In this paper, we are concerned with the following modified Schrödinger equation
$ \begin{array}{l} -\Delta u+V(|x|)u-\kappa u\Delta(u^2)+ \\ \qquad\qquad\qquad q\frac{h^2(|x|)}{|x|^2}(1+\kappa u^2)u\ + q\left(\int_{|x|}^{+\infty}\frac{h(s)}{s}(2+\kappa u^2(s))u^2(s){\rm{d}}s\right) u = (I_\alpha\ast F(u))f(u), \, \, x\in {\mathbb R}^2, \end{array} $
where $ \kappa $, $ q > 0 $, $ I_\alpha $ is a Riesz potential, $ \alpha\in (0, 2) $ and $ V \in \mathcal{C}({\mathbb R}^2, {\mathbb R}) $, $ F(t) = \int^t_0f(s){\rm{d}}s $. Under appropriate assumptions on $ f $ and $ V(x) $, by using the variational methods, we establish the existence of ground state solutions of the above equation.
Citation: Yingying Xiao, Chuanxi Zhu, Li Xie. Existence of ground state solutions for the modified Chern-Simons-Schrödinger equations with general Choquard type nonlinearity[J]. AIMS Mathematics, 2022, 7(4): 7166-7176. doi: 10.3934/math.2022399
In this paper, we are concerned with the following modified Schrödinger equation
$ \begin{array}{l} -\Delta u+V(|x|)u-\kappa u\Delta(u^2)+ \\ \qquad\qquad\qquad q\frac{h^2(|x|)}{|x|^2}(1+\kappa u^2)u\ + q\left(\int_{|x|}^{+\infty}\frac{h(s)}{s}(2+\kappa u^2(s))u^2(s){\rm{d}}s\right) u = (I_\alpha\ast F(u))f(u), \, \, x\in {\mathbb R}^2, \end{array} $
where $ \kappa $, $ q > 0 $, $ I_\alpha $ is a Riesz potential, $ \alpha\in (0, 2) $ and $ V \in \mathcal{C}({\mathbb R}^2, {\mathbb R}) $, $ F(t) = \int^t_0f(s){\rm{d}}s $. Under appropriate assumptions on $ f $ and $ V(x) $, by using the variational methods, we establish the existence of ground state solutions of the above equation.
[1] | J. Byeon, H. Huh, J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575–1608. https://doi.org/10.1016/j.jfa.2012.05.024 doi: 10.1016/j.jfa.2012.05.024 |
[2] | J. Byeon, H. Huh, J. Seok, On standing waves with a vortex point of order $N$ for the nonlinear Chern-Simons-Schrödinger equations, J. Differ. Equations, 261 (2016), 1285–1316. https://doi.org/10.1016/j.jde.2016.04.004 doi: 10.1016/j.jde.2016.04.004 |
[3] | S. T. Chen, B. L. Zhang, X. H. Tang, Existence and concentration of semiclassical ground state solutions for the generalized Chern-Simons-Schrödinger system in $H^1({\mathbb R}^2)$, Nonlinear Anal., 185 (2019), 68–96. https://doi.org/10.1016/j.na.2019.02.028 doi: 10.1016/j.na.2019.02.028 |
[4] | S. X. Chen, X. Wu, Existence of positive solutions for a class of quasilinear Schrödinger equations of Choquard type, J. Math. Anal. Appl., 475 (2019), 1754–1777. https://doi.org/10.1016/j.jmaa.2019.03.051 doi: 10.1016/j.jmaa.2019.03.051 |
[5] | Z. Chen, X. H. Tang, J. Zhang, Sign-changing multi-bump solutions for the Chern-Simons-Schrödinger equations in $ {\mathbb R}^2$, Adv. Nonlinear Anal., 9 (2020), 1066–1091. https://doi.org/10.1515/anona-2020-0041 doi: 10.1515/anona-2020-0041 |
[6] | M. Colin, L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear. Anal., 56 (2004), 213–226. https://doi.org/10.1016/j.na.2003.09.008 doi: 10.1016/j.na.2003.09.008 |
[7] | P. L. Cunha, P. d'Avenia, A. Pomponio, G. Siciliano, A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity, Nonlinear Differ. Equ. Appl., 22 (2015), 1831–1850. https://doi.org/10.1007/s00030-015-0346-x doi: 10.1007/s00030-015-0346-x |
[8] | P. d'Avenia, A. Pomponio, T. Watanabe, Standing waves of modified Schrödinger equations coupled with the Chern-Simons gauge theory, Proc. Roy. Soc. Edinburgh. Sect. A: Math., 150 (2020), 1915–1936. https://doi.org/10.1017/prm.2019.9 doi: 10.1017/prm.2019.9 |
[9] | J. M. do Ó, O. H. Miyagaki, Ś. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differ. Equations, 248 (2010), 722–744. https://doi.org/10.1016/j.jde.2009.11.030 doi: 10.1016/j.jde.2009.11.030 |
[10] | X. D. Fang, A. Szulkin, Multiple solutions for a quasilinear Schrödinger equation, J. Differ. Equations, 254 (2013), 2015–2032. https://doi.org/10.1016/j.jde.2012.11.017 doi: 10.1016/j.jde.2012.11.017 |
[11] | H. Huh, Blow-up solutions of the Chern-Simons-Schrödinger equations, Nonlinearity, 22 (2009), 967–974. https://doi.org/10.1088/0951-7715/22/5/003 doi: 10.1088/0951-7715/22/5/003 |
[12] | H. Huh, Standing waves of the Schrödinger equation coupled with the Chern-Simons gauge field, J. Math. Phys., 53 (2012), 063702. https://doi.org/10.1063/1.4726192 doi: 10.1063/1.4726192 |
[13] | H. Huh, Energy solution to the Chern-Simons-Schrödinger equations, Abstr. Appl. Anal., 2013 (2013), 590653. https://doi.org/10.1155/2013/590653 doi: 10.1155/2013/590653 |
[14] | L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $ {\mathbb R}^N$, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 789–809. https://doi.org/10.1017/S0308210500013147 doi: 10.1017/S0308210500013147 |
[15] | G. D. Li, Y. Y. Li, C. L. Tang, Existence and concentrate behavior of positive solutions for Chern-Simons-Schrödinger systems with critical growth, Complex Var. Elliptic Equ., 66 (2021), 476–486. https://doi.org/10.1080/17476933.2020.1723564 doi: 10.1080/17476933.2020.1723564 |
[16] | B. P. Liu, P. Smith, Global wellposedness of the equivariant Chern-Simons-Schrödinger equation, Rev. Mat. Iberoam, 32 (2016), 751–794. https://doi.org/10.4171/RMI/898 doi: 10.4171/RMI/898 |
[17] | B. P. Liu, P. Smith, D. Tataru, Local wellposedness of Chern-Simons-Schrödinger, Int. Math. Res. Not., 2014 (2014), 6341–6398. https://doi.org/10.1093/imrn/rnt161 doi: 10.1093/imrn/rnt161 |
[18] | J. Q. Liu, Y. Q. Wang, Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, II, J. Differ. Equations, 187 (2003), 473–493. https://doi.org/10.1016/S0022-0396(02)00064-5 doi: 10.1016/S0022-0396(02)00064-5 |
[19] | V. Moroz, J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153–184. https://doi.org/10.1016/j.jfa.2013.04.007 doi: 10.1016/j.jfa.2013.04.007 |
[20] | Y. Y. Wan, J. G. Tan, Standing waves for the Chern-Simons-Schrödinger systems without $(AR)$ condition, J. Math. Anal. Appl., 415 (2014), 422–434. https://doi.org/10.1016/j.jmaa.2014.01.084 doi: 10.1016/j.jmaa.2014.01.084 |
[21] | Y. Y. Wan, J. G. Tan, The existence of nontrivial solutions to Chern-Simons-Schrödinger systems, Discrete Contin. Dyn. Syst., 37 (2017), 2765–2786. http://dx.doi.org/10.3934/dcds.2017119 doi: 10.3934/dcds.2017119 |
[22] | X. Wu, Multiple solutions for quasilinear Schrödinger equations with a parameter, J. Differ. Equations, 256 (2014), 2619–2632. https://doi.org/10.1016/j.jde.2014.01.026 doi: 10.1016/j.jde.2014.01.026 |
[23] | Y. Y. Xiao, C. X. Zhu, New results on the existence of ground state solutions for generalized quasilinear Schrödinger equations coupled with the Chern-Simons gauge theory, Electron. J. Qual. Theo. Differ. Equ., 73 (2021), 1–17. https://doi.org/10.14232/ejqtde.2021.1.73 doi: 10.14232/ejqtde.2021.1.73 |
[24] | Y. Y. Xiao, C. X. Zhu, J. H. Chen, Ground state solutions for modified quasilinear Schrödinger equations coupled with the Chern-Simons gauge theory, Appl. Anal., 2020. https://doi.org/10.1080/00036811.2020.1836355 |
[25] | X. Y. Yang, X. H. Tang, G. Z. Gu, Concentration behavior of ground states for a generalized quasilinear Choquard equation, Math. Methods Appl. Sci., 43 (2020), 3569–3585. https://doi.org/10.1002/mma.6138 doi: 10.1002/mma.6138 |
[26] | J. Zhang, C. Ji, Ground state solutions for a generalized quasilinear Choquard equation, Math. Methods Appl. Sci., 44 (2021), 6048–6055. https://doi.org/10.1002/mma.7169 doi: 10.1002/mma.7169 |
[27] | J. Zhang, X. Y. Lin, X. H. Tang, Ground state solutions for a quasilinear Schrödinger equation, Mediterr. J. Math., 14 (2017), 84. https://doi.org/10.1007/s00009-016-0816-3 doi: 10.1007/s00009-016-0816-3 |
[28] | J. Zhang, X. H. Tang, W. Zhang, Infintiely many solutions of quasilinear with sign-changing potential, J. Math. Anal. Appl., 420 (2014), 1762–1775. https://doi.org/10.1016/j.jmaa.2014.06.055 doi: 10.1016/j.jmaa.2014.06.055 |
[29] | J. Zhang, W. Zhang, X. L. Xie, Infinitely many solutions for a gauged nonlinear Schrödinger equation, Appl. Math. Lett., 88 (2019), 21–27. https://doi.org/10.1016/j.aml.2018.08.007 doi: 10.1016/j.aml.2018.08.007 |