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1. Introduction

In recent years, there is an increased demand for the application of mathematics. Graph theory
has proven to be particularly useful to a large number of rather diverse fields. As a useful tool for
dealing with relations of events, graph theory has rapidly grown in theoretical results as well as its
applications to real-life problems. One concept that pervades all the graph theory is that of distance,
and distance is used in isomorphism testing, graph operations, maximal and minimal problems on
connectivity and diameter. Several parameters related to distances in graphs are highly attracting the
attention of several researchers. One of them, namely, the metric dimension, has specifically centered
several investigations.

The concept of metric dimension was introduced by Slater [23] in 1975 in which he used the term
locating set in connection with some location problems in graphs. Harary and Melter [7] also studied
the same concept and used the term resolving set. After these two pioneering papers, a lot of work
on this invariant has been done concerning applications as well as theory. The families of graphs with
constant metric dimensions have been characterized by many different authors, one can see [9, 10].
There are a lot of variants of the standard metric dimension, such as local metric dimension, strong
metric dimension, fractional metric dimension, fault-tolerant metric dimension and many more have
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been studied in [1,8,15,16,18]. In 2000, Chartrand et al. [3] determined all connected graphs of order
n having metric dimension 1, n − 1 or n − 2. Some other interesting results on the metric dimension
and references can be found in [5, 11, 17, 19, 21].

In 2018, the new parameter edge metric dimension has been introduced by Kelenc [12] in which
they determined the value for wheel graphs and fan graphs. They studied that the wheel graphs of
order n ≥ 6 and the fan graphs of order n ≥ 5 have edge metric dimension n − 2. Nasir et al. [14] also
determined the edge metric dimension for two families when G is an n-sunlet graph and a prism graph.
Zubrilina et al. [25] characterized the graphs for which the edge metric dimension of graphs is n − 1.
They also proposed an open problem: For which graphs G of order n, the edge metric dimension is
n − 2? Recently, Wei et al. [24] gave the characterization of all connected bipartite graphs with edge
metric dimension n − 2, which partially answers an open problem of Zubrilina et al. [25]. They also
investigated the relationship between the edge metric dimension and the clique number of a graph G.

In this paper, we consider the problem of computing the metric dimension and edge metric
dimension of windmill graphs and certain generalizations of these graphs. Applications of this
optimization problem arise in diverse areas. See [3] for an application of this problem in
pharmaceutical chemistry, [22] for coin weighing problem, [13] for robot navigation, [2] for network
discovery and verification, [20] for connected joins in graphs, and [4] for strategies for the mastermind
game. See [6] for an application of windmill graphs in networks.

A graph G = (V, E) is an ordered pair consisting of a nonempty set V = V(G) of elements
called vertices and a set E = E(G) of unordered pairs of vertices called edges. For distinct vertices
v1 and v2, the distance between v1 and v2, denoted by d(v1, v2), is the length of the shortest path
connecting v1 and v2. Let d(v, e) denotes the distance between edge e and vertex v, defined as
d(v, e) = min{d(v, a), d(v, b)}, where e = ab. A vertex v distinguishes two edges e1 and e2, if
d(e1, v) , d(e2, v). G is called a complete graph if every pair of vertices is joined by exactly one
edge. A complete graph of order n is denoted by Kn. A graph G with n vertices (n ≥ 3) and n edges is
called a cyclic graph if all its edges form a cycle of length n. It is denoted by Cn. G is a bipartite graph
means that vertex sets can be partitioned into two subsets U and W, called partite sets, such that every
edge of G joins a vertex of U and a vertex of W. If every vertex of U is adjacent to every vertex of W,
G is called a complete bipartite graph, where U and W are independent. A star graph is a complete
bipartite graph in which (n − 1) vertices have a degree 1 and a single vertex has a degree (n − 1). It is
denoted by S n.

Let R = {r1, r2, . . . , rk} be an ordered set of vertices of G and let v be a vertex of G. The
representation r(v|R) of v with respect to R is the k-tuple (d(v, r1), d(v, r2), . . . , d(v, rk)). If distinct
vertices of G have distinct representation with respect to R, then R is called a resolving set for G. A
resolving set of minimum cardinality is a metric basis for G, and its cardinality is called the metric
dimension of G, denoted by dim(G).

Let RE = {x1, x2, . . . , xk} be an ordered set in V(G) and let e ∈ E(G). The representation r(e|RE)
of e with respect to RE is the k-tuple (d(e, x1), d(e, x2), ..., d(e, xk)). If distinct edges of G have distinct
representation with respect to RE, then RE is called an edge metric generator for G. An edge metric
generator of minimum cardinality is an edge metric basis for G, and its cardinality is called edge metric
dimension of G, denoted by edim(G).

Throughout this paper, the French star windmill graph is denoted by S Wm
n , French cyclic windmill

graph by CWm
n and French complete windmill graph by KWm

n wherein the shared vertex of French

AIMS Mathematics Volume 6, Issue 9, 9138–9153.



9140

windmill graph (Wm
n ) is replaced by star graph, cyclic graph and complete graph respectively. We

also denote the Dutch star windmill graph by S Dm
n , Dutch cyclic windmill graph by CDm

n and Dutch
complete windmill graph by KDm

n wherein the shared vertex of Dutch windmill graph (Dm
n ) is replaced

by star graph, cyclic graph, and complete graph respectively.

2. French windmill graph

In this section we discuss French windmill graph (see, Figure 1) and certain generalizations of this
graph.

The French windmill graph, Wm
n , n ≥ 3,m ≥ 2 is the graph obtained by taking m copies of the

complete graph (Kn) joined at a shared universal vertex. It has m(n − 1) + 1 vertices and mn(n −
1)/2 edges. For our purpose, we denote the complete subgraphs of Wm

n by W i
n, i = 1, 2, . . .m, the

shared vertex by c, the vertices of W i
n by {ai

1, a
i
2, . . . , a

i
n−1, c}, Vi, n∗, n∗∗ by {ai

1, a
i
2, . . . , a

i
n−1}, n, n, . . . , n︸      ︷︷      ︸

n − 2 times

,

n, n, . . . , n︸      ︷︷      ︸
n − 1 times

respectively.

Figure 1. French windmill graph( Wm
n ).

In the following theorems, we compute the metric dimension and edge metric dimension of French
windmill graph.

Theorem 2.1. The metric dimension of French windmill graph is m(n − 2).

Proof. Let R be the resolving set of French windmill graph (Wm
n ). We can assume that there exist

some x, y ∈ Vi for some i, such that x, y < R. Then r(x|R) = r(y|R), which is a contradiction. Now, let
R0 = {ai

1, a
i
2, . . . , a

i
n−2}, i = 1, 2, . . . ,m. Representation of vertices of Wm

n with respect to R0 are

r(ai
n−1|R0) = (2∗, . . . , 1∗︸︷︷︸

ith tuple

, 2∗, . . . , 2∗),

r(c|R0) = (1∗, 1∗, . . . , 1∗).
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Since there is no vertex having same representation, so R0 is a resolving set of Wm
n . Hence dim(Wm

n ) =

m(n − 2). �

Theorem 2.2. The edge metric dimension of French windmill graph is m(n − 1) − 1.

Proof. Let RE be the edge metric basis of Wm
n . We claim that it contains all vertices from

⋃
Vi except

one. Suppose on the contrary that there exist x, y ∈
⋃

Vi such that x, y < RE. We have two cases:
1) when x ∈ Vi and y ∈ V j, then r(cx|RE) = r(cy|RE)
2) when x, y ∈ Vi, then r(cx|RE) = r(cy|RE)
which is a contradiction. Now, let R

′

E =
⋃

i Vi \ {a1
1}. Representation of edges of Wm

n with respect to R
′

E
are

r(a1
ja

1
1|R

′

E) = (1, . . . , 0, 1, . . . , 1︸              ︷︷              ︸
1st tuple

, 2∗∗, . . . , 2∗∗),

r(ai
jc|R

′

E) = (1∗, . . . , 1, . . . , 0, 1, . . . , 1︸              ︷︷              ︸
ith tuple

, 1∗∗, . . . , 1∗∗),

r(a1
1c|R

′

E) = (1∗, 1∗∗, . . . , 1∗∗).

Since there is no edge having same representation, so R
′

E is an edge metric generator of Wm
n . Hence

edim(Wm
n ) = m(n − 1) − 1. �

The following lemmas show that the metric dimension and edge metric dimension of generalizations
of French windmill graph (discussed in this section) is at least m(n − 2).

Lemma 2.3. The metric dimension of S Wm
n , CWm

n , and KWm
n is at least m(n − 2).

Proof. We can assume that there exist some x, y ∈ Vi for some i, such that x, y < R. Then r(x|R) =

r(y|R), which is a contradiction. �

Lemma 2.4. The edge metric dimension of S Wm
n , CWm

n , and KWm
n is at least m(n − 2).

Proof. We can assume that there exist x, y ∈ Vi for some i, such that x, y < RE. Then r(ai
nx|RE) =

r(ai
ny|RE), which is a contradiction. �

2.1. French star windmill graph

Let S Wm
n be a graph obtained by replacing the shared vertex of French windmill graph with a star

graph S m (see, Figure 2). It has mn + 1 vertices and mn(n−1)
2 + m edges. For our sake, we denote the

complete subgraphs of S Wm
n by W i

n and its vertices as {ai
1, a

i
2, . . . , a

i
n−1, a

i
n}. In the following results, we

compute the metric dimension and edge metric dimension of this graph.

Theorem 2.5. The metric dimension of S Wm
n is m(n − 2).

Proof. By Lemma 2.3, we have dim(S Wm
n ) ≥ m(n−2). Now, let R0 = {ai

1, a
i
2, . . . , a

i
n−2}, i = 1, 2, . . . ,m.

Representation of vertices of S Wm
n with respect to R0 are

r(ai
n−1|R0) = (4∗, . . . , 1∗︸︷︷︸

ith tuple

, 4∗, . . . , 4∗),
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r(ai
n|R0) = (3∗, . . . , 1∗︸︷︷︸

ith tuple

, 3∗, . . . , 3∗),

r(c|R0) = (2∗, 2∗, . . . , 2∗).

Therefore R0 is a resolving set of S Wm
n . Hence dim(S Wm

n ) = m(n − 2). �

Figure 2. French star windmill graph (S Wm
n ).

Theorem 2.6. The edge metric dimension of S Wm
n is m(n − 2).

Proof. By Lemma 2.4, we have edim(S Wm
n ) ≥ m(n − 2). Now, let R

′

E = {ai
1, a

i
2, . . . , a

i
n−2}, i =

1, 2, . . . ,m. Representation of edges of S Wm
n with respect to R

′

E are

r(ai
ja

i
n−1|R

′

E) = (4∗, . . . , 1, . . . , 0, 1, . . . , 1︸              ︷︷              ︸
ith tuple

, 4∗, . . . , 4∗),

r(ai
ja

i
n|R

′

E) = (3∗, . . . , 1, . . . , 0, 1, . . . , 1︸              ︷︷              ︸
ith tuple

, 3∗, . . . , 3∗),

r(ai
n−1ai

n|R
′

E) = {3∗, . . . , 1∗︸︷︷︸
ith tuple

, 3∗, . . . , 3∗},

r(cai
n|R

′

E) = {2∗, . . . , 1∗︸︷︷︸
ith tuple

, 2∗, . . . , 2∗}.

which implies that edim(S Wm
n ) ≤ m(n − 2). Therefore, edim(S Wm

n ) = m(n − 2). �

2.2. French cycle windmill graph

Let CWm
n be a graph obtained by replacing the shared vertex of French windmill graph with a

cycle graph (see, Figure 3). It has mn vertices and mn(n−1)
2 + m edges. For our sake, we denote the

complete subgraphs of CWm
n by W i

n and its vertices as ai
1, a

i
2, . . . , a

i
n−1, a

i
n. Now we determine the

metric dimension and edge metric dimension of this graph.
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Figure 3. French cycle windmill graph (CWm
n ).

Theorem 2.7. The metric dimension of CWm
n is m(n − 2).

Proof. Let R0 = {ai
1, a

i
2, . . . , a

i
n−2}, i = 1, 2, . . . ,m and xk = d(ai

n|a
k
n). Then representation of vertices of

CWm
n are

r(ai
n−1|R0) = ((x1 + 2)∗, (x2 + 2)∗, . . . , 1∗︸︷︷︸

ith tuple

, . . . , (xm + 2)∗),

r(ai
n|R0) = ((x1 + 1)∗, (x2 + 1)∗, . . . , 1∗︸︷︷︸

ith tuple

, . . . , (xm + 1)∗).

It implies that dim(CWm
n ) ≤ m(n − 2). Also, from Lemma 2.3, we have dim(CWm

n ) ≥ m(n − 2).
Therefore, dim(CWm

n ) = m(n − 2). �

Theorem 2.8. The edge metric dimension of CWm
n is m(n − 2).

Proof. Let R
′

E = {ai
1, a

i
2, . . . , a

i
n−2}, i = 1, 2, . . . ,m. Representation of edges of CWm

n with respect to R
′

E
are as follows

r(ai
n−1ai

n|R
′

E) = ((x1 + 1)∗, (x2 + 1)∗, . . . , 1∗︸︷︷︸
ith tuple

, . . . , (xm + 1)∗),

r(ai
nai+1

n |R
′

E) = ((x
′

1 + 1)∗, (x
′

2 + 1)∗, . . . , 1∗, 1∗︸︷︷︸
ith and (i + 1)th tuple

, . . . , (x
′

m + 1)∗),

where x
′

k = min{(d(ai
n|a

k
n)), (d(ai+1

n |a
k
n)). It implies that edim(CWm

n ) ≤ m(n− 2). Also, from Lemma 2.4,
we have edim(CWm

n ) ≥ m(n − 2). Therefore, edim(CWm
n ) = m(n − 2). �

2.3. French complete windmill graph

Let KWm
n be a graph obtained by replacing the shared vertex of windmill graph with a complete

graph Km (see, Figure 4). It has mn vertices and mn(n−1)
2 +

m(m−1)
2 edges. For our sake, we denote the

AIMS Mathematics Volume 6, Issue 9, 9138–9153.
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complete subgraphs of KWm
n by W i

n and its vertices as ai
1, a

i
2, . . . , a

i
n−1, a

i
n. Now we determine the metric

dimension and edge metric dimension of this graph.

Figure 4. French complete windmill graph (KWm
n ).

Theorem 2.9. The metric dimension of KWm
n is m(n − 2).

Proof. By Lemma 2.3, we have dim(KWm
n ) ≥ m(n−2). Also, let R0 = {ai

1, a
i
2, . . . , a

i
n−2}, i = 1, 2, . . . ,m.

Representation of vertices of KWm
n with respect to R0 are

r(ai
n−1|R0) = (3∗, . . . , 1∗︸︷︷︸

ith tuple

, 3∗, . . . , 3∗),

r(ai
n|R0) = (2∗, . . . , 1∗︸︷︷︸

ith tuple

, 2∗, . . . , 2∗)

which implies that R0 is a resolving set and dim(KWm
n ) ≤ m(n − 2). Therefore, dim(KWm

n ) = m(n −
2). �

Theorem 2.10. The edge metric dimension of KWm
n is m(n − 2).

Proof. By Lemma 2.4, we have edim(KWm
n ) ≥ m(n − 2). Also, let R

′

E = {ai
1, a

i
2, . . . , a

i
n−2}, i =

1, 2, . . . ,m, we claim that R
′

E is an edge metric generator of KWm
n . Representation of edges of KWm

n

with respect to R
′

E are

r(ai
ja

i
n−1|R

′

E) = (3∗, . . . , 1, . . . , 0, 1, . . . , 1︸              ︷︷              ︸
ith tuple

, 3∗, . . . , 3∗),

r(ai
ja

i
n|R

′

E) = (2∗, . . . , 1, . . . , 0, 1, . . . , 1︸              ︷︷              ︸
ith tuple

, 2∗, . . . , 2∗),

r(ai
n−1ai

n|R
′

E) = (3∗, . . . , 1∗︸︷︷︸
ith tuple

, 3∗, . . . , 3∗),

r(ai
nak

n|R
′

E) = (2∗, . . . , 1∗︸︷︷︸
ith tuple

, 2∗, . . . , 1∗︸︷︷︸
kth tuple

, 2∗, . . . , 2∗).
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which implies that R
′

E is an edge metric generator and edim(KWm
n ) ≤ m(n − 2). Therefore,

edim(KWm
n ) = m(n − 2). �

3. Dutch windmill graph

In this section, Dutch windmill graph (see, Figure 5) and certain generalizations of this graph are
discussed.

The Dutch windmill graph, Dm
n , n ≥ 3,m ≥ 2 is the graph obtained by taking m copies of the cycle

graph Cn joined at a shared universal vertex. It has m(n−1)+1 vertices and mn edges. For our purpose,
we denote the cycle subgraphs of Dm

n by Di
n, i = 1, 2, . . .m, the shared vertex by c, and the vertices of

Di
n by ai

1, a
i
2, . . . , a

i
n−1, c. In the following theorems, we compute the metric dimension and edge metric

dimension of Dutch windmill graph.

Figure 5. Dutch windmill graph (Dm
n ).

Theorem 3.1. The metric dimension of Dutch windmill graph is:

dim(Dm
n ) =

m, if n is odd

2m − 1, otherwise.

Proof. 1). When n is odd: Let R be any resolving set of Dm
n . Assume that there exist some Vi with no

vertex in R, then
r(ai

1|R) = r(ai
n−1|R)

which is a contradiction. Therefore, dim(Dm
n ) ≥ m. Let R0 = {ai

d n
2 e
}, i = 1, 2, . . . ,m. We have,

d(ai
j|a

k
d n

2 e
}) =

b n
2c + j, j < d n

2e

n − j + b n
2c j > d n

2e

d(ai
j|a

i
d n

2 e
}) =

d n
2e − j, if j < d n

2e

j − d n
2e, if j > d n

2e

AIMS Mathematics Volume 6, Issue 9, 9138–9153.
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Representation of vertices of Dm
n with respect to R0 are

r(ai
j|R0) =


(b n

2c + j, . . . , d
n
2
e − j︸  ︷︷  ︸

ith tuple

, b n
2c + j, . . . , bn

2c + j), if j < dn
2e

(n − j + b n
2c, . . . , j − d

n
2
e︸  ︷︷  ︸

ith tuple

, n − j + b n
2c, . . . , n − j + b n

2c), if j > dn
2e

r(c|R0) = (b
n
2
c, b

n
2
c, . . . , b

n
2
c).

Let a j1 , a j2 ∈ Dm
n be any two vertices, then we have the following cases:

Case 1. When the vertices belong to different sets, say Vi and Vk, then r(ai
j1
|R0) , r(ak

j2
|R0)

Case 2. When vertices belong to same sets, then we have two subcases
a) when j1, j2 < d

n
2e(or > d n

2e) then r(ai
j1
|R0) , r(ai

j2
|R0)

b) when j1 < d
n
2e, j2 > d

n
2e. Suppose r(ai

j1
|R0) = r(ai

j2
|R0), then b n

2c + j1 = n − j2 + b n
2c and d n

2e −

j1 = j2 − d
n
2e, which implies n = j1 + j2 and n = j1 + j2 − 1, which is a contradiction. Therefore

r(ai
j1
|R0) , r(ai

j2
|R0) for all j1, j2. Since every vertex of Dm

n has unique representation with respect to
R0 which implies that dim(Dm

n ) ≤ m. Therefore, dim(Dm
n ) = m.

2). When n is even: First, we claim that any resolving set R of Dm
n contains at least two vertices from

each set Vi except one. Suppose on the contrary that there exist two sets say Vi and V j with only one
vertex in R. Without loss of generality, suppose ai

1, a
j
1 ∈ R, then r(ai

n−1|R) = r(a j
n−1|R), which is a

contradiction. Therefore, dim(Dm
n ) ≥ 2m − 1. Let R0 = {a1

1, a
2
1, . . . , a

m
1 , a

1
n−1, a

2
n−1, . . . , a

m−1
n−1 }. We show

that R0 is resolving set of Dm
n . Representation of vertices of Dm

n with respect to R0 are

r(ai
j|R0) =



( j + 1, . . . , j − 1︸︷︷︸
ith tuple

, j + 1, . . . , j + 1), if j < n
2

( n
2 + 1, . . . ,

n
2
− 1︸︷︷︸

ith tuple

, n
2 + 1, . . . ,

n
2
− 1︸︷︷︸

(m + i)th tuple

, n
2 + 1, . . . , n

2 + 1), if j = n
2

(n − j + 1, . . . , n − j − 1︸    ︷︷    ︸
(m + i)th tuple

, n − j + 1, . . . , n − j + 1), if j > n
2

r(am
n−1|R0) = (2, 2, . . . , 2),
r(c|R0) = (1, 1, . . . , 1).

Let a j1 , a j2 ∈ Dm
n be any two vertices, then we have the following cases:

Case 1. When the vertices belong to different sets, say Vi and Vk, then r(ai
j1
|R0) , r(ak

j2
|R0).

Case 2. When vertices belong to same sets, then we have two subcases:
a) when j1, j2 <

n
2 (or > n

2 ) then r(ai
j1
|R0) , r(ai

j2
|R0)

b) when j1 <
n
2 , j2 >

n
2 . Suppose r(ai

j1
|R0) = r(ai

j2
|R0), then j1 − 1 = n − j2 + 1 and j1 + 1 = n − j2 + 1

which implies n = j1 + j2 and n = j1 + j2 − 2, which is a contradiction. Therefore, r(ai
j1
|R0) , r(ai

j2
|R0)

for all j1, j2. Since every vertex of Dm
n has unique representation with respect to R0 which implies that

dim(Dm
n ) ≤ 2m − 1. Therefore, dim(Dm

n ) = 2m − 1. �

Theorem 3.2. The edge metric dimension of Dm
n is 2m − 1.
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Proof. Assume that there exist two sets say Vi and V j with only one vertex in RE. Without loss of
generality, suppose ai

1, a
j
1 ∈ RE. Then r(ai

n−1ai
n|RE) = r(a j

n−1a j
n|RE), which is a contradiction. Therefore

edim(Dm
n ) ≥ 2m − 1. Let R

′

E = {a1
1, a

2
1, . . . , a

m
1 , a

1
n−1, a

2
n−1, . . . , a

m−1
n−1 }. We show that R

′

E is an edge metric
generator of Dm

n . Representation of edges of Dm
n with respect to R

′

E are
When n is odd:

r(ai
ja

i
j+1|R

′

E)

=



( j + 1, . . . , j − 1︸︷︷︸
ith tuple

, j + 1, . . . , j + 1), if j < bn
2c

(b n
2c + 1, . . . , b

n
2
c − 1︸  ︷︷  ︸

ith tuple

, b n
2c + 1, . . . , b

n
2
c − 1︸  ︷︷  ︸

(m + i)th tuple

, b n
2c + 1, . . . , b n

2c + 1), if j = b n
2c

(n − j, . . . , n − j − 2︸    ︷︷    ︸
(m + i)th tuple

, n − j, . . . , n − j), if j > b n
2c.

r(am
n−1c|R

′

E) = (1, 1, . . . , 1).

When n is even:

r(ai
ja

i
j+1|R

′

E) =



( j + 1, . . . , j − 1︸︷︷︸
ith tuple

, j + 1, . . . , j + 1), if j < n
2 − 1

(n
2 , . . . ,

n
2
− 2︸︷︷︸

ith tuple

, n
2 , . . . ,

n
2
− 1︸︷︷︸

(m + i)th tuple

, n
2 , . . . ,

n
2 ), if j = n

2 − 1

(n
2 , . . . ,

n
2
− 1︸︷︷︸

ith tuple

, n
2 , . . . ,

n
2
− 2︸︷︷︸

(m + i)th tuple

, n
2 , . . . ,

n
2 ), if j = n

2

(n − j, . . . , n − j − 2︸    ︷︷    ︸
(m + i)th tuple

, n − j, . . . , n − j), if j > n
2 .

r(am
n−1c|R

′

E) = (1, 1, . . . , 1).

Therefore, edim(Dm
n ) = 2m − 1. �

The following two lemmas show that the metric dimension and edge metric dimension of
generalizations of Dutch windmill graph (as discussed in this section) is at least m.

Lemma 3.3. The metric dimension of S Dm
n , CDm

n , and KDm
n is at least m.

Proof. We can assume that there exist some Vi with no vertex in R, then r(ai
1|R) = r(ai

n−1|R), which is
a contradiction. �

Lemma 3.4. The metric dimension of S Dm
n ,CDm

n , and KDm
n is at least m.

Proof. We can assume that there exist a set Vi with no vertex in RE, then r(ai
n−1ai

n|RE) = r(ai
1ai

n|RE),
which is a contradiction. Therefore, edim(S Dm

n ) ≥ m. �
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3.1. Dutch star windmill graph

Let S Dm
n be a graph obtained by replacing the shared vertex of Dutch windmill graph with a star

graph S m (see, Figure 6). It has mn + 1 vertices and m(n + 1) edges. For our purpose, we denote the
cycle subgraphs of S Dm

n by Di
n , its vertices by ai

1, a
i
2, . . . , a

i
n−1, a

i
n and vertices of S m by a1

n, a
2
n, . . . , a

m
n , c.

In the following results, we discuss the metric dimension and edge metric dimension of this graph.

Figure 6. Dutch star windmill graph (S Dm
n ).

Theorem 3.5. The metric dimension of S Dm
n is m.

Proof. By Lemma 3.3, we have dim(S Dm
n ) ≥ m. Also, let R0 = {ai

1}, i = 1, 2, . . . ,m. We claim that R0

is a resolving set of S Dm
n . Now,

d(ai
j|a

k
1}) =

 j + 3, j < d n
2e

n − j + 3 j ≥ dn
2e.

d(ai
j|a

i
1}) =

 j − 1, if j ≤ dn
2e

n − j + 1, if j > d n
2e.

Representation of vertices of S Dm
n with respect to R0 are:

r(ai
j|R0) =



( j + 3, . . . , j − 1︸︷︷︸
ith tuple

, j + 3, . . . , j + 3), if j < d n
2e

(n − j + 3, . . . , j − 1︸︷︷︸
ith tuple

, n − j + 3, . . . , n − j + 3), if j = d n
2e

(n − j + 3, . . . , n − j + 1︸    ︷︷    ︸
ith tuple

, n − j + 3, . . . , n − j + 3), if j > d n
2e.

r(c|R0) = (2, . . . , 2).

Clearly, we have dim(S Dm
n ) ≤ m. Therefore, dim(S Dm

n ) = m. �
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Theorem 3.6. The edge metric dimension of S Dm
n is m.

Proof. By Lemma 3.4, we have edim(S Dm
n ) ≥ m. Also, let R

′

E = {ai
1}, i = 1, 2, . . . ,m. We claim that

R
′

E is an edge metric generator of S Dm
n . Representation of edges of S Dm

n with respect to R
′

E are:

r(ai
ja

i
j+1|R

′

E) =



( j + 3, . . . , j − 1︸︷︷︸
ith tuple

, j + 3, . . . , j + 3), if j < dn
2e

(n − j + 2, . . . , j − 1︸︷︷︸
ith tuple

, n − j + 2, . . . , n − j + 2), if j = d n
2e

(n − j + 2, . . . , n − j︸︷︷︸
ith tuple

, n − j + 2, . . . , n − j + 2), if j > d n
2e.

r(cai
n|R

′

E) = (2, . . . , 1︸︷︷︸
ith tuple

, 2, . . . , 2).

Clearly, we have edim(S Dm
n ) ≤ m. Hence edim(S Dm

n ) = m. �

3.2. Dutch cycle windmill graph

Let CDm
n be a graph obtained by replacing the shared vertex of Dutch windmill graph with a cycle

graph (Cm) (see, Figure 7). It has mn vertices and m(n + 1) edges. For our sake, we denote the
cycle subgraphs of CDm

n by Di
n and its vertices as ai

1, a
i
2, . . . , a

i
n−1, a

i
n. Now, we determine the metric

dimension and edge metric dimension of this graph.

Figure 7. Dutch cycle windmill graph (CDm
n ).

Theorem 3.7. The metric dimension of CDm
n is m.

Proof. By Lemma 3.3, we have dim(CDm
n ) ≥ m. Also, let R0 = {ai

1}, i = 1, 2, . . . ,m. We show that R0

AIMS Mathematics Volume 6, Issue 9, 9138–9153.



9150

is a resolving set of CDm
n . Now,

d(ai
j|a

i
1) =


j − 1, if j < b n

2c

b n
2c − 1, if j = b n

2c

n − j + 1, if j > b n
2c

d(ai
j|a

k
1) =


j + xk + 1, if j < b n

2c

d n
2e + xk + 1, if j = b n

2c

n − j + xk + 1, if j > b n
2c

where xk = d(ai
n|a

k
n). Representation of vertices with respect to R0 are

=



( j + x1 + 1, j + x2 + 1, . . . , j − 1︸︷︷︸
ith tuple

, . . . , j + xm + 1), if j < b n
2c

(n − j + x1 + 1, n − j + x2 + 1, . . . , n − j + 1︸    ︷︷    ︸
ith tuple

, . . . , n − j + xm + 1), if j > b n
2c

(d n
2e + x1 + 1, d n

2e + x2 + 1, . . . , b
n
2
c − 1︸  ︷︷  ︸

ith tuple

, . . . , d n
2e + xm + 1), if j = b n

2c.

Since every vertex of CDm
n has unique representation with respect to R0. Therefore, dim(CDm

n ) ≤ m.
Hence, dim(CDm

n ) = m. �

Theorem 3.8. The edge metric dimension of CDm
n is m.

Proof. By Lemma 3.4, we have edim(CDm
n ) ≥ m. Also, let R

′

E = {ai
1}, i = 1, 2, . . . ,m. Representation

of edges of CDm
n with respect to R

′

E are

r(ai
ja

i
j+1|R

′

E) =



( j + x1 + 1, j + x2 + 1, . . . , j − 1︸︷︷︸
ith tuple

, . . . , j + xm + 1), if j < b n
2c

(n − j + x1, n − j + x2, . . . , n − j︸︷︷︸
ith tuple

, . . . , n − j + xm), if j > b n
2c

(dn
2e + x1, d

n
2e + x2, . . . , b

n
2
c − 1︸  ︷︷  ︸

ith tuple

, . . . , d n
2e + xm), if j = b n

2c.

r(ai
nai+1

n |R
′

E) = (x1 + 1, x2 + 1, . . . , 1, 1︸︷︷︸
ith and (i + 1)th tuple

, . . . , xm + 1).

where xk = min{d(ai
n|a

k
n), d(ai+1

n |a
k
n)}, k = 1, 2, . . .m. Clearly, representation of every edge of CDm

n with
respect to R

′

E is different. Therefore, edim(CDm
n ) ≤ m. Hence edim(CDm

n ) = m �

3.3. Dutch complete windmill graph

Let KDm
n be a graph obtained by replacing the shared vertex of Dutch windmill graph with a

complete graph(Km) (see, Figure 8). It has mn vertices and mn +
m(m−1)

2 edges. For our sake, we
denote the cycle subgraphs of KDm

n by Di
n and its vertices as ai

1, a
i
2, . . . , a

i
n−1, a

i
n. Now, we obtain the

metric dimension and edge metric dimension of this graph.
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Figure 8. Dutch complete windmill graph (KDm
n ).

Theorem 3.9. The metric dimension of KDm
n is m.

Proof. Let R0 = {ai
1}, i = 1, 2, . . . ,m. Representation of vertices of KDm

n with respect to R0 are

r(ai
j|R0) =



( j + 2, . . . , j − 1︸︷︷︸
ith tuple

, j + 2, . . . , j + 2), if j < d n
2e

(n − j + 2, . . . , j − 1︸︷︷︸
ith tuple

, n − j + 2, . . . , n − j + 2), if j = d n
2e

(n − j + 2, . . . , n − j + 1︸    ︷︷    ︸
ith tuple

, n − j + 2, . . . , n − j + 2), if j > d n
2e.

which implies that R0 is a resolving set and dim(KDm
n ) ≤ m. Also, from Lemma 3.3, dim(KDm

n ) ≥ m.
Therefore, dim(KDm

n ) = m. �

Theorem 3.10. The edge metric dimension of KDm
n is m.

Proof. Let R
′

E = {ai
1}, i = 1, 2, . . . ,m. We claim that R

′

E is an edge metric generator of KDm
n .

Representation of edges of KDm
n with respect to R

′

E are

r(ai
ja

i
j+1|R

′

E) =



( j + 2, . . . , j − 1︸︷︷︸
ith tuple

, j + 2, . . . , j + 2), if j < dn
2e

(n − j + 1, . . . , j − 1︸︷︷︸
ith tuple

, n − j + 1, . . . , n − j + 1), if j = d n
2e

(n − j + 1, . . . , n − j︸︷︷︸
ith tuple

, n − j + 1, . . . , n − j + 1), if j > d n
2e.

r(ai
nak

n|R
′

E) = (2, . . . , 1︸︷︷︸
ith tuple

, 2, . . . , 1︸︷︷︸
kth tuple

, 2, . . . , 2).

which implies that edim(KDm
n ) ≤ m. Also from Lemma 3.4, edim(KDm

n ) ≥ m. Hence edim(KDm
n ) =

m. �
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4. Conclusions and future work

In this paper we have computed the metric dimension and edge metric dimension of French
windmill and Dutch windmill graphs wherein the shared vertex is replaced by star graph, cyclic
graph and complete graph. We have found that the metric dimension and edge metric dimension
of generalizations of French windmill graph and Dutch windmill graph are same. In future, we
would extend our work to Fault-tolerant metric dimension and Fractional metric dimension of French
windmill and Dutch windmill graphs.
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