
1 + T q

i

)$i
+

k∏
i=1

(
1 −T q

i

)$i

⊕TE

q

√√√√ (
1 + T q

k+1

)$k+1
−

(
1 −T q

k+1

)$k+1(
1 + T q

k+1

)$k+1
+

(
1 −T q

K+1

)$K+1



=



q

√√√√√√√√√√√√√√√√√
k+1∏
i=1

(1 +Mi)$i −

k+1∏
i=1

(1 −Mi)$i

k+1∏
i=1

(1 +Mi)$i +

k+1∏
i=1

(1 −Mi)$i

,

q

√√√√√√√√√√√√√√√√√ 2
k+1∏
i=1

(Yi)$i

k+1∏
i=1

(2 − Yi)$i +

k+1∏
i=1

(Yi)$i

,

q

√√√√√√√√√√√√√√√√√
k+1∏
i=1

(1 + Υi)$i −

k+1∏
i=1

(1 − Υi)$i

k+1∏
i=1

(1 + Υi)$i +

k+1∏
i=1

(1 − Υi)$i



,

where $i = (M (Aσ(i)) −M (Aσ(i−1))) and it confirms that the above equation holds for n = k + 1, thus
proving the required result. �

Theorem 3.6. Idempotency
Let Ci = 〈(Mq

Ci
,Y

q
Ci

); T q
i 〉 be a family of Cq-ROF numbers. Then, if all Ci are equal, i.e., Ci = C

for all i = 1, 2, . . . , n, then

Cq-ROFECIWA (C1,C2, . . . ,Cn) = C.
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Proof. Since Ci = C for all i = 1, 2, . . . , n, i.e.,Mq
Ci

=M
q
C , Yq

Ci
= Y

q
C , and T q

Ci
= T q

C , i = 1, 2, . . . , n, then

Cq-ROFECIWA (C1,C2, . . . ,Cn)

=



q

√√√√√√√√√√√√√√√
n∏

i=1

(
1 +M

q
Ci

)∑n
i=1(M (Aσ(i))−M (Aσ(i−1)))

−

n∏
p=1

(
1 −Mq

Ci

)∑n
i=1(M (Aσ(i))−M (Aσ(i−1)))

n∏
i=1

(
1 +M

q
Ci

)∑n
i=1(M (Aσ(i))−M (Aσ(i−1)))

+

n∏
i=1

(
1 −Mq

Ci

)∑n
i=1(M (Aσ(i))−M (Aσ(i−1)))

,

q

√√√√√√√√√√√√√√ 2
n∏

i=1

(
Y

q
Ci

)∑n
i=1(M (Aσ(i))−M (Aσ(i−1)))

n∏
i=1

(
2 − Yq

Ci

)∑n
i=1(M (Aσ(i))−M (Aσ(i−1)))

+

n∏
i=1

(
Y

q
Ci

)∑n
i=1(M (Aσ(i))−M (Aσ(i−1)))

,

q

√√√√√√√√√√√√√√√
n∏

i=1

(
1 + T q

Ci

)∑n
i=1(M (Aσ(i))−M (Aσ(i−1)))

−

n∏
p=1

(
1 −T q

Ci

)∑n
i=1(M (Aσ(i))−M (Aσ(i−1)))

n∏
i=1

(
1 + T q

Ci

)∑n
i=1(M (Aσ(i))−M (Aσ(i−1)))

+

n∏
i=1

(
1 −T q

Ci

)∑n
i=1(M (Aσ(i))−M (Aσ(i−1)))



=



n∑
i=1

(
1 +M

q
C

)∑n
i=1(M (Aσ(i))−M (Aσ(i−1)))

−

n∑
i=1

(
1 −Mq

C

)∑n
i=1(M (Aσ(i))−M (Aσ(i−1)))

n∑
i=1

(
1 +M

q
C

)∑n
i=1(M (Aσ(i))−M (Aσ(i−1)))

+

n∑
i=1

(
1 −Mq

C

)∑n
i=1(M (Aσ(i))−M (Aσ(i−1)))

,

2
n∑

i=1

(
Y

q
C

)∑n
i=1(M (Aσ(i))−M (Aσ(i−1)))

n∑
i=1

(
2 − Yq

C

)∑n
i=1(M (Aσ(i))−M (Aσ(i−1)))

+

n∑
i=1

(
Y

q
C

)∑n
i=1(M (Aσ(i))−M (Aσ(i−1)))

,

n∑
i=1

(
1 + T q

C

)∑n
i=1(M (Aσ(i))−M (Aσ(i−1)))

−

n∑
i=1

(
1 −T q

C

)∑n
i=1(M (Aσ(i))−M (Aσ(i−1)))

n∑
i=1

(
1 + T q

C

)∑n
i=1(M (Aσ(i))−M (Aσ(i−1)))

+

n∑
i=1

(
1 −T q

C

)∑n
i=1(M (Aσ(i))−M (Aσ(i−1)))



AIMS Mathematics Volume 10, Issue 1, 460–498.



474

=



(
1 +M

q
C

)
−

(
1 −Mq

C

)(
1 +M

q
C

)
+

(
1 −Mq

C

) ,
2Yq

C(
2 − Yq

C

)
+ Y

q
C

,

(
1 + T q

C

)
−

(
1 −T q

C

)(
1 + T q

C

)
+

(
1 −T q

C

)



=
(
M

q
C ,Y

q
C ,T

q
C

)
= C . �

Theorem 3.7. Boundary
Let Ci = 〈(Mq

Ci
,Y

q
Ci

); T q
Ci
〉 be a family of Cq-ROF numbers. Then,

Cmin ≤ Cq-ROFECIWA (C1,C2, . . . ,Cn) ≤ Cmax.

Where Cmin = min {C1,C2, . . . ,Cn} and Cmax = max {C1,C2, . . . ,Cn}.

Proof. Let f (r) =
1 − r
1 + r

, r ∈ [0, 1], and then f ′(r) =

[
1 − r
1 + r

]′
=

−2
(1 + r)2 < 0. Thus, f (r) is a

decreasing function. SinceMq
Cmin
≤ M

q
Ci
≤ M

q
Cmax

for all i, then f
(
M

q
Cmax

)
≤ f

(
M

q
Ci

)
≤ f

(
M

q
Cmin

)
for all

i, i.e., q

√√
1 −Mq

Cmax

1 +M
q
Cmax

≤
q

√√
1 −Mq

Ci

1 +M
q
Ci

≤
q

√√
1 −Mq

Cmin

1 +M
q
Cmin

(i = 1, 2, . . . n). We have

q

√√√1 −Mq
Cmax

1 +M
q
Cmax

(M (Aσ(i))−M (Aσ(i−1)))

≤
q

√√√1 −Mq
Ci

1 +M
q
Ci

(M (Aσ(i))−M (Aσ(i−1)))

≤
q

√√√1 −Mq
Cmin

1 +M
q
Cmin

(M (Aσ(i))−M (Aσ(i−1)))

q

√√√
n∏

i=1

 1 −Mq
Cmax

1 +M
q
Cmax

(M (Aσ(i) )−M (Aσ(i−1)))

≤
q

√√√√ n∏
i=1

 1 −Mq
Ci

1 +M
q
Ci

(M (Aσ(i) )−M (Aσ(i−1)))

≤
q

√√√√ n∏
i=1

 1 −Mq
Cmin

1 +M
q
Cmin


(M (Aσ(i) )−M (Aσ(i−1)))

q

√√√
n∑

i=1

 1 −Mq
Cmax

1 +M
q
Cmax

(M (Aσ(i) )−M (Aσ(i−1)))

≤
q

√√√√ n∏
i=1

 1 −Mq
Cp

1 +M
q
Ci


(M (Aσ(i) )−M (Aσ(i−1)))

≤ q

√√√
n∑

i=1

 1 −Mq
Cmax

1 +M
q
Cmax

(M (Aσ(i) )−M (Aσ(i−1)))

⇔
q

√√1 −Mq
Cmax

1 +M
q
Cmax

 ≤ q

√√√
n∏

i=1

1 −Mq
Cp

1 +M
q
Ci

(M (Aσ(i))−M (Aσ(i−1)))

≤
q

√√1 −Mq
Cmin

1 +M
q
Cmin



⇔ q

√
2

1 +M
q
Cmax

≤
q

√√√
1 +

n∏
i=1

1 −Mq
Ci

1 +M
q
Ci

(M (Aσ(i))−M (Aσ(i−1))

) ≤ q

√
2

1 +M
q
βmin
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⇔
q

√
1 +M

q
βmin

2
≤

q

√√√√√√√√√ 1

1 +

n∏
i=1

1 −Mq
Ci

1 +M
q
Ci

(M (Aσ(i))−M (Aσ(i−1)))
≤

q

√
1 +M

q
Cmax

2

⇔1 +M
q
Cmin
≤

2

1 +

n∏
i=1

1 −Mq
Ci

1 +M
q
Ci

(M (Aσ(i))−M (Aσ(i−1)))
≤ 1 +M

q
Cmax

⇔M
q
Cmin
≤

2

1 +

n∏
i=1

1 −Mq
Ci

1 +M
q
Ci

(M (Aσ(i))−M (Aσ(i−1)))
− 1 ≤ Mq

βmax
,

i.e.,

⇔ M
q
Cmin
≤

∏n
i=1

(
1 +M

q
Ci

)(M (Aσ(i))−M (Aσ(i−1)))
−

∏n
i=1

(
1 −Mq

Ci

)(M (Aσ(i))−M (Aσ(i−1)))

∏n
i=1

(
1 +M

q
Ci

)(M (Aσ(i))−M (Aσ(i−1)))
+

∏n
i=1

(
1 −Mq

Ci

)(M (Aσ(i))−M (Aσ(i−1)))
≤ M

q
Cmax

.

Let g(y) =
2−y

y , y ∈ (0, 1], then g′(y) = −2
y2 < 0, which is a decreasing function on (0, 1]. Since

Y
q
Cmax
≤ Y

q
Ci
≤ Y

q
Cmin

, for all i, where 0 < Yq
Cmax

, we have g
(
Y

q
Cmin

)
≤ g

(
Y

q
Ci

)
≤ g

(
Y

q
Cmax

)
, for all i, i.e.,

q

√√
2 − Yq

Cmin

Y
q
Cmin

≤
q

√√
2 − Yq

Ci

Y
q
Ci

≤
q

√√
2 − Yq

Cmax

Y
q
Cmax

, (i = 1, 2, . . . , n).

Let

$ =
(
(M (Aσ(1)) −M (Aσ(0))), (M (Aσ(2)) −M (Aσ(1))), . . . , (M (Aσ(n)) −M (Aσ(n−1)))

)T

be the weight vector of Ci, (i = 1, 2, . . . , n) such that M (Aσ(i)) − M (Aσ(i−1)) ∈ [0, 1] and∑n
i=1

(
M (Aσ(i)) −M (Aσ(i−1))

)
= 1. Then for all i, we have

q

√√√2 − Yq
Cmin

Y
q
Cmin

(M (Aσ(i))−M (Aσ(i−1)))
≤

q

√√√2 − Yq
Ci

Y
q
Ci

(M (Aσ(i))−M (Aσ(i−1)))

≤
q

√√√2 − Yq
Cmax

Y
q
Cmax

(M (Aσ(i))−M (Aσ(i−1)))
.
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Thus,

q

√√√
n∏

i=1

2 − Yq
Cmin

Y
q
Cmin

(M (Aσ(i))−M (Aσ(i−1)))
≤

q

√√√
n∏

i=1

2 − Yq
Ci

Y
q
Ci

(M (Aσ(i))−M (Aσ(i−1)))

≤
q

√√√
n∏

i=1

2 − Yq
Cmax

Y
q
Cmax

(M (Aσ(i))−M (Aσ(i−1)))
.

⇔
q

√√2 − Yq
Cmin

Y
q
Cmin

 ≤ q

√√√
n∏

i=1

2 − Yq
Ci

Y
q
Ci

(M (Aσ(i))−M (Aσ(i−1)))

≤
q

√√2 − Yq
Cmax

Y
q
Cmax


⇔

2
Y

q
Cmin

≤

n∏
i=1

2 − Yq
Ci

Y
q
Ci

+ 1

 ≤ 2
Y

q
Cmax

⇔
Y

q
Cmin

2
≤

1
n∏

i=1

2 − Yq
Ci

Y
q
Ci

(M (Aσ(i))−M (Aσ(i−1)))

+ 1

≤
Y

q
Cmax

2

⇔Y
q
Cmax
≤

2
n∏

i=1

2 − Yq
Ci

Y
q
Ci

(M (Aσ(i))−M (Aσ(i−1)))

+ 1

≤ Y
q
Cmin

i.e.,

⇔Y
q
Cmax
≤

2
n∏

i=1

Y
q
Ci

n∏
i=1

(
2 − Yq

Ci

)(M (Aσ(i))−M (Aσ(i−1)))
+

n∏
i=1

Y
q
Ci

≤ Y
q
Cmin

.

Similarly

⇔T q
Cmin
≤

n∏
i=1

(
1 + T q

Ci

)(M (Aσ(i))−M (Aσ(i−1)))
−

n∏
i=1

(
1 −T q

Ci

)(M (Aσ(i))−M (Aσ(i−1)))

n∏
i=1

(
1 + T q

Ci

)(M (Aσ(i))−M (Aσ(i−1)))
+

n∏
i=1

(
1 −T q

Ci

)(M (Aσ(i))−M (Aσ(i−1)))
≤ T q

Cmax
.

So, it concludes thatMq
Cmin
≤ M

q
C ≤ M

q
Cmax

, Y
q
Cmax
≤ Y

q
C ≤ Y

q
Cmin

, and T q
Cmin
≤ T q

C ≤ T q
Cmax

. �

Theorem 3.8. Monotonicity
Let Ci =

〈
(Mq

Ci
,Y

q
Ci

); T q
Ci

〉
and C ∗i =

〈
(Mq

C ∗i
,Y

q
C ∗i

); T q
C ∗i

〉
(i = 1, 2, . . . , n) be two families of Cq-ROF
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numbers, and Ci ≤ C ∗i , i.e.,Mq
Ci
≤ M

q
C ∗i
,Y

q
Ci
≥ Y

q
C ∗i

, and T q
Ci
≤ T q

C ∗i
, for all i. Then

Cq-ROFECIWA (C1,C2, . . . ,Cn) ≤ Cq-ROFECIWA
(
C ∗1 ,C

∗
2 , . . . ,C

∗
n
)
.

Proof. Let f (r) =
1 − r
1 + r

, r ∈ [0, 1], be a decreasing function, Mq
Ci
≤ M

q
C ∗i

, and

then f
(
M

q
C ∗i

)
≤ f

(
M

q
Ci

)
, i.e., q

√√√1 −Mq
C ∗i

1 +M
q
C ∗i

≤
q

√√
1 −Mq

Ci

1 +M
q
Ci

, (i = 1, 2, . . . n). Let $ =(
(M (Aσ(1)) −M (Aσ(0))), . . . , (M (Aσ(n)) −M (Aσ(n−1)))

)
be the weighting vector of Ci, such that

(M (Aσ(i)) −M (Aσ(i−1))) ∈ [0, 1] and
n∑

i=1

(M (Aσ(i)) −M (Aσ(i−1))) = 1. Then for all i, we have

q

√√√√1 −Mq
C ∗i

1 +M
q
C ∗i


(M (Aσ(i))−M (Aσ(i−1)))

≤
q

√√√1 −Mq
Ci

1 +M
q
Ci

(M (Aσ(i))−M (Aσ(i−1)))

.

Thus,

q

√√√√ n∏
i=1

1 −Mq
C ∗i

1 +M
q
C ∗i


(M (Aσ(i))−M (Aσ(i−1)))

≤
q

√√√
n∏

i=1

1 −Mq
Ci

1 +M
q
Ci

(M (Aσ(i))−M (Aσ(i−1)))

⇔ 1 +
q

√√√√ n∏
i=1

1 −Mq
C ∗i

1 +M
q
C ∗i


(M (Aσ(i))−M (Aσ(i−1)))

≤ 1 +
q

√√√
n∏

i=1

1 −Mq
Ci

1 +M
q
Ci

(M (Aσ(i))−M (Aσ(i−1)))

⇔
1

1 +
q

√√
n∏

i=1

1 −Mq
Ci

1 +M
q
Ci

(M (Aσ(i))−M (Aσ(i−1)))
≤

1

1 +
q

√√√
n∏

i=1

1 −Mq
C ∗i

1 +M
q
C ∗i


(M (Aσ(i))−M (Aσ(i−1)))

⇔
2

1 +
q

√√
n∏

i=1

1 −Mq
Ci

1 +M
q
Ci

(M (Aσ(i))−M (Aσ(i−1)))
≤

2

1 +
q

√√√
n∏

i=1

1 −Mq
C ∗i

1 +M
q
C ∗i


(M (Aσ(i))−M (Aσ(i−1)))

⇔
2

1 +
q

√√
n∏

i=1

1 −Mq
Ci

1 +M
q
Ci

(M (Aσ(i))−M (Aσ(i−1)))
− 1 ≤

2

1 +
q

√√√
n∏

i=1

1 −Mq
C ∗i

1 +M
q
C ∗i


(M (Aσ(i))−M (Aσ(i−1)))

− 1
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⇔
q

√√√√√√√√√√√√√√√√
n∏

i=1

(
1 +M

q
Ci

)(M (Aσ(i))−M (Aσ(i−1)))
−

n∏
i=1

(
1 −Mq

Ci

)(M (Aσ(i))−M (Aσ(i−1)))

n∏
i=1

(
1 +M

q
Ci

)(M (Aσ(i))−M (Aσ(i−1)))
+

n∏
i=1

(
1 −Mq

Ci

)(M (Aσ(i))−M (Aσ(i−1)))
≤

q

√√√√√√√√√√√√√√√√
n∏

i=1

(
1 +M

q
C ∗i

)(M (Aσ(i))−M (Aσ(i−1)))
−

n∏
i=1

(
1 −Mq

C ∗i

)(M (Aσ(i))−M (Aσ(i−1)))

n∏
i=1

(
1 +M

q
C ∗i

)(M (Aσ(i))−M (Aσ(i−1)))
+

n∏
i=1

(
1 −Mq

C ∗i

)(M (Aσ(i))−M (Aσ(i−1)))
.

Similarly, it can be proved for Yq
Ci
≥ Y

q
C ∗i

such that:

q√2
n∏

i=1

YCi

q

√
n∏

i=1

(
2 − Yq

Ci

)(M (Aσ(i))−M (Aσ(i−1)))
+

n∏
i=1

Y
q
Ci

≥

q√2
n∏

i=1

YC ∗i

q

√√
n∏

i=1

(
2 − Yq

C ∗i

)(M (Aσ(i))−M (Aσ(i−1)))
+

n∏
i=1

(Yq
C ∗i

)(M (Aσ(i))−M (Aσ(i−1)))

.

In the same way as proving for µ, it can be proved for T q
Ci
≤ T q

C ∗i
that:

⇔
q

√√√√√√√√√√√√√√√√
n∏

i=1

(
1 + T q

Ci

)(M (Aσ(i))−M (Aσ(i−1)))
−

n∏
i=1

(
1 −T q

Ci

)(M (Aσ(i))−M (Aσ(i−1)))

n∏
i=1

(
1 + T q

Ci

)(M (Aσ(i))−M (Aσ(i−1)))
+

n∏
i=1

(
1 −T q

Ci

)(M (Aσ(i))−M (Aσ(i−1)))
≤

q

√√√√√√√√√√√√√√√√
n∏

i=1

(
1 + T q

C ∗i

)(M (Aσ(i))−M (Aσ(i−1)))
−

n∏
i=1

(
1 −T q

C ∗i

)(M (Aσ(i))−M (Aσ(i−1)))

n∏
i=1

(
1 + T q

C ∗i

)(M (Aσ(i))−M (Aσ(i−1)))
+

n∏
i=1

(
1 −T q

C ∗i

)(M (Aσ(i))−M (Aσ(i−1)))
.

�
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3.3. Cq-ROFECI weighted geometric operator

Theorem 3.9. Let Ci = 〈(Mq
ci ,Y

q
ci); T

q
i 〉 (i = 1, . . . , n) be a family of Cq-ROF numbers, and then the

aggregated value by using Cq-ROF Einstein operational laws is defined as:

Cq-RFECIWG(C1,C2, . . . ,Cn) =

n⊗
i=1 TE

(Ci)$i (21)

=



q√2
n∏

i=1

(Mi)(M (Aσ(i))−M (Aσ(i−1)))

q

√√
n∏

i=1

(
2 −Mq

i

)(M (Aσ(i))−M (Aσ(i−1)))
+

n∏
i=1

(
M

q
i

)(M (Aσ(i))−M (Aσ(i−1)))

,

q

√√√√√√√√√√√√√√√√
n∏

i=1

(
1 + Y

q
i

)(M (Aσ(i))−M (Aσ(i−1)))
−

n∏
i=1

(
1 − Yq

i

)(M (Aσ(i))−M (Aσ(i−1)))

n∏
i=1

(
1 + Y

q
i

)(M (Aσ(i))−M (Aσ(i−1)))
+

n∏
i=1

(
1 − Yq

i

)(M (Aσ(i))−M (Aσ(i−1)))
,

q√
2

n∏
i=1

(Υi)(M (Aσ(i))−M (Aσ(i−1)))

q

√√
n∏

i=1

(
2 −T q

i

)(M (Aσ(i))−M (Aσ(i−1)))
+

n∏
i=1

(
T q

i

)(M (Aσ(i))−M (Aσ(i−1)))



,

(22)

where (M (Aσ(i)) −M (Aσ(i−1))) = ((M (Aσ(1)) −M (Aσ(0))), . . . , (M (Aσ(n)) −M (Aσ(n−1))))T is the
weight vector of (C1,C2, . . . ,Cn) and

∑n
i=1 (M (Aσ(i)) −M (Aσ(i−1))) = 1.

Theorem 3.10. Idempotency
Let Ci = 〈(Mq

i ,Y
q
i ); T q

i 〉 be a family of Cq-ROF numbers. Then if all Ci are equal, i.e., Ci = C for
all i = 1, 2, . . . , n, then

Cq-RFECIWG (C1,C2, . . . ,Cn) = C .

Theorem 3.11. Boundary
Let Ci = 〈(Mq

i ,Y
q
i ); T q

i 〉 be a family of Cq-ROF numbers. Then,

Cmin ≤ Cq-RFECIWG (C1,C2, . . . ,Cn) ≤ Cmax,

where Cmin = min {C1,C2, . . . ,Cn} and Cmax = max {C1,C2, . . . ,Cn}.

Theorem 3.12. Monotonicity
Let Ci =

(
M

q
Ci
,Y

q
Ci
,T q

Ci

)
and C ∗i =

(
M

q
C ∗i
,Y

q
C ∗i
,T q

C ∗i

)
(i = 1, 2, . . . , n) be Cq-ROFECIWA of Cq-

ROF numbers, and Ci ≤ C ∗i , i.e., Mq
Ci
≤ M

q
C ∗i
,Y

q
Ci
≥ Y

q
C ∗i

and T q
Ci
≤ T q

C ∗i
, for all i; then

Cq-RFECIWG (C1,C2, . . . ,Cn) ≤ Cq-RFECIWG
(
C ∗1 ,C

∗
2 , . . . ,C

∗
n

)
.
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4. MCDM framework utilizing the Cq-ROFECI operator

Step 1. The proposed case study requires decision-makers with a thorough background in this sector.
Decision-makers’ weight vectors will be assessed using linguistic terms from Table 2.

Table 2. Linguistic terms for DMs.

Qualification Expertise Experience (Years) Cq-POFN

PhD Public health expert ≥5 ([0.95,0.10],Υ1)
MS Environmental scientist (3,5) ([0.75,0.20],Υ2)
MSc Economist [0, 3) ([0.55,0.30],Υ3)

Step 2. Find the radius T by using Eq (1) and then apply Eq (2) to find the score value of each
Cq-ROFN. Next, normalize the significance of the DMs by applying the Eq (23).

ξk =
S (C̃ )

z∑
t=1

S (C̃ t)

=

n∑
k=1

M
q,k
i j − Y

q,k
i j +

√
2T q

i j (2℘ − 1)

3

z∑
t=1

M
q,t
i j − Y

q,t
i j +

√
2T q,t

i j (2℘ − 1)

3

. (23)

Here, ξ = (ξ1, ξ2, ..., ξz) shows the important vector of the DMs, with the conditions ξ ∈ [0, 1] and
z∑
k

ξk = 1.

Step 3. Decision-makers input the Cq-ROF dataset against the suitable alternatives Lp; (p = 1, 2, ...,m)
and under the effect of various criteria Crp; (p = 1, 2, ..., n) with the help of linguistic terms defined in
Table 3.

Table 3. Generalized linguistic terms and their corresponding Cq-ROFNs.

Linguistic term Abbreviation Cq-ROFNs

Extremely High E.H ([Mq
1,Y

q
1],T q

1 )
Highly Elevated H.E ([Mq

2,Y
q
2],T q

2 )
...

...
...

Moderate M ([Mq
g,Y

q
g],T q

g )
...

...
...

Extremely Low E.L ([Mq
b,Y

q
b],T q

b )

Step 4. Find the radius T by using Eq (1).

AIMS Mathematics Volume 10, Issue 1, 460–498.



481

Step 5. Compute the aggregated values using the Cq-ROFECIWA operator described in Eq (24).

Ci j = Cq-ROFECIWA(S1
i j,S

l
i j, ...,S

z
i j)

=



q

√√√√√√√√√√√√√√√√
z∏

t=1

(
1 +M

q,t
i j

)ξt
−

z∏
t=1

(
1 −Mq,t

i j

)ξt

z∏
t=1

(
1 +M

q,t
i j

)ξt
+

z∏
t=1

(
1 −Mq,t

i j

)ξt

,

q√
2

z∏
t=1

(
Y

t
i j

)ξt

q

√√
z∏

t=1

(
2 − Yq,t

i j

)ξt
+

z∏
t=1

(
Y

q,t
i j

)ξt

,

q

√√√√√√√√√√√√√√√√
z∏

t=1

(
1 + T q

i

)ξt
−

z∏
t=1

(
1 −T q

i

)ξt

z∏
t=1

(
1 + T q

i

)ξt
+

z∏
t=1

(
1 −T q

i

)ξt



.
(24)

Step 6. Find the importance of each criterion, which is fuzzy density M (Cr j), by applying the
LOPCOW method. The steps of the LOPCOW method are as follows:
Step 6.1. Find the score matrix S ci j of the aggregated decision matrix by applying Eq (2). Then
normalize this matrix using (25).

S̃ ci j =


S ci j−S c−j
S c+

j −S c−j
, j ∈ Crb

S c+
j −S ci j

S c+
j −S c−j

, j ∈ Crc
, (25)

where S c+
j = max

i
S ci j, S c−j = min

i
S ci j, and Crb and Crc represent the benefit-type and cost-type

criteria, respectively.
Step 6.2. Obtain the percentage value (PV) for the criteria by using Eq (26).

P j =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ln



√√√√ m∑
i=1

S̃ c
2
i j

m

σ


· 100

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (26)

where σ is the standard deviation of the performance values of the alternatives under a
specific criterion.
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Step 6.3. The fuzzy density M (Cr j) weight for the jth criterion is calculated by using Eq (27).

M (Cr j) =
P j

n∑
j=1

P j

, (27)

where
n∑

j=1

M (Cr j) = 1.

Step 7. Find the value of ρ by using Eq (18) and the normalized measure on X by using Eq (16).
Step 8. Apply Eq (28) to aggregate into one column.

Cq-ROFECIWA(Ci1,Ci2, . . . ,Cin)

Gi =



q

√√√√√√√√√√√√√√√√√
n∏

j=1

(
1 +M

q
iσ( j)

)(M (Liσ( j))−M (Liσ( j−1)))
−

n∏
j=1

(
1 −Mq

iσ( j)

)(M (Liσ( j))−M (Liσ( j−1)))

n∏
j=1

(
1 +M

q
iσ( j)

)(M (Liσ( j))−M (Liσ( j−1)))
+

n∏
j=1

(
1 −Mq

iσ( j)

)(M (Liσ( j))−M (Liσ( j−1)))
,

q√
2

n∏
j=1

(
Y

q
iσ( j)

)(M (Liσ( j))−M (Liσ( j−1)))

q

√√ n∏
j=1

(
2 − Yq

iσ( j)

)(M (Liσ( j))−M (Liσ( j−1)))
+

n∏
j=1

(
Y

q
iσ( j)

)(M (Liσ( j))−M (Liσ( j−1)))

,

q

√√√√√√√√√√√√√√√√√
n∏

j=1

(
1 + T q

iσ( j)

)(M (Liσ( j))−M (Liσ( j−1)))
−

n∏
j=1

(
1 −T q

iσ( j)

)(M (Liσ( j))−M (Liσ( j−1)))

n∏
j=1

(
1 + T q

iσ( j)

)(M (Liσ( j))−M (Liσ( j−1)))
+

n∏
j=1

(
1 −T q

iσ( j)

)(M (Liσ( j))−M (Liσ( j−1)))



.

(28)
Step 9. Apply Eq (2) and find the score values. Based on the score values, we can find the
best alternative.

5. Case analysis

SWM encompasses the collection, transportation, processing, recycling, and disposal of waste
materials generated by human activities. Effective waste management is crucial for maintaining public
health, preserving the environment, and conserving resources. Singapore, a highly urbanized and
densely populated city with 6.05 million people, faces significant challenges in managing its solid
waste sustainably. The city produces approximately 7.39 million tons of waste annually. Singapore
uses many different SWM methods and each needs its own facilities and costs. Because they are
not as efficient as burning or recycling, Singapore does not do a lot of composting, vermiculture,
bioremediation, or pyrolysis. See Table 4 for more information. Table 5 presents comprehensive
explanations of several alternative approaches to SWM. Figure 1 emphasizes the essential elements of
each criterion for sustainable and successful decision-making.

AIMS Mathematics Volume 10, Issue 1, 460–498.



483

Table 4. Solid waste management techniques in Singapore.

Technique
Annual waste
treated (tons)

Cost
(USD/ton)

Location/Facilities

Incineration 2.9 million 77
Tuas Incineration Plant, Senoko
Waste-to-Energy Plant, Keppel Seghers Tuas
Waste-to-Energy Plant

Sanitary
landfills

0.3 million
(residue)

38 Semakau Landfill

Recycling 4.24 million Varies
Public Waste Collection centers, various
private facilities

Composting Limited scale Varies Various small-scale facilities

Vermiculture Limited scale Low
Community-based projects, small-scale urban
farms

Bioremediation
Limited
(specific sites)

Variable Specific contaminated sites

Pyrolysis
Limited scale
(pilot)

High initial Research facilities, pilot project sites

Open
dumping

Practically
zero

N/A N/A
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Table 5. Solid waste management alternatives with descriptions.
Alternative Description

Landfills L1

To isolate garbage from the environment, landfills are used. Waste is compacted and covered with soil to
reduce air exposure. Liners and garbage collection systems protect soil and groundwater in modern landfills.
Due to organic waste decomposition, landfills emit methane, which contributes to climate change. Despite
these concerns, landfills are nevertheless commonly utilized to manage massive amounts of trash.

Pyrolysis L2

Pyrolysis produces syngas, oil, and char by thermally decomposing waste at high temperatures without
oxygen. High temperatures and oxygen-free conditions break down trash into simpler molecules in this
process. Pyrolysis minimizes landfill waste and provides energy-producing byproducts. This process has
lower emissions than incineration and is regulated for safety and emissions. Sustainable waste management
may be possible with pyrolysis.

Vermiculture
L3

Vermiculture or vermicomposting, refers to the technique of using worms to decompose organic waste and
produce vermicast, also known as worm castings. Worms consume organic waste and generate nutrient-dense
castings as a result. The procedure produces a valuable soil supplement that enhances soil quality and reduces
the amount of organic waste disposed in landfills. Various organizations dedicated to enhancing the
environment and the agricultural industry have promoted vermiculture as a method of waste management.

Bioremediation
L4

Bioremediation employs living organisms such as plants, fungi, or bacteria to eradicate or counteract
contaminants in water, soil, and waste. To mitigate the pollution in a certain area, the introduction of plants or
microbes is employed to break down the harmful substances present. Bioremediation is an excellent choice
for remedying contaminated areas and enhancing the potability of water and soil. Environmental agencies
often allocate cash for this approach due to its sustainability and environmental friendliness.

Open dumping
L5

Open dumping is the unrestricted disposal of garbage on unlicensed land. This technique degrades the
environment without therapy or containment. Large amounts of waste exposed to nature in open dumps
pollute soil and groundwater, release air pollutants from burning garbage, and pose health risks from bugs.
Due to its environmental and health dangers, many countries ban or restrict this activity.

Incineration
L6

Burning garbage at high temperatures reduces its volume and bulk and can generate energy. This process turns
waste into ash, flue gas, and heat for electricity or heating. Incineration reduces trash volume but pollutes the
air with dioxins and other pollutants. Modern incinerators have emission control systems that decrease these
effects. Densely populated locations with little landfill space employ incineration.

Sanitary
landfill L7

Sanitary landfills are designed to separate human waste from nature. Liners, leachate collection, and gas
extraction systems reduce environmental effects. Daily, garbage is piled up, crushed, and covered with dirt or
other material. Sanitary landfills clean soil and groundwater and reduce methane emissions more than regular
landfills. This technology must be strictly regulated for environmental and public health reasons.

Composting
L8

Composting is the biological decomposition of organic waste, such as food leftovers and garden detritus,
which produces nutrient-rich compost. This process involves layering organic waste and promoting its
decomposition through controlled conditions with the assistance of microorganisms. Composting reduces the
amount of organic waste that is thrown away in landfills and produces valuable compost that may be used to
improve soil fertility. This technique is an environmentally friendly method of managing garbage that reduces
the emission of greenhouse gases and supports sustainable agriculture.
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Figure 1. Overview of the six key criteria for evaluating SWM method.

(1) Environmental impact Cr1: This criterion evaluates many environmental aspects, including
emissions (such as greenhouse gases and pollutants), land usage, and the potential for soil and water
pollution. We favor techniques that have a minimal impact on the environment.
(2) Cost efficiency Cr2: This criterion evaluates the overall expenses that are connected with
putting each waste management method into operation and keeping it running, including the costs
of transportation, maintenance, and operations. In general, there is a preference for lower expenses.
(3) Waste reduction efficiency Cr3: This criterion assesses the efficacy of each method in terms of its
ability to reduce the volume and bulk of waste generated. It is recommended that waste elimination be
conducted with greater efficiency.
(4) Implementation feasibility Cr4: This criterion checks if each method is possible by looking at
things like how hard it is to use, how easy it is to get technology, what kind of infrastructure is needed,
and how well it follows the rules.
(5) Health and safety Cr5: Using this standard, an evaluation is made of the possible health and safety
risks that come with each method for both the public and the workers. It is better to use ways that are
less likely to put health and safety at risk.
(6) Public acceptance Cr6: Each waste management technique is evaluated according to this criterion,
which measures the degree to which the community and other stakeholders accept and support the
method. It would be best if there was more public acceptance.
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5.1. Decision-making process

Step 1. Three individuals with decision-making authority participated in the present case study.
The Cq-ROFN linguistic scale was utilized to evaluate different DM, as presented in Table 6, and
corresponding values in Table 7.

Table 6. Information about the DMs.

DMs Qualification Background (Expertise) Experience (Years)
D1 PhD Environmental scientist 2.5
D2 MS Public health expert 4
D3 MSc Economist 7

Table 7. Information about the DMs in term of Cq-ROFN.

DMs Qualification Background (Expertise) Experience (Years)
D1 ([0.95,0.10],T q

11) ([0.75,0.20],T q
12) ([0.55,0.30],T q

13)
D2 ([0.75,0.20],T q

21) ([0.95,0.10],T q
22) ([0.75,0.20],T q

23)
D3 ([0.55,0.30],T q

31) ([0.55,0.30],T q
32) ([0.95,0.10],T q

33)

Step 2. The radius T q
i j is found by using Eqs (1) and (2) to find the score value of each Cq-ROFN. The

normalized weight of each decision-maker by using Eq (23) are ξ1 = 0.3333, ξ2 = 0.3943, and ξ3 =

0.2723.
Step 3. The DMs utilized the linguistic words specified in Table 8 and allocated them based on their
proficiency for each alternative about each criterion, as seen in Table 9 and the corresponding values
in Table 10.

Table 8. Linguistic term and corresponding Cq-ROF numbers.

Linguistic term Abbreviation Cq-ROF numbers
Excellent EX 〈(0.95, 0.05),T 〉
Very satisfactory VS 〈(0.85, 0.10),T 〉
Satisfactory S 〈(0.75, 0.20),T 〉
Slightly satisfactory SS 〈(0.65, 0.30),T 〉
Neutral N 〈(0.50, 0.45),T 〉
Slightly unsatisfactory SU 〈(0.40, 0.55),T 〉
Unsatisfactory U 〈(0.30, 0.65),T 〉
Very unsatisfactory VU 〈(0.20, 0.75),T 〉
Terrible T 〈(0.10, 0.85),T 〉
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Table 9. Linguistic decision matrix for assessments of criteria and alternatives by DMs.

DMs Alternatives Cr1 Cr2 Cr3 Cr4 Cr5 Cr6

DM1 L1 EX VS S N S SS
L2 EX S VS SS EX SS
L3 SU S SU N SS VU
L4 T SS VS S SU N
L5 N SU VU SS S EX
L6 VS S SS SS EX S
L7 EX N SS S VS SS
L8 SU EX T N SS VU

DM2 L1 S SS U N VS SU
L2 EX SU N S VU SS
L3 VU N S T SS SU
L4 SS U VU EX N S
L5 S SS T N SU VU
L6 EX S SS VS S VS
L7 SU VU S N EX T
L8 VS S T SU S N

DM3 L1 SS S SU T N VU
L2 N VU SS S SU SU
L3 S T VU N SU SS
L4 EX SU S SS VU T
L5 SU N T VU EX SS
L6 VS N S SS EX S
L7 EX SS N SU S VS
L8 VU EX N S T SS

Table 10. Linguistic decision matrix in terms of Cq-ROFN without the radius.

DMs Alternatives Cr1 Cr2 Cr3 Cr4 Cr5 Cr6

DM1 L1 〈(0.95, 0.05),T q
11〉 〈(0.85, 0.10),T q

12〉 〈(0.75, 0.20),T q
13〉 〈(0.50, 0.45),T q

14〉 〈(0.75, 0.20),T q
15〉 〈(0.65, 0.30),T q

16〉

L2 〈(0.95, 0.05),T q
21〉 〈(0.75, 0.20),T q

22〉 〈(0.85, 0.10),T q
23〉 〈(0.65, 0.30),T q

24〉 〈(0.95, 0.05),T q
25〉 〈(0.65, 0.30),T q

26〉

L3 〈(0.40, 0.55),T q
31〉 〈(0.75, 0.20),T q

32〉 〈(0.40, 0.55),T q
33〉 〈(0.50, 0.45),T q

34〉 〈(0.65, 0.30),T q
35〉 〈(0.20, 0.75),T q

36〉

L4 〈(0.10, 0.85),T q
41〉 〈(0.65, 0.30),T q

42〉 〈(0.85, 0.10),T q
43〉 〈(0.75, 0.20),T q

44〉 〈(0.40, 0.55),T q
45〉 〈(0.50, 0.45),T q

46〉

L5 〈(0.50, 0.45),T q
51〉 〈(0.40, 0.55),T q

52〉 〈(0.20, 0.75),T q
53〉 〈(0.65, 0.30),T q

54〉 〈(0.75, 0.20),T q
55〉 〈(0.95, 0.05),T q

56〉

L6 〈(0.85, 0.10),T q
61〉 〈(0.75, 0.20),T q

62〉 〈(0.65, 0.30),T q
63〉 〈(0.65, 0.30),T q

64〉 〈(0.95, 0.05),T q
65〉 〈(0.75, 0.20),T q

66〉

L7 〈(0.95, 0.05),T q
71〉 〈(0.50, 0.45),T q

72〉 〈(0.65, 0.30),T q
73〉 〈(0.75, 0.20),T q

74〉 〈(0.85, 0.10),T q
75〉 〈(0.65, 0.30),T q

76〉

L8 〈(0.40, 0.55),T q
81〉 〈(0.95, 0.05),T q

82〉 〈(0.10, 0.85),T q
83〉 〈(0.50, 0.45),T q

84〉 〈(0.65, 0.30),T q
85〉 〈(0.20, 0.75),T q

86〉

DM2 L1 〈(0.75, 0.20),T q
11〉 〈(0.65, 0.30),T q

12〉 〈(0.30, 0.65),T q
13〉 〈(0.50, 0.45),T q

14〉 〈(0.85, 0.10),T q
15〉 〈(0.40, 0.55),T q

16〉

L2 〈(0.95, 0.05),T q
21〉 〈(0.40, 0.55),T q

22〉 〈(0.50, 0.45),T q
23〉 〈(0.75, 0.20),T q

24〉 〈(0.20, 0.75),T q
25〉 〈(0.65, 0.30),T q

26〉

L3 〈(0.20, 0.75),T q
31〉 〈(0.50, 0.45),T q

32〉 〈(0.75, 0.20),T q
33〉 〈(0.10, 0.85),T q

34〉 〈(0.65, 0.30),T q
35〉 〈(0.40, 0.55),T q

36〉

L4 〈(0.65, 0.30),T q
41〉 〈(0.30, 0.65),T q

42〉 〈(0.20, 0.75),T q
43〉 〈(0.95, 0.05),T q

44〉 〈(0.50, 0.45),T q
45〉 〈(0.75, 0.20),T q

46〉

L5 〈(0.75, 0.20),T q
51〉 〈(0.65, 0.30),T q

52〉 〈(0.10, 0.85),T q
53〉 〈(0.50, 0.45),T q

54〉 〈(0.40, 0.55),T q
55〉 〈(0.20, 0.75),T q

56〉

L6 〈(0.95, 0.05),T q
61〉 〈(0.75, 0.20),T q

62〉 〈(0.65, 0.30),T q
63〉 〈(0.85, 0.10),T q

64〉 〈(0.75, 0.20),T q
65〉 〈(0.85, 0.10),T q

66〉

L7 〈(0.40, 0.55),T q
71〉 〈(0.20, 0.75),T q

72〉 〈(0.75, 0.20),T q
73〉 〈(0.50, 0.45),T q

74〉 〈(0.95, 0.05),T q
75〉 〈(0.10, 0.85),T q

76〉

L8 〈(0.85, 0.10),T q
81〉 〈(0.75, 0.20),T q

82〉 〈(0.10, 0.85),T q
83〉 〈(0.40, 0.55),T q

84〉 〈(0.75, 0.20),T q
85〉 〈(0.50, 0.45),T q

86〉

DM3 L1 〈(0.65, 0.30),T q
11〉 〈(0.75, 0.20),T q

12〉 〈(0.40, 0.55),T q
13〉 〈(0.10, 0.85),T q

14〉 〈(0.50, 0.45),T q
15〉 〈(0.20, 0.75),T q

16〉

L2 〈(0.50, 0.45),T q
21〉 〈(0.20, 0.75),T q

22〉 〈(0.65, 0.30),T q
23〉 〈(0.75, 0.20),T q

24〉 〈(0.40, 0.55),T q
25〉 〈(0.40, 0.55),T q

26〉

L3 〈(0.75, 0.20),T q
31〉 〈(0.10, 0.85),T q

32〉 〈(0.20, 0.75),T q
33〉 〈(0.50, 0.45),T q

34〉 〈(0.40, 0.55),T q
35〉 〈(0.65, 0.30),T q

36〉

L4 〈(0.95, 0.05),T q
41〉 〈(0.40, 0.55),T q

42〉 〈(0.75, 0.20),T q
43〉 〈(0.65, 0.30),T q

44〉 〈(0.20, 0.75),T q
45〉 〈(0.10, 0.85),T q

46〉

L5 〈(0.40, 0.55),T q
51〉 〈(0.50, 0.45),T q

52〉 〈(0.10, 0.85),T q
53〉 〈(0.20, 0.75),T q

54〉 〈(0.95, 0.05),T q
55〉 〈(0.65, 0.30),T q

56〉

L6 〈(0.85, 0.10),T q
61〉 〈(0.50, 0.45),T q

62〉 〈(0.75, 0.20),T q
63〉 〈(0.65, 0.30),T q

64〉 〈(0.95, 0.05),T q
65〉 〈(0.75, 0.20),T q

66〉

L7 〈(0.95, 0.05),T q
71〉 〈(0.65, 0.30),T q

72〉 〈(0.50, 0.45),T q
73〉 〈(0.40, 0.55),T q

74〉 〈(0.75, 0.20),T q
75〉 〈(0.85, 0.10),T q

76〉

L8 〈(0.20, 0.75),T q
81〉 〈(0.95, 0.05),T q

82〉 〈(0.50, 0.45),T q
83〉 〈(0.75, 0.20),T q

84〉 〈(0.10, 0.85),T q
85〉 〈(0.65, 0.30),T q

86〉

Step 4. Find the radius T by using Eq (1), and the corresponding values are represented in Table 11.
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Table 11. Linguistic decision matrix in term of Cq-ROFN.

DMs Alternatives Cr1 Cr2 Cr3 Cr4 Cr5 Cr6
DM1 L1 〈(0.95, 0.05), 0.7782〉 〈(0.85, 0.10), 0.5088〉 〈(0.75, 0.20), 0.3285〉 〈(0.50, 0.45), 0.1721〉 〈(0.75, 0.20), 0.3085〉 〈(0.65, 0.30), 0.2211〉

L2 〈(0.95, 0.05), 0.7136〉 〈(0.75, 0.20), 0.3438〉 〈(0.85, 0.10), 0.5181〉 〈(0.65, 0.30), 0.1732〉 〈(0.95, 0.05), 0.8197〉 〈(0.65, 0.30), 0.1804〉
L3 〈(0.40, 0.55), 0.0517〉 〈(0.75, 0.20), 0.3671〉 〈(0.40, 0.55), 0.0517〉 〈(0.50, 0.45), 0.1721〉 〈(0.65, 0.30), 0.1804〉 〈(0.20, 0.75), 0.1777〉
L4 〈(0.10, 0.85), 0.3455〉 〈(0.65, 0.30), 0.1975〉 〈(0.85, 0.10), 0.5266〉 〈(0.75, 0.20), 0.2801〉 〈(0.40, 0.55), 0.0635〉 〈(0.50, 0.45), 0.1598〉
L5 〈(0.50, 0.45), 0.0623〉 〈(0.40, 0.55), 0.0514〉 〈(0.20, 0.75), 0.1371〉 〈(0.65, 0.30), 0.2116〉 〈(0.75, 0.20), 0.2958〉 〈(0.95, 0.05), 0.8097〉
L6 〈(0.85, 0.10), 0.3747〉 〈(0.75, 0.20), 0.3138〉 〈(0.65, 0.30), 0.2038〉 〈(0.65, 0.30), 0.2403〉 〈(0.95, 0.05), 0.6377〉 〈(0.75, 0.20), 0.2945〉
L7 〈(0.95, 0.05), 0.7226〉 〈(0.50, 0.45), 0.1939〉 〈(0.65, 0.30), 0.2450〉 〈(0.75, 0.20), 0.3172〉 〈(0.85, 0.10), 0.4299〉 〈(0.65, 0.30), 0.3850〉
L8 〈(0.40, 0.55), 0.0391〉 〈(0.95, 0.05), 0.6378〉 〈(0.10, 0.85), 0.0001〉 〈(0.50, 0.45), 0.0623〉 〈(0.65, 0.30), 0.1778〉 〈(0.20, 0.75), 0.1946〉

DM2 L1 〈(0.75, 0.20), 0.2801〉 〈(0.65, 0.30), 0.1654〉 〈(0.30, 0.65), 0.0883〉 〈(0.50, 0.45), 0.1721〉 〈(0.85, 0.10), 0.5141〉 〈(0.40, 0.55), 0.0537〉
L2 〈(0.95, 0.05), 0.7136〉 〈(0.40, 0.55), 0.0517〉 〈(0.50, 0.45), 0.0633〉 〈(0.75, 0.20), 0.3111〉 〈(0.20, 0.75), 0.1805〉 〈(0.65, 0.30), 0.1804〉
L3 〈(0.20, 0.75), 0.1799〉 〈(0.50, 0.45), 0.1598〉 〈(0.75, 0.20), 0.3438〉 〈(0.10, 0.85), 0.3207〉 〈(0.65, 0.30), 0.1804〉 〈(0.40, 0.55), 0.0537〉
L4 〈(0.65, 0.30), 0.2370〉 〈(0.30, 0.65), 0.0862〉 〈(0.20, 0.75), 0.2104〉 〈(0.95, 0.05), 0.7782〉 〈(0.50, 0.45), 0.1253〉 〈(0.75, 0.20), 0.3671〉
L5 〈(0.75, 0.20), 0.3190〉 〈(0.65, 0.30), 0.1826〉 〈(0.10, 0.85), 0.0685〉 〈(0.50, 0.45), 0.1021〉 〈(0.40, 0.55), 0.0606〉 〈(0.20, 0.75), 0.2085〉
L6 〈(0.95, 0.05), 0.6672〉 〈(0.75, 0.20), 0.3138〉 〈(0.65, 0.30), 0.2038〉 〈(0.85, 0.10), 0.5441〉 〈(0.75, 0.20), 0.1396〉 〈(0.85, 0.10), 0.5001〉
L7 〈(0.40, 0.55), 0.0902〉 〈(0.20, 0.75), 0.0918〉 〈(0.75, 0.20), 0.3608〉 〈(0.50, 0.45), 0.0635〉 〈(0.95, 0.05), 0.7224〉 〈(0.10, 0.85), 0.1713〉
L8 〈(0.85, 0.10), 0.5244〉 〈(0.75, 0.20), 0.1401〉 〈(0.10, 0.85), 0.0001〉 〈(0.40, 0.55), 0.0532〉 〈(0.75, 0.20), 0.3157〉 〈(0.50, 0.45), 0.1021〉

DM3 L1 〈(0.65, 0.30), 0.1423〉 〈(0.75, 0.20), 0.3032〉 〈(0.40, 0.55), 0.0254〉 〈(0.10, 0.85), 0.3207〉 〈(0.50, 0.45), 0.0606〉 〈(0.20, 0.75), 0.1777〉
L2 〈(0.50, 0.45), 0.0473〉 〈(0.20, 0.75), 0.1799〉 〈(0.65, 0.30), 0.1745〉 〈(0.75, 0.20), 0.3111〉 〈(0.40, 0.55), 0.0485〉 〈(0.40, 0.55), 0.0611〉
L3 〈(0.75, 0.20), 0.3438〉 〈(0.10, 0.85), 0.3338〉 〈(0.20, 0.75), 0.1799〉 〈(0.50, 0.45), 0.1721〉 〈(0.40, 0.55), 0.0611〉 〈(0.65, 0.30), 0.2211〉
L4 〈(0.95, 0.05), 0.8217〉 〈(0.40, 0.55), 0.0256〉 〈(0.75, 0.20), 0.3274〉 〈(0.65, 0.30), 0.1423〉 〈(0.20, 0.75), 0.1668〉 〈(0.10, 0.85), 0.3338〉
L5 〈(0.40, 0.55), 0.0532〉 〈(0.50, 0.45), 0.0627〉 〈(0.10, 0.85), 0.0685〉 〈(0.20, 0.75), 0.1946〉 〈(0.95, 0.05), 0.7930〉 〈(0.65, 0.30), 0.1942〉
L6 〈(0.85, 0.10), 0.3748〉 〈(0.50, 0.45), 0.0651〉 〈(0.75, 0.20), 0.3752〉 〈(0.65, 0.30), 0.3854〉 〈(0.95, 0.05), 0.6377〉 〈(0.75, 0.20), 0.2945〉
L7 〈(0.95, 0.05), 0.7226〉 〈(0.65, 0.30), 0.2007〉 〈(0.50, 0.45), 0.3502〉 〈(0.40, 0.55), 0.0285〉 〈(0.75, 0.20), 0.2243〉 〈(0.85, 0.10), 0.5466〉
L8 〈(0.20, 0.75), 0.0305〉 〈(0.95, 0.05), 0.6382〉 〈(0.50, 0.45), 0.0625〉 〈(0.75, 0.20), 0.3190〉 〈(0.10, 0.85), 0.0033〉 〈(0.65, 0.30), 0.2116〉

Step 5. Compute the aggregated values using the Cq-ROFECIWA operator described in Eq (24), is
represented in Table 12.

Table 12. Aggregated decision matrix.

Cr1 Cr2 Cr3 Cr4 Cr5 Cr6
〈(0.8437, 0.1407), 0.6005〉 〈(0.7633, 0.1863), 0.3975〉 〈(0.5871, 0.4229), 0.2476〉 〈(0.4619, 0.5423), 0.3762〉 〈(0.7639, 0.1900), 0.4181〉 〈(0.5154, 0.4935), 0.2357〉
〈(0.9112, 0.0911), 0.6607〉 〈(0.5876, 0.4323), 0.2793〉 〈(0.7145, 0.2445), 0.3947〉 〈(0.7219, 0.2290), 0.2844〉 〈(0.7796, 0.2849), 0.6272〉 〈(0.6088, 0.3545), 0.1660〉
〈(0.5596, 0.4787), 0.2859〉 〈(0.6040, 0.4162), 0.3911〉 〈(0.6087, 0.4066), 0.2860〉 〈(0.4413, 0.5885), 0.4126〉 〈(0.6088, 0.3545), 0.1660〉 〈(0.4943, 0.5222), 0.2455〉
〈(0.7768, 0.2672), 0.6161〉 〈(0.5147, 0.4828), 0.1662〉 〈(0.7245, 0.2717), 0.4165〉 〈(0.8583, 0.1293), 0.6251〉 〈(0.4283, 0.5560), 0.2290〉 〈(0.6213, 0.3962), 0.3936〉
〈(0.6282, 0.3463), 0.2510〉 〈(0.5573, 0.4109), 0.1446〉 〈(0.1565, 0.8168), 0.4392〉 〈(0.5400, 0.4557), 0.2355〉 〈(0.7978, 0.2052), 0.5830〉 〈(0.7978, 0.2410), 0.6224〉
〈(0.9028, 0.1026), 0.5491〉 〈(0.7071, 0.2497), 0.2896〉 〈(0.6825, 0.3887), 0.3270〉 〈(0.7553, 0.2636), 0.4790〉 〈(0.9064, 0.0864), 0.5636〉 〈(0.7966, 0.1700), 0.4135〉
〈(0.8819, 0.1886), 0.6395〉 〈(0.5153, 0.6382), 0.3033〉 〈(0.6717, 0.3461), 0.3972〉 〈(0.6116, 0.3440), 0.2404〉 〈(0.8889, 0.0630), 0.5905〉 〈(0.6806, 0.6200), 0.5672〉
〈(0.6947, 0.2826), 0.4131〉 〈(0.9064, 0.1573), 0.5641〉 〈(0.3617, 0.8500), 0.4489〉 〈(0.5881, 0.3919), 0.2292〉 〈(0.6577, 0.1570), 0.2553〉 〈(0.5219, 0.4825), 0.2453〉

Steps 6 and 6.1. Find the importance of each criterion, which is fuzzy density M (Cr j), by applying
the LOPCOW method. The score matrix S ci j of the aggregated decision matrix by applying Eq (2) is
shown in the matrix below. Then normalizing this matrix using (25) is represented in the matrix below.

S ci j =



0.1933 0.1174 0.0297 −0.0099 0.1188 0.0043
0.2657 0.0292 0.0903 0.0908 0.1501 0.0407
0.0165 0.0388 0.0379 −0.0219 0.0407 −0.0042
0.1469 0.0054 0.0957 0.2096 −0.0201 0.0460
0.0479 0.0227 −0.1411 0.0146 0.1563 0.1622
0.2385 0.0834 0.0669 0.1168 0.2440 0.1394
0.2327 −0.0302 0.0677 0.0426 0.2310 0.0418
0.0810 0.2439 −0.1606 0.0325 0.0630 0.0074


S̃ ci j =



0.7096 0.4614 0.2577 0.0518 0.5260 0.0513
1.0000 0.7832 0.0212 0.4870 0.6445 0.2696
0.0000 0.7483 0.2255 0.0000 0.2302 0.0000
0.5233 0.8701 0.0000 1.0000 0.0000 0.3014
0.1261 0.8070 0.9239 0.1574 0.6678 1.0000
0.8909 0.5856 0.1125 0.5990 1.0000 0.8631
0.8677 1.0000 0.1091 0.2786 0.9508 0.2762
0.2590 0.0000 1.0000 0.2350 0.3146 0.0694


.

Step 6.2. Obtain the PV for the criteria by using Eq (26). The values are represented in Table 13.

Table 13. Percentage value for each criterion.

Cr1 Cr2 Cr3 Cr4 Cr5 Cr6

53.9857 83.2572 22.2943 34.5448 59.7390 28.2700

Step 6.3. The fuzzy density M (Cr j) weight for the jth criterion is calculated by using Eq (27) and is
represented in Table 14.

AIMS Mathematics Volume 10, Issue 1, 460–498.



489

Table 14. Fuzzy density weight for each criterion.

Cr1 Cr2 Cr3 Cr4 Cr5 Cr6

0.1914 0.2951 0.0790 0.1225 0.2118 0.1002

Step 7. The equation for value ρ is represented in (29) and is formed by using Eq (18). The
corresponding real values are −26.3241, −14.4080, and 0.

0.000012 · p6 + 0.00051 · p5 + 0.00903 · p4 + 0.08191 · p3 + 0.40007 · p2 = 0. (29)

The normalized measure on X by using Eq (16) is mentioned here. Since ρ > −1, let us take the value
of ρ = 0, so we have:

M ({}) = 0,M ({Cr1}) = 0.19138, M ({Cr2}) = 0.29514, M ({Cr3}) = 0.079032, M ({Cr4}) = 0.12246, M ({Cr5}) = 0.21177, M ({Cr6}) = 0.10022,

M ({Cr1,Cr2}) = 0.48652, M ({Cr1,Cr3}) = 0.27041, M ({Cr1,Cr4}) = 0.31384, M ({Cr1,Cr5}) = 0.40315, M ({Cr1,Cr6}) = 0.29159,

M ({Cr2,Cr3}) = 0.37418, M ({Cr2,Cr4}) = 0.4176, M ({Cr2,Cr5}) = 0.50692, M ({Cr2,Cr6}) = 0.39536, M ({Cr3,Cr4}) = 0.20149,

M ({Cr3,Cr5}) = 0.2908, M ({Cr3,Cr6}) = 0.17925, M ({Cr4,Cr5}) = 0.33423, M ({Cr4,Cr6}) = 0.22268, M ({Cr5,Cr6}) = 0.31199,

M ({Cr1,Cr2,Cr3}) = 0.56555, M ({Cr1,Cr2,Cr4}) = 0.60898, M ({Cr1,Cr2,Cr5}) = 0.69829, M ({Cr1,Cr2,Cr6}) = 0.58674,

M ({Cr1,Cr3,Cr4}) = 0.39287, M ({Cr1,Cr3,Cr5}) = 0.48218, M ({Cr1,Cr3,Cr6}) = 0.37062, M ({Cr1,Cr4,Cr5}) = 0.52561,

M ({Cr1,Cr4,Cr6}) = 0.41405, M ({Cr1,Cr5,Cr6}) = 0.50336, M ({Cr2,Cr3,Cr4}) = 0.49664, M ({Cr2,Cr3,Cr5}) = 0.58595,

M ({Cr2,Cr3,Cr6}) = 0.47439, M ({Cr2,Cr4,Cr5}) = 0.62938, M ({Cr2,Cr4,Cr6}) = 0.51782, M ({Cr2,Cr5,Cr6}) = 0.60713,

M ({Cr3,Cr4,Cr5}) = 0.41326, M ({Cr3,Cr4,Cr6}) = 0.30171, M ({Cr3,Cr5,Cr6}) = 0.39102, M ({Cr4,Cr5,Cr6}) = 0.43445,

M ({Cr1,Cr2,Cr3,Cr4}) = 0.68801, M ({Cr1,Cr2,Cr3,Cr5}) = 0.77732, M ({Cr1,Cr2,Cr3,Cr6}) = 0.66577, M ({Cr1,Cr2,Cr4,Cr5}) = 0.82075,

M ({Cr1,Cr2,Cr4,Cr6}) = 0.7092, M ({Cr1,Cr2,Cr5,Cr6}) = 0.79851, M ({Cr1,Cr3,Cr4,Cr5}) = 0.60464, M ({Cr1,Cr3,Cr4,Cr6}) = 0.49308,

M ({Cr1,Cr3,Cr5,Cr6}) = 0.5824, M ({Cr1,Cr4,Cr5,Cr6}) = 0.62582, M ({Cr2,Cr3,Cr4,Cr5}) = 0.70841, M ({Cr2,Cr3,Cr4,Cr6}) = 0.59685,

M ({Cr2,Cr3,Cr5,Cr6}) = 0.68616, M ({Cr2,Cr4,Cr5,Cr6}) = 0.72959, M ({Cr3,Cr4,Cr5,Cr6}) = 0.51348,

M ({Cr1,Cr2,Cr3,Cr4,Cr5}) = 0.89978, M ({Cr1,Cr2,Cr3,Cr4,Cr6}) = 0.78823, M ({Cr1,Cr2,Cr3,Cr5,Cr6}) = 0.87754,

M ({Cr1,Cr2,Cr4,Cr5,Cr6}) = 0.92097, M ({Cr1,Cr3,Cr4,Cr5,Cr6}) = 0.70486, M ({Cr2,Cr3,Cr4,Cr5,Cr6}) = 0.80862,

M ({Cr1,Cr2,Cr3,Cr4,Cr5,Cr6}) = 1.

Steps 8 and 9. Apply Eq (28) to aggregate into one column and then apply Eq (2) to find the score
values. We can find the best alternative based on the score values, as represented in Table 15. Similarly,
we can determine the best alternative by computing the score values for varying the parameter ℘ for a
specific q = 4 by applying the Cq-ROFECIWA and Cq-ROFECIWG operators, as shown in Tables 16
and 17, respectively. The graphical representation is shown in Figure 2. More precisely, the bar graph
representation is shown in Figure 3.

Table 15. Final aggregated decision matrix and ranking.

Alternative CqROFNs Score values Ranking
L1 〈(0.7394, 0.2382), 0.4524〉 0.1065 5
L2 〈(0.7608, 0.2550), 0.5223〉 0.1243 3
L3 〈(0.5743, 0.4407), 0.3363〉 0.0261 8
L4 〈(0.6767, 0.3553), 0.4779〉 0.0744 6
L5 〈(0.6691, 0.3498), 0.4578〉 0.0701 7
L6 〈(0.8258, 0.1688), 0.4757〉 0.1644 1
L7 〈(0.7691, 0.2748), 0.5204〉 0.1286 2
L8 〈(0.7621, 0.2532), 0.4482〉 0.1187 4
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Table 16. The impact of the parameter ℘ by applying the Cq-ROFECIWA operator.
q ℘ S c(L1) S c(L2) S c(L3) S c(L4) S c(L5) S c(L6) S c(L7) S c(L8) Ranking

℘ = 0.0 0.0715 0.0757 0.0130 0.0465 0.0426 0.1295 0.0770 0.0839 L6 �L8 �L7 �L2 �L1 �L4 �L5 �L3
℘ = 0.2 0.0841 0.0911 0.0178 0.0559 0.0491 0.1407 0.0947 0.0960 L6 �L8 �L7 �L2 �L1 �L4 �L5 �L3

q = 4 ℘ = 0.5 0.0977 0.1111 0.0229 0.0674 0.0618 0.1554 0.1150 0.1092 L6 �L7 �L8 �L2 �L1 �L4 �L5 �L3
℘ = 0.8 0.1109 0.1309 0.0276 0.0778 0.0742 0.1688 0.1353 0.1236 L6 �L7 �L8 �L2 �L1 �L4 �L5 �L3
℘ = 1 0.1195 0.1441 0.0307 0.0844 0.0821 0.1772 0.1488 0.1337 L6 �L7 �L8 �L2 �L1 �L4 �L5 �L3

Table 17. The impact of the parameter ℘ by applying the Cq-ROFECIWG operator.
q ℘ S c(L1) S c(L2) S c(L3) S c(L4) S c(L5) S c(L6) S c(L7) S c(L8) Ranking

℘ = 0.0 0.0895 0.0927 0.0234 0.0562 0.0523 0.1342 0.0958 0.1013 L6 �L8 �L7 �L2 �L1 �L4 �L5 �L3
℘ = 0.2 0.1023 0.1079 0.0612 0.0667 0.0286 0.1497 0.1165 0.1129 L6 �L8 �L7 �L2 �L1 �L4 �L3 �L5

q = 4 ℘ = 0.5 0.0794 0.1285 0.0342 0.1154 0.0743 0.1651 0.1378 0.1270 L6 �L7 �L8 �L2 �L4 �L1 �L5 �L3
℘ = 0.8 0.1293 0.1489 0.0396 0.0865 0.0907 0.1798 0.1587 0.1424 L6 �L7 �L8 �L2 �L1 �L5 �L4 �L3
℘ = 1 0.1389 0.1630 0.0435 0.0984 0.0941 0.1883 0.1728 0.1539 L6 �L7 �L8 �L2 �L1 �L4 �L5 �L3

Figure 2. Impact of q and ℘ by using Cq-ROFECIWA and Cq-ROFECIWG.
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Figure 3. Bar graph representation showing the impact of the parameters on ranking.

5.2. Benefits

Incineration, composting, and sanitary landfills are the top three SWM strategies, each with its
benefits. Incineration drastically reduces trash volume by 90%, saving landfill space. It generates
renewable energy from waste products. Incineration kills bacteria and poisons, which makes it
excellent for hazardous waste management. Organic waste becomes nutrient-rich compost, improving
soil quality and fertility. This approach reduces the use of landfill methane and chemical fertilizers,
reducing pollution. Composting reduces disposal costs and produces a valuable product for agriculture
and landscaping. Engineered liners and leachate management systems protect groundwater and soil in
sanitary landfills. Modern, sanitary landfills can trap methane emissions from decomposing waste to
generate renewable energy. Their versatility and ability to handle vast amounts of varied waste make
them essential for waste management systems. Open dumping, which harms the environment and
health, is the worst method. Uncontrolled trash disposal pollutes groundwater and soil. This process
releases greenhouse gases, polluting the air and causing climate change. It also invites pests and causes
unclean conditions, endangering adjacent towns. Due to its negative effects, open dumping is banned
in many countries and is not a future trash management solution. Open dumping is being replaced with
incineration, composting, and sanitary landfills as a global effort to improve environmental health and
waste management.
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6. Comparative analysis

The study evaluated the performance of Cq-ROFECIWA and Cq-ROFECIWG AOs against existing
operators in decision-making. When the proposed operators are combined with the LOPCOW
technique and Choquet integral, they offer better stability and sustainability. They can handle fuzzy
information, capture how criteria interact, and give more accurate results, which makes them good for
situations that are complex and change over time. Table 18 displays the findings of the comparison
analysis that was performed with several different operators on Cq-ROFSs. Graphical representation
is shown in Figure 4.

Table 18. Comparison with newly proposed methods.

Authors Methods Ranking of alternatives

Ali and Mahmood [45] Cq-ROFDWA and Cq-ROFDWG L6 � L7 � L8 � L2 � L1 � L5 � L4 � L3

Liu et al. [46] Cq-ROFPWA and Cq-ROFPWG L6 � L8 � L7 � L1 � L2 � L4 � L5 � L3

Otay and Kahraman [47] C-IF AHP and C-IF VIKOR L8 � L6 � L7 � L2 � L1 � L5 � L3 � L4

Chen [48] C-IF VIKOR L7 � L6 � L8 � L1 � L2 � L4 � L5 � L3

Alinejad et al. [49] CIF-SWARA and CIF-DEMATEL L6 � L8 � L7 � L1 � L2 � L5 � L4 � L3

Hussain et al. [50] IFAADHM and IFAAWDHM L8 � L6 � L7 � L2 � L1 � L5 � L4 � L3

Proposed Cq-ROFECIWA L6 � L8 � L7 � L2 � L1 � L4 � L5 � L3

Proposed Cq-ROFECIWG L6 � L8 � L7 � L1 � L2 � L5 � L4 � L3
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Figure 4. Ranking of alternatives for different methods.
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6.1. Managerial limitations

Despite the robust methodology and thorough research offered in this paper, several managerial
limitations need to be highlighted. The implementation of Cq-ROFS information requires a
deep understanding and proficiency in advanced mathematical models like the Choquet integral
and LOPCOW techniques, as well as the specific aggregation operators Cq-ROFECIWA and Cq-
ROFECIWG. However, it should be noted that such expertise may not be easily accessible in all
contexts. Consequently, there could be challenges regarding the training and allocation of resources.
Furthermore, the data utilized in the case study was specific to Singapore, and it is plausible that the
findings may not be transferable to other urban areas with various characteristics in terms of waste
management. Hence, managers should use moderation when making sweeping assertions regarding
the outcomes. Furthermore, the ever-changing nature of SWM requires ongoing modifications and
enhancements to models and procedures to effectively adapt to shifts in trash generation patterns,
regulatory mandates, and technological advancements. Therefore, it is imperative to dedicate yourself
to continuous learning and adjustment, which can require a substantial allocation of resources. In the
end, implementing decision-making frameworks that take into account more than one factor, like using
Cq-ROFECIWA and Cq-ROFECIWG operators, might be met with resistance because the process is
complicated and could make current practices more difficult. Considering these limitations is crucial
to ensure the effective execution of the suggested approaches in practical SWM situations.

7. Conclusions

This research introduces a novel approach to optimizing SWM in Singapore by incorporating
sophisticated mathematical models and decision-making methods. It employs Cq-ROFS for initial
information gathering, the Choquet integral, LOPCOW techniques, and the AOs Cq-ROFECIWA and
Cq-ROFECIWG. The study conducts a systematic analysis of numerous SWM methods, identifying
the most effective and efficient strategies and the least effective and inefficient ones. The findings
indicate the subsequent insights.

• Most effective alternative: Recycling and incineration are prioritized for their effectiveness in
waste reduction and their practical applicability in the context of Singapore. Recycling promotes
environmental sustainability and is consistent with public acceptance.

• Least effective alternative: Open dumping is considered the most ineffective method due to its
considerable environmental and health hazards, as well as its lack of public approval.

• Decision-making advantages: The suggested technique offers a resilient and adaptable decision-
making framework capable of addressing evolving urban challenges and changing policy agendas.

The proposed framework offers stakeholders and policy-makers an effective tool for making
informed decisions, as it can navigate the complexities and unknowns of SWM. The Singapore case
study not only demonstrates the efficacy of the proposed strategies in a real-world context, but also
provides practical insights. We will develop MATLAB code to implement the entire decision-making
process for practical use. Even if initial conditions or situations change, this tool will let stakeholders
evaluate and choose the best SWM strategies. To enhance the practical utility of the methodologies,
future research should further refine them, investigate the framework’s applicability in a variety of
urban areas, and resolve these constraints. The distinct insights that this study has provided to the
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field of SWM can be used to implement more sustainable and effective waste management methods
in urban settings.
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