Citation: Muhammad Ghaffar Khan, Bakhtiar Ahmad, Thabet Abdeljawad. Applications of a differential operator to a class of harmonic mappings defined by Mittag-leffer functions[J]. AIMS Mathematics, 2020, 5(6): 6782-6799. doi: 10.3934/math.2020436
[1] | B. A. Uralegaddi, M. D. Ganigi, S. M. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math., 25 (1994), 225-230. |
[2] | P. Duren, Harmonic mappings in the plane, Camb. Univ. Press, 2004. |
[3] | A. L. Pathak, S. Porwal, R. Agarwal, et al. A subclass of harmonic univalent functions with positive coefficients associated with fractional calculus operator, J. Non-linear Anal. Appl., (2012), Article ID jnaa-00108, 11. |
[4] | G. S. Salagean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian Finish Seminar, Bucharest, 1 (1983), 362-372. |
[5] | S. Porwal, K. K. Dixit, V. Kumar, et al. On a subclass of analytic functions defined by convolution, General Math., 19 (2011), 57-65. |
[6] | J. M. Jahangiri, G. Murugusundaramoorthy, K. Vijaya, Salagean-type harmonic univalent functions, Southwest J. Pure Appl. Math., 2 (2002), 77-82. |
[7] | S. Porwal, K. K. Dixit, New subclasses of harmonic starlike and convex functions, Kyungpook Math. J., 53 (2013), 467-478. doi: 10.5666/KMJ.2013.53.3.467 |
[8] | S. Porwal, K. K. Dixit, An application of certain convolution operator involving hypergeometric functions, J. Raj. Acad. Phy. Sci., 9 (2010), 173-186. |
[9] | B. A. Uralegaddi, C. Somanatha, Certain classes of univalent functions, in Current topics in analytic function theory, World Sci. Publishing, River Edge, NJ. |
[10] | S. Porwal, K. K. Dixit, A. L. Pathak, et al. A subclass of harmonic univalent functions with positive coefficients defined by generalized Salagean Operator, J. Raj. Acad. Phy. Sci., 11 (2012), 93-102. |
[11] | M. K. Aouf, T. M. Seoudy, Subclasses of p-valent functions involving a new operator containing the generalized Mittag-Leffer function, Mediterr. J. Math., 15 (2018), 1-19. doi: 10.1007/s00009-017-1047-y |
[12] | A. A. Attiya, Some applications of Mittag-Leffer function in the unit disc, Filomat, 30 (2016), 2075-2081. doi: 10.2298/FIL1607075A |
[13] | D. Bansal, J. K. Prajapat, Certain geometric properties of Mittag-Leffer functions, Complex Var. Elliptic Eq., 61 (2016), 338-350. doi: 10.1080/17476933.2015.1079628 |
[14] | S. Elhaddad, H. Aldweby, M. Darus, New Majorization properties for subclass of analytic pvalent functions associated with generalized differential operator involving Mittag-Leffer function, Nonlinear Funct. Anal. Appl., 23 (2018), 743-753. |
[15] | S. Elhaddad, M. Darus, On Meromorphic Functions Defined by a New Operator Containing the Mittag-Leffer function, Symmetry, 11 (2019), 210. |
[16] | I. S. Gupta, L. Debnath, Some properties of the Mittag-Leffer functions, Integral Transform. Spec. Funct., 18 (2007), 329-336. doi: 10.1080/10652460601090216 |
[17] | S. Răducanu, Third-Order differential subordinations for analytic functions associated with generalized Mittag-Leffer functions, Mediterr. J. Math., 14 (2017), 18. |
[18] | S. Răducanu, Partial sums of normalized Mittag-Leffer functions, An. St. Univ. Ovidius Constant, 25 (2017), 8. |
[19] | H. M. Serivastava, B. A. Frasin, V. Pescar, Univalence of integral operators involving Mittag-Leffer functions, Appl. Math. Inf. Sci., 11 (2017), 635-641. doi: 10.18576/amis/110301 |
[20] | H. M. Serivastava, Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffer function in the kernel, Appl. Math. Comput., 211 (2019), 198-210. |
[21] | S. Ponnusamy, H. Silverman, Complex Variables with Applications, Birkh auser, Boston, 2006. |
[22] | H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc., 42 (1936). |
[23] | J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 9 (1984), 3-25. doi: 10.5186/aasfm.1984.0905 |
[24] | T. Shiel-Small, Constants for planar harmonic mappings, J. London Math. Soc., 42 (1990), 237-248. |
[25] | W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math., 28 (1973), 297-326. doi: 10.4064/ap-28-3-297-326 |
[26] | A. Wiman, Über den Fundamental satz in der Theorie der Funktionen Eα (x), Acta Math., 29 (1905), 191-201. |
[27] | A. Wiman, Über die Nullstellun der Funktionen Eα (x), Acta Math., 29 (1905), 217-234. |
[28] | S. Elhaddad, H. Aldweby, M. Darus, On certain subclasses of analytic functions involving differential operator, Jnanabha, 48 (2018), 55-64. |
[29] | J. Dziok, On Janowski harmonic functions, J. Appl. Anal., 21 (2015), 99-107. |
[30] | S. Elhaddad, H. Aldweby, M. Darus, On a subclass of harmonic univalent functions involving a new operator containing q-Mittag-Leffler function, 23 (2019), 833-847. |
[31] | J. M. Jahangiri, Coefficient bounds and univalence criteria for harmonic functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 52 (1998), 57-66. |
[32] | J. M. Jahangiri, Harmonic functions starlike in the unit disc, J. Math. Anal. Appl., 235 (1999), 470-477. doi: 10.1006/jmaa.1999.6377 |
[33] | S. Ruscheweyh, Convolutions in Geometric Function Theory-Seminaire de Mathematiques Superieures, Gaetan Morin Editeur Ltee: Boucherville, QC, Canada, 1982. |
[34] | H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl., 220 (1998), 283-289. doi: 10.1006/jmaa.1997.5882 |
[35] | M. Krein, D. Milman, On the extreme points of regularly convex sets, Stud. Math., 9 (1940), 133-138. doi: 10.4064/sm-9-1-133-138 |
[36] | P. Montel, Sur les families de functions analytiques qui admettent des valeurs exceptionelles dans un domaine, Ann. Sci. Ec. Norm. Super., 23 (1992), 487-535. |
[37] | J. E. Littlewood, On inequalities in theory of functions, Proc. Lond. Math. Soc., 23 (1925), 481-519. |