Research article Special Issues

A comprehensive subclass of bi-univalent functions defined by a linear combination and satisfying subordination conditions

  • Received: 09 September 2023 Revised: 28 October 2023 Accepted: 31 October 2023 Published: 06 November 2023
  • MSC : 26A51, 30C45, 30C50, 30C80

  • In this article, we derive some estimates for the Taylor-Maclaurin coefficients of functions that belong to a new general subclass $ \Upsilon_\Sigma(\delta, \rho, \tau, n;\varphi) $ of bi-univalent functions in an open unit disk, which is defined by using the Ruscheweyh derivative operator and the principle of differential subordination between holomorphic functions. Our results are more accurate than the previous works and they generalize and improve some outcomes that have been obtained by other researchers. Under certain conditions, the derived bounds are smaller than those in the previous findings. Furthermore, if we specialize the parameters, several repercussions of this generic subclass will be properly obtained.

    Citation: Hari Mohan Srivastava, Pishtiwan Othman Sabir, Khalid Ibrahim Abdullah, Nafya Hameed Mohammed, Nejmeddine Chorfi, Pshtiwan Othman Mohammed. A comprehensive subclass of bi-univalent functions defined by a linear combination and satisfying subordination conditions[J]. AIMS Mathematics, 2023, 8(12): 29975-29994. doi: 10.3934/math.20231533

    Related Papers:

  • In this article, we derive some estimates for the Taylor-Maclaurin coefficients of functions that belong to a new general subclass $ \Upsilon_\Sigma(\delta, \rho, \tau, n;\varphi) $ of bi-univalent functions in an open unit disk, which is defined by using the Ruscheweyh derivative operator and the principle of differential subordination between holomorphic functions. Our results are more accurate than the previous works and they generalize and improve some outcomes that have been obtained by other researchers. Under certain conditions, the derived bounds are smaller than those in the previous findings. Furthermore, if we specialize the parameters, several repercussions of this generic subclass will be properly obtained.



    加载中


    [1] I. Al-Shbeil, A. Cătaş, H. M. Srivastava, N. Aloraini, Coefficient estimates of new families of analytic functions associated with q-Hermite polynomials, Axioms, 12 (2023), 52. https://www.mdpi.com/2075-1680/12/1/52
    [2] W. G. Atshan, I. A. R. Rahman, A. A. Lupaş, Some results of new subclasses for bi-univalent functions using quasi-subordination, Symmetry, 13 (2021), 1653. https://www.mdpi.com/2073-8994/13/9/1653
    [3] A. A. Attiya, A. M. Albalahi, T. S. Hassan, Coefficient estimates for certain families of analytic functions associated with Faber polynomial, J. Funct. Spaces, 2023 (2023), 6. https://doi.org/10.1155/2023/4741056 doi: 10.1155/2023/4741056
    [4] D. A. Brannan, J. G. Clunie, Aspects of contemporary complex analysis, Academic Press, Inc., London, (1980).
    [5] M. Çağlar, H. Orhan, H. M. Srivastava, Coefficient bounds for $q$-starlike functions associated with $q$-Bernoulli numbers, J. Appl. Anal. Comput., 13 (2023), 2354–2364. https://doi.org/10.11948/20220566 doi: 10.11948/20220566
    [6] P. L. Duren, Univalent Functions, Grundlehren der mathematischen wissenchaffen, Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo, (1983). https://doi.org/10.11948/20220566
    [7] S. M. El-Deeb, S. Bulut, Faber polynomial coefficient estimates of bi-univalent functions connected with the $ q $-convolution, Math. Bohem., 148 (2023), 49–64. https://doi.org/10.21136/MB.2022.0173-20 doi: 10.21136/MB.2022.0173-20
    [8] B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569–1573. https://doi.org/10.1016/j.aml.2011.03.048 doi: 10.1016/j.aml.2011.03.048
    [9] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Pol. Math., 2 (1970), 159–177. https://doi.org/10.1016/j.aml.2011.03.048 doi: 10.1016/j.aml.2011.03.048
    [10] R. S. Khatu, U. H. Naik, A. B. Patil, Estimation on initial coefficient bounds of generalized subclasses of bi-univalent functions, Int. J. Nonlinear Anal. Appl.. 13 (2022), 1989–997. https://doi.org/10.22075/ijnaa.2022.23092.2613
    [11] W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, Proc. Conf. Math. Complex. Anal., Internat. Press, Cambridge, MA, USA (1992), 157–169. https://doi.org/10.22075/ijnaa.2022.23092.2613
    [12] S. S. Miller, P. T. Mocanu, Differential subordinations$: $ Theory and applications, New York: Marcel Dekker, 2000.
    [13] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109–115. https://doi.org/10.22075/ijnaa.2022.23092.2613 doi: 10.22075/ijnaa.2022.23092.2613
    [14] P. O. Sabir, Coefficient estimate problems for certain subclasses of $m$-fold symmetric bi-univalent functions associated with the Ruscheweyh derivative, arXiv preprint arXiv: 2304.11571, (2023). https://doi.org/10.48550/arXiv.2304.11571
    [15] P. O. Sabir, H. M. Srivastava, W. G. Atshan, P. O. Mohammed, N. Chorfi, M. Vivas-Cortez, A family of holomorphic and $m$-fold symmetric bi-univalent functions endowed with coefficient estimate problems, Mathematics 11 (2023), 3970.
    [16] S. Sivasubramanian, R. Sivakumar, S. Kanas, Seong-A Kim, Verification of Brannan and Clunie's conjecture for certain subclasses of bi-univalent functions, Ann. Polon. Math. 113 (2015), 295–304.
    [17] H. M. Srivastava, S. Gaboury, F. Ghanim, Initial coefficient estimates for some subclasses of $m$-fold symmetric bi-univalent functions, Acta Math. Sci. 36 (2016), 863–871. https://www.sciencedirect.com/science/article/abs/pii/S0252960216300455
    [18] H. M. Srivastava, A. k. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192. https://doi.org/10.1016/j.aml.2010.05.009 doi: 10.1016/j.aml.2010.05.009
    [19] H. M. Srivastava, A. K. Wanas, Initial Maclaurin coefficient bounds for new subclasses of analytic and $m$-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J., 59 (2019), 493–503. https://doi.org/10.5666/KMJ.2022.62.2.257 doi: 10.5666/KMJ.2022.62.2.257
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(956) PDF downloads(66) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog