Citation: Lina Ma, Shuhai Li, Huo Tang. Geometric properties of harmonic functions associated with the symmetric conjecture points and exponential function[J]. AIMS Mathematics, 2020, 5(6): 6800-6816. doi: 10.3934/math.2020437
[1] | P. L. Duren, Univalent Functions (Grundlehren der Mathematischen Wissenschaften 259), Springer-Verlag, New York, 1983. |
[2] | H. M. Srivastava, S. Owa, Current Topics in Analytic Function Theory, World Scientific, London, 1992. |
[3] | M. Fekete, G. Szegö, Eine bemerkung uber ungerade schlichte funktionen, J. Lond. Math. Soc., s1-8 (1933), 85-89. |
[4] | W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceeding of the Conference on Complex Analysis, International Press, Boston, USA, 1994, 157-169. |
[5] | R. M. EL-Ashwah, A. H. Hassan, Fekete-Szegö inequalities for certain subclass of analytic functions defined by using Sălăgean operator, Miskolc Math. Notes, 17 (2017), 827-836. doi: 10.18514/MMN.2017.1495 |
[6] | W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, P. Am. Math. Soc., 101 (1987), 89-95. |
[7] | F. M. Sakar, S. Aytaş, H. Ö. Güney, On The Fekete-Szegö problem for generalized class Mα,γ(β) defined by differential operator, J. Nat. Appl. Sci., Süleyman Demirel University, 20 (2016), 456-459. |
[8] | W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Pol. Math., 28 (1973), 297-326. doi: 10.4064/ap-28-3-297-326 |
[9] | R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, B. Malays. Math. Sci. Soc., 38 (2015), 365-386. doi: 10.1007/s40840-014-0026-8 |
[10] | K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. JPN, 11 (1959), 72-75. doi: 10.2969/jmsj/01110072 |
[11] | R. El-Ashwah, D. Thomas, Some subclasses of closed-to-convex functions, J. Ramanujan Math. Soc., 2 (1987), 85-100. |
[12] | J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Math., 9 (1984), 3-25. doi: 10.5186/aasfm.1984.0905 |
[13] | P. L. Duren, Harmonic mappings in the plane, Cambridge University Press, England, 2004. |
[14] | H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, B. Am. Math. Soc., 42 (1936), 689-692. doi: 10.1090/S0002-9904-1936-06397-4 |
[15] | D. Klimek, A. Michalski, Univalent anti-analytic perturbations of convex analytic mappings in the unit disc, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 61 (2007), 39-49. |
[16] | I. Hotta, A. Michalski, Locally one-to-one harmonic functions with starlike analytic part, arXiv: 1404.1826, 2014. |
[17] | M. Zhu, X. Huang, The distortion theorems for harmonic mappings with analytic parts convex or starlike functions of order β, J. Math., 2015 (2015), 460191. |
[18] | G. Kohr, I. Graham, Geometric Function Theory in One and Higher Dimensions, Marcel Dekker, New York, 2003. |
[19] | W. Rogosinski, On the coefficients of subordinate functions, P. Lond. Math. Soc., 2 (1945), 48-82. |
[20] | Y. Polatoğlu, M. Bolcal, A. Sen, Two-point distortion theorems for certain families of analytic functions in the unit disc, Int. J. Math. Math. Sci., 66 (2003) 4183-4193. |
[21] | G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, American Mathematical Society, Rhode Island, 1969. |