Research article Special Issues

Coefficient bounds for certain two subclasses of bi-univalent functions

  • Received: 21 January 2021 Accepted: 15 June 2021 Published: 18 June 2021
  • MSC : Primary: 30C45; Secondary: 30C50, 30C80

  • In this paper, coefficient bounds of bi-univalent functions in certain two subclasses, which are defined by subordination are estimated. Some special outcomes of the main results are also presented. Moreover, it is remarked that the given bounds improve and generalize some of the pervious results.

    Citation: Ebrahim Analouei Adegani, Nak Eun Cho, Davood Alimohammadi, Ahmad Motamednezhad. Coefficient bounds for certain two subclasses of bi-univalent functions[J]. AIMS Mathematics, 2021, 6(9): 9126-9137. doi: 10.3934/math.2021530

    Related Papers:

  • In this paper, coefficient bounds of bi-univalent functions in certain two subclasses, which are defined by subordination are estimated. Some special outcomes of the main results are also presented. Moreover, it is remarked that the given bounds improve and generalize some of the pervious results.



    加载中


    [1] H. Airault, A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math., 130 (2006), 179–222. doi: 10.1016/j.bulsci.2005.10.002
    [2] H. Airault, J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., 126 (2002), 343–367. doi: 10.1016/S0007-4497(02)01115-6
    [3] R. M. Ali, S. K. Lee, V. Ravichandran, S. Subramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25 (2012), 344–351. doi: 10.1016/j.aml.2011.09.012
    [4] D. Alimohammadi, N. E. Cho, E. Analouei Adegani, Coefficient bounds for subclasses of analytic and bi-univalent functions, Filomat, 34 (2020), 4709–4721. doi: 10.2298/FIL2014709A
    [5] E. Analouei Adegani, S. Bulut, A. Zireh, Coefficient estimates for a subclass of analytic bi-univalent functions, Bull. Korean Math. Soc., 55 (2018), 405–413.
    [6] E. Analouei Adegani, N. E. Cho, A. Motamednezhad, M. Jafari, Bi-univalent functions associated with Wright hypergeometric functions, J. Comput. Anal. Appl., 28 (2020), 261–271.
    [7] E. Analouei Adegani, S. G. Hamidi, J. M. Jahangiri, A. Zireh, Coefficient estimates of $m$-fold symmetric bi-subordinate functions, Hacet. J. Math. Stat., 48 (2019), 365–371.
    [8] O. Alrefal, M. Ali, General coefficient estimates for bi-univalent functions: A new approach, Turk. J. Math., 44 (2020), 240–251. doi: 10.3906/mat-1910-100
    [9] S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Math. Acad. Sci. Paris, 352 (2014), 479–484. doi: 10.1016/j.crma.2014.04.004
    [10] S. Bulut, Coefficient estimates for a new subclass of analytic and bi-univalent functions defined by Hadamard product, J. Complex Anal., 2014 (2014), Article ID 302019, 1–7.
    [11] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Classical Anal., 2 (2013), 49–60.
    [12] E. Deniz, J. M. Jahangiri, S. G.Hamidi, S. Kina, Faber polynomial coefficients for generalized bi-subordinate functions of complex order, J. Math. Inequal., 12 (2018), 645–653.
    [13] S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Math. Acad. Sci. Paris, 354 (2016), 365–370. doi: 10.1016/j.crma.2016.01.013
    [14] G. Faber, Über polynomische Entwickelungen, Math. Ann., 57 (1903), 389–408. doi: 10.1007/BF01444293
    [15] B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569–1573. doi: 10.1016/j.aml.2011.03.048
    [16] J. M. Jahangiri, S. G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci., 2013 (2013), Article ID 190560, 1–4.
    [17] J. M. Jahangiri, S. G. Hamidi, S. A. Halim, Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malays. Math. Sci. Soc., 37 (2014), 633–640.
    [18] F. R. Keogh, E. P.Merkes, A coeffcient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8–12. doi: 10.1090/S0002-9939-1969-0232926-9
    [19] B. Khan, H. M. Srivastava, M. Tahir, M. Darus, Q. Z. Ahmad, N. Khan, Applications of a certain $q$-integral operator to the subclasses of analytic and bi-univalent functions, AIMS Math., 6 (2021), 1024–1039. doi: 10.3934/math.2021061
    [20] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63–68. doi: 10.1090/S0002-9939-1967-0206255-1
    [21] W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions. In: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA.
    [22] Z. Nehari, Conformal Mapping, McGraw-Hill: New York, NY, USA, 1952.
    [23] H. M. Srivastava, Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran J. Sci. Technol. Trans. Sci., 44 (2020), 327–344. doi: 10.1007/s40995-019-00815-0
    [24] H. M. Srivastava, Ş. Altınkaya, S. Yalçin, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A Sci., 43 (2019), 1873–1879. doi: 10.1007/s40995-018-0647-0
    [25] H. M. Srivastava, D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc., 23 (2015), 242–246. doi: 10.1016/j.joems.2014.04.002
    [26] H. M. Srivastava, S. M. El-Deeb, The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of bi-close-to-convex functions connected with the $q$-convolution, AIMS Math., 5 (2020), 7087–7106. doi: 10.3934/math.2020454
    [27] H. M. Srivastava, S. Gaboury, F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afrika Mat., 28 (2017), 693–706. doi: 10.1007/s13370-016-0478-0
    [28] H. M. Srivastava, S. Gaboury, F. Ghanim, Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma-Minda type, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 112 (2018), 1157–1168. doi: 10.1007/s13398-017-0416-5
    [29] H. M. Srivastava, S. Khan, Q. Z. Ahmad, N. Khan, S. Hussain, The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain $q$-integral operator, Stud. Univ. Babeş-Bolyai Math., 63 (2018), 419–436.
    [30] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett., 23 (2010), 1188–1192. doi: 10.1016/j.aml.2010.05.009
    [31] H. M. Srivastava, A. Motamednezhad, E. Analouei Adegani, Faber polynomial coefficient estimates for bi-univalent functions defined byusing differential subordination and a certain fractional derivative operator, Mathematics, 8 (2020), Article ID 172, 1–12.
    [32] H. M. Srivastava, F. M. Sakar, H. O. Güney, Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination, Filomat, 32 (2018), 1313–1322. doi: 10.2298/FIL1804313S
    [33] H. M. Srivastava, S. Sümer Eker, R. M. Ali, Coeffcient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015), 1839–1845. doi: 10.2298/FIL1508839S
    [34] H. M. Srivastava, S. Sümer Eker, S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Bull. Iran. Math. Soc., 44 (2018), 149–157. doi: 10.1007/s41980-018-0011-3
    [35] H. M. Srivastava, A. K. Wanas, Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J., 59 (2019), 493–503.
    [36] H. Tang, G. T. Deng, S. H. Li, Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions, J. Inequal. Appl., 2013 (2013), Article ID 317.
    [37] P. G. Todorov, On the Faber polynomials of the univalent functions of class $\Sigma$, J. Math. Anal. Appl., 162 (1991), 268–276. doi: 10.1016/0022-247X(91)90193-4
    [38] A. Zireh, E. Analouei Adegani, M. Bidkham, Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasi-subordinate, Math. Slovaca, 68 (2018), 369–378. doi: 10.1515/ms-2017-0108
    [39] A. Zireh, E. Analouei Adegani, S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination, Bull. Belg. Math. Soc. Simon Stevin, 23 (2016), 487–504.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2429) PDF downloads(256) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog